e
NG

5%,

=8

¥
&
!

£
b
o5

R

lliams Company.
formation that is the property of Mark Williams Company It shall not be copied,
1 whole or in part without the express written permission of Mark Williams Company.

akes no warranty of any kind with respect to this material and disclaims any implied war-
r fitness for any particular purpose.

ENT, csd and Fast Forward are trademarks of Mark Williams Company. Let's C is a
k Williams Company. Atari, ST and TOS are trademarks of Atari Corp.

nS Printing 54321

s Company, 1430 W, Wrightwood Avenue, Chicago, lllinois 60614.

Contents

I.Introduction
What is Mark Williams C?
Hardware requirements.
Changes from release 2.0.
How to use this manual. . e
User registration and react.lon report ‘o

Technical support. e

Bibliography...................
Atari ST information.

2. Installing and Running Mark Williams C . . .
Back upyourdisks!

Installing Mark WilliamsC.

P

Using Mark Williams C with single-sided ﬂoppy disks
Using two double-sided floppy drives . . .

Introducing the Mark Williams micro-ghell . ., . .
Whatismsh?
How to enter msh e e
Editingafile.

Setting the shell’s internal variables . .
Setting the environment.

.

o e e

e e e

Directories« ot i vt e it e e e
Renaming, moving, copying, and removing files
Redirecting input and output.

Redirecting to peripheral devices
Logical devices.
File-name substitutions “e
Quoted strings. . e ...

Joining and separatmg commands e

The profilefile. e

Embedded commands

The .cmd directory

o e e

« e s

s s s e . P]

. o e e s a0 « s e e e s e e
P L) P -

« e e v e s e e o

.. . PR . ..

. e P A D ..

s s v s e e o P
.« v .. e e s e .

« s s e e w e DY « v e .

LY P L I
. . . e e « s e s e s

P .

O I R T e v e

.. .
o e .
. o s
. . . .
[I
s e . . .
v e e .

ii Mark Williams C for the Atari ST
Device-sensitiveprompts e e 27
feommand, ittt e e e e 27
Parentheses i i it ittt 27
whilecommand e e e 28
equaland not L. . e e 28
Historycommand.ttt e 29
Three aliases. v it vt i it n et i is et ie s et 29
The camefrom variable ittt e 30
Theis.set cOMMANA i it it ittt i it ieee e ot s oo 30
Formoreinformationo ittt e 31
3. Compiling with Mark Willlams C. vt 33
The phasesof compilationttt iaenn 33
Compiling from the GEM desktop. i 34
Edit errors automatically e e e 34
Renaming executablefilest i i e 36
Floating-pointnumbers. e e 36
Compiling multiplesource files iy 36
Wildeards, e e e e e e e 37
Linking withoutcompiling i, PR 38
Compilingwithoutlinking e e 38
Assembly-language files. e e e e e e e e e e e 39
Changing the sizeofthestack. 39
Debugging with Mark Williams C. i 39
csd: the CSource Debugger. e e 40
db: symbolicdebugger e e e 40
od: formatted dUmp e e e e 41
nm:printgymboltables i 41
Creating smaller, faster programs. L e 42
PC-relativeaddressing. e e 42
513 o 1 2 42
Compilingwitha RAMdisk i 43
Buildinga RAMdisk. e e e 43
Workingwitha RAMdisk i, 45
Wheretogofromhere e e 46
4. Introduction to MiecroEMACS i i 47
What is MictoEMACS?t it it it et e e e e 47
Keystrokes — <ctrl>, <@8€> i it i 48
Becoming acquainted with MicroEMACS oo, 48
Beginningadocument. e 45
MOV i the CUSOT . . . ottt e et ettt e e it e e et e et et 51
Mcdngthecusorforward e e 61
Mo 'ngthecursorbackward i e 51

Fror. line to line

Table of Contents iii

Moving up and down by a screenful of text e e 52
Moving to beginningorendoftext o i 53
Savingtextand quitting. i BN 53
Killingand deletingc.vtutvnenveenn e r e 53
Deleting versus killing. e e e e e e e e 54
Erasingtexttotheright.ot 54
Erasingtexttotheleft. ot 65
Erasinglinesoftext0t 65
Yanking back (restoring) text. e e e 56
Quitting. e e e F 66
Block killingand movingtextttt 66
Movingone lineoftext e e e e 56
Multiple copying of killed text e PN 57
Killandmoveablockoftext. ov v v iv v oo i inneenens 67
Capitalization and other tools e e e e 58
Capitalizationand lowercasing. v v i e 58
Transpose characters. e e e e e e 59
SCreen TEATAW . . . & o o o v o oo s e e et o st oo conaaacnnononnssoses 59
Returnindent i i ittt o i ittt s n e snasosnassooeoasses 60
Wordwrap. . .. v v e v v v v e v o e e e e et 60
Search and Reverse Search. e e SN 62
Searchforward0 . J e 62
Reversesearch. e e e 63
Cancelacommand e e et et e e 64
Searchandreplace nn e e 64
Savingtextandexiting i i i e 65
Write text to a new file ., e e e e e e e 66
Savetextand eXil.ot e i e e 66
Advanced editing it e e e e 67
ATZUMEDES. . . . v o ittt i e e s 68
Default valueB o vttt et i e e e e e e 68
Selectingvalues.t e e e e68
Deleting with arguments —anexceptiont 89
Buffersandfiles00i oo e e 69
DefinionS ot ittt i e e e e e e e 70
Fileand buffercommandso v it ittt asonssnsonnns 70
Write and rename commands e e e e e e e 70
Replacetextinabuffero 71
Visiting anotherbuffer. i e e n
Move text from one buffertoanother00 72
Checkingbufferstatus. ittt 73
Renamingabuffero v ittt einet e oo nonaensneson 73
Deleteabuffer.0 ittt ittt ene s ... 74
Windows e e e e e e 74
Creating windows and moving betweenthem. 5

iv Mark Williams C for the Atari ST

Enlarging and shrinkingwindows. oo a i 76
Displaying text withinawindow. v i e 77
Onebufferot ennnns e e 78
Multiple buffers. B 78
Moving and copying text among buffers e e 79
Checkingbufferstatus. oot e e, 19
Saving text fromwindows. e e e e e e 79
Kevboard MBCTOS. . . o v v v v v v v vt e v v e n s s n o oenas e e80
."eyboard macrocommands. e e e 80
boplacingamacroc et e e et 81
Senongcommandsto TOS.o oo u ottt 81
Ct mpiling and debugging ‘hrough MicroEMACS chveeneee 82
Tle MicroEMACS helpfacility.o iv i i i 83
Wheretogofromhere ocu et vnr 84
5. make Programming Disefpline i 85
Howdoed make Work?. . . o o v v v it v ot vt i i o te et es s i s 85
TrY MAKE. . ottt it it e e e 86
Essentiol Make o v v v v v o oo st e ot n e e s e 88
Themakefile. v v v it s i i n et e e s et i et 88
Buildingasimplemakefile, L e 89
Comments and MACKOS. o v v v v vt v e o n v e s s e s st s oo n e os oo e 90
Setting thetime.o i vt in i i 91
Buildingalarge programo v v ettt e e 91
Command lineoptions.ttt 92
Other command linefeatures, v 93
AAvanced MBKE. . . . v v v vt vt ot e et e e e 94
Default FUleS. & . v it s et et e e e e e e e e 94
Double-colontargetlinesot 95
Alternative USES. v vt v et et et 96
Special targets. 98
o33 2 S T T I I AT 98

) O3 1712t 1 B 98
Wheretogofromhere it 98
6. Introduction to the Resource Editor oo 99
oW FeSOUICE WOTKS . & 4 v v v v v e ee en e e e ettt miane s oo oasa s o e 99
Planning YOUI TESOUICE o . . o o v v v oo v v oo o o mo s m oo s n e s s o s oo e 100
Designinganinterface. i i i e 100
Buttong and radiobuttons 100
Textinput . .o vt i e e .] 101
JCOME, o v v v e et e e e e e | 101

G T T T 101

. €23 1S T 2 I I I 101
Gettingstartedttt e e s 101

Table of Contents v

The resource desktOP o . .« oo oo v v v vae e e... . 102
Theresource MENU DAL v v v v i in et 103
Fileoperationsc.ocuconn e e e e e e 108
Display, copy, rename, and delete 108
Loadingand saving. e e e ..., 109
Moving and copying trees and objects-. et 109
TEEES « v o v e ee et i sa s o s aa s e e 110
FOTINB . o v v e e e e n e e aoasiea s o 110
Editing formso ovvnn o n s 110
MENU & . ot e it e ettt 113
Editingmenus.o e e e e e 113
SHEINE . o v v e v e e 114
T O I T LRI A B 114
Image oo i i . e e e e e e e e e e 114
Objects . . . oo v vveein e JE 118
New obJeCtS . o o v v v et i c i 116
Teons and iMABEES . . o v o o v v v v v i i e 116
TDOK & o e o e e e e st s 118
BULIOM. &« & v v o et e ot e e ta e et am e e 118
e AR T AL 119
Editing obJects v 119
Manipulatingobjects. i e 121
The Control KeY. . . o oot i it i e i 121
Movinganobject i 122
RESIZING. . . o oot v it 122
COPYANE. « o ot vt ei i 122
DeletiNg. . o o v v vv vt 123
Other functions on obJects« v ot v i vttt 123
WheretogofromBereot oe it 124
7. Resource Compiler and Decompiler. e 125
Using the compilerand decompiler.o 125
Language descriptiono viioie i 126
Tree and object deseriptionst i e 126
TEEES . o v v v e ee e e e et e e e e 127
ObJECES . o o v vv e iae e e 127
Resource descriptionelements.o oo 129
Sample resource descriptionol 133
Resource description rammar. o oo e v oo v v am s 133
B Error MESSAZESot viu e nn i 141
0. The LeXICOMm it ettt et bt ese e e oo e a o s e e 171
example. Give an example of Mark Williams Lexicon format . . . 172
abort. End program immediately00 173

vi Mark Williams C for the Atari ST

abs Return the absolute value of an integer.
ACCEESo vn v s Check if a file can be accessed in a given mode
access.h ., Define manifest constants used by access().
BCOB., . v v v e en o Calculate inverse cosine.o . oo oot
BAAFEEB . o o o e e e e e
AES . o e s e
aesbindh. Declare GEM AESroutineso
alignment
applexit Exit from an application e
applfind Get another application'shandle
applinit Initiate an application.
applLread. Read a message from another application.
appLtplay Replay AES activityo oot i
appl.trecord. Record user actions v v v v v s oo an e e
appl.write Send a message to another application.
B ot e e e The librarian/archiver, o
BEYCHA. - o o o e et e e e e e e
BYEC. « v v v v e Argument passed tomain
BIEV. . o o e Argument passed tomaino
BITAY . o o oo e e e e e
BE . . e e Assemblerfor AtariST v
asB68toas. Convert Motorolaassembler.
ASCIL. . . e e e e
asctime Convert time structure to ASClI string
asin. Calculate inversesine
assert Check assertionat runtime , oo
#assert Check assertion at compiletime.
asgert.h Defineassert() v oo v v v v n v
atan Calculate inversetangent, oo v oot
atan2. ,............ Calculate inversetangent.o
atof Convert ASCII strings to floating point
atel. Convert ASCH strings to integers.
atol. Convert ASCII strings to long integers.
auto. Note an automatic variable.
BULO. & o o et e e e e e e e e e e e
BUX . .o vve e e Logical device for serialport.
BACKEPACE . . . o ettt e
basepage.h. Define TOS base page structure.
Beonin, Receivea character
Beonout. Send a character to a peripheral device
Beonstat Return the input status of a peripheral device. . . . l .
Beostat Read the output status of a peripheral device i.
BIOS . . o e e e e e
bios............... Call an input/output routine in the TOS BIOS
blosh Declare bios constants and structures

Bioskeys « . . Reset the keyboard toitadefault
1T (I I N S AL
bitmapc00cinnen. R I
Blitmode Get/set blitter configuration.
bombs............. 68000 processor exceptions.o n
BOOL. « o v e e e e e e e e e e
break. Exit from loop or switch statement.
buffer T
1T 2T I I
byte Ordering vvinee i
CREYWORAS ovivvn e oo ma e s
CIaDGUARE.o e v meaa oot m e
cabs. Complex absolute value funetion
callingconventions.
calloe. Allocate dynamic memory-
camon.h Canonical conversion for the 68000,
CArTIAge FELUITL. ottt i e
CABE. . . . oo v cv s ot Introduce entry in switch statement
CABE . o o e e e e e e e e e e e
eat. Concatenatefiles.
Cauxin. e Read a character from the sedalport
Cauxis. Check if characters are waiting at serial port.
Cauxos. Check if serial port is ready to receive characters
Cauxout. Write a char totheserialport.
€C o vt ettt e Compilercontrollert
P 1 T T LRI SR B
DS A AR IR I
Py 2 L AL IR NI I
P T T T I R SRR I NI NI
Ceonin, Read a character from the standard input
Ceonis. Find if a character is waiting at standard input
Ceonos, Check if console is ready to receive characters.
Ceonout. Write a character onto standard output
Ceonts. Read and edit a string from the standard input
Cconws Write a string onto standard output
ed. ...t Changedirectory. cooin v
ceil Set numericeeiling e
char. Datatype . ..o v it
characterconstant i i e
chdir.............. Change working directory
chmod............. Change file protectionmodes
chmod............. Change the modesofafile.
chown Change ownershipofafile.
clearerr............ Present streamstatus. 0
o3) .6y \ o S I

243

viii Mark Williams C for the Atari ST

clock.............. Get number of clock ticks since system boot 258
close Closeafile.o v v vttt iieenaosen e 258
COP. . oo v vt i Compare bytesof twofiles 259
Cnecin............. Perform modified raw input from standard input 259
COMMANAS . . . o v vttt ittt es e et e e e e 260
compound number 262
€OMo Logical device for theconsole 263
comst Qualify an identifier as not modifiable. 263
continue, Force next iterationofaloop 263
COB . . vt vnee e e Caleulatecosine. v v it 264
cosh, Calculate hyperboliccosine. 264
CP v v e et Copyafile.o vinmnnnnens 265
CPP o e v et e CPreprocessor v oo v oo o v v va v s oson 265
Cproos. Check if printer is ready to receive characters 267
Cproout. Send a character to the printerport 267
Crawein., Read a raw character from standard input 268
Trawlo. Perform raw 1/O with the standard input. 268
ceat Create/truncateafile. 269
cxs0o.,............ Default C runtime startup e 269
ertido. C runtime startup, GEM environment. 270
ert'go............. C runtime startup, GEM environment. 270
ctime. Convert system time to an ASCll string. 271
By P . . it e e e 271
ctypeh. Header filefordatatests 273
curgsconf. Set the cursor’s configuration 273
Cursconf Get or set the cursor’s configuration., 274
P 023 ¢ 11+ WP I I I IR 276
data formats. ot e e 276
data typPes e e 276
date. Print/set the dateand time ., 277
dayspermonth. Return number of daysina givenmonth, 278
b.. Assembler-level symbolic debugger. 278
Dcreate Createadirectoryo 288
Ddelete Deleteadirectory 289
declarations. e e e 290
default. Default label in switch statement. 291
#define Define a variable as manifest constant. 291
deBK BCCESBOTY v e i it ot i n ot oo in s e 292
L Measure free spaceondisk. L 296
Dfree. Get information on a drive's free space 297
Dgetdrv Find current default disk drive } . 298
Dgetpath Get the current directoryname. 298
aiff Summarize differences between twofiles 299
difftime Return difference between two times 300
directory e e e 300

Table of Contents ix

do.............:.. Introducealoop 300
Dosound. Start up the sound daemon 301
double............. DatatyPe . oo v cvv v vc oo s 303
drtomw Convert from DRI to Mark Williams format 303
Drvmap............ Get a map of the logical disk drives. 304
drvprs Check if a drive is present on the machine 304
Dsetdrv Make a drive the currentdrive 305
Dsetpath Set the currentdirectory 306
dup........0... Duplicate a filedescriptor.o 307
dup2 Duplicate a file deseriptor.o 308
echo Repeat/expand an argument.o 309
ecvt. Convert floating-point numbers to strings. 309
P TN = Y T T LRI L B N 310
EEreP. ae s Extended patternsearch 310
#elif Include code conditionally 312
else............... Introduce a conditional statement. 313
#elge., Include code conditionally 313
e L R 314
el e e e 314
#endif. End conditional inclusionofcode. 314
entry. Undefined keyword ccovt e 315
enum. Declare a type and identifiers 315
OIVIFOM o o o v v i e e e e et e e e e 316
environment. e e e e e e e e 316
envVP Argument passed tomaino 317
BOF. . e e e e e e 317
equal. Compare twoarguments 318
errno. External integer for return of error status 318
errmo.h ..o L. L. Error numbersused byerrno() 319
CITOF COUBB. . o v o v it e et et e e e oo e e e e 319
P TS« A e I LRI I N 320
evnt.button Await a specific mouse buttonevent. 320
evnt. dclick. Get/set double-click interval 321
evnt keybd, Await a keyboardevent.o 321
evntimesag Await B MeSSAZe oo i s 322
eynt_mouse Wait for mouse to enter specified rectangle. 324
evatmulti Await one or more specified events. 325
evnt_timer’. Wait for a specified length of time 328
executable file 328
eXeCVe a v Execute a command from within a program 328
exit ., Terminate & Program v o oo v v v v v v oo oo 329
exit Exitfromamshshell, 329
cexit ... L. Terminate 8 Program v .« oo oo v v v oo e 329
eXP Computeexponent. 330
exterm Declare storageclass. 331

x Mark Williams C for the Atari ST

fabs. Compute absolute value,o 332
Fattrtb, Get and set fileattributes 332
Felose Closeafile.ot it 333
felose. ClOBE SLIGAIM . o . v v v v v ot e e v m o m e aeaas s 333
Fcreate Createafile. vt aeoonnns 334
fevt . . 0o Convert floating point numbers to ASCII strings 336
Fdatime. Get or set a file's date/timestamp 337
Fdelete Deleteafile. ienneeaneen 338
fdopen............. Open a stream for standard I/O. 338
Fdup Generate a substitute filehandle 340
feof Discover stream statuso 0o 340
ferror. Discover stream statuso e 340
fllush. Flush output stream’sbuffer. 341
Fforce Forceafilehandle. 342
fgete Read character fromstream 342
Fgetdta Get a disk transfer address. 343
fgets Read line from stream. , 345
fgetw. Read integer from stream 346
Bl . . ot e e e e e 347
51 = S U T LI T I R BN 347
file............... Nameafile'stype v 347
FILE.............. Descriptor for a filestream. 348
file descriptor. e e 349
fileno. Getfiledescriptor e 349
flexible BITAYSo ot e 350
float Datatypeo v e 350
floor Setanumericfloor 353
Flopfmt Format tracks on a floppy disk 353
Floprd. Read sectorsona floppy disk 356
Flopver Verifyafloppy disk 357
Flopwr. Write sectorsona floppydisk 358
fopen. Open a stream for standard 1/0. 358
Fopen Openafile. oo 360
for.............. .. Controlaloop. it 360
form_alext Displayanalertbox. 361
formicenter Center an object on thescreen 362
form_dial. Reserve/free screen space for dialogue. 362
formdo............ Handle user input in form dialogue 363
form_error.......... DisplayaTOSerror.o 364
fprintf Print formatted output onto file stream 4. . 365
fpute Write character onto filestream. 365
fputs Write string to filestream 366
fputw, Write an integer toastream. 366
raction e e e e e 367
fread Read data from filestream. 367

Table of Contents xi

Fread. CL.Readafile. i . 367
free.o Return dynamic memory to free memory pool. 368
Frename Renameafile. c.cvvovenocennenns .. 368
freopen Open file stream for standard /0 369
frexpcoonvne- Separate fraction and exponent 370
fscanf Format input from a file stream. 3N
feeek Seekonfilestream. 372
Fseek. Moveafilepointer. oo 373
fgeldnput. Selectafileo vt i i 375
Feetdta Set digk transferaddresso 378
Fefirgt Search for first occurrenceof afile. 378
Fenext............. Search for next occurrence of filename 379
fstat Findfileattributes. 379
ftell. Return current position of file pointer. 380
T T U I 380
forite Writeonto filestream. 381
Ferite............. Writeintoafile. oo 381
GRIAXY.B D s 382
gevb. ... Convert floating point number to ASCIi string. 382
geml. Runa GEMProgram« oo v v v oo mv v v oo 382
gemdefs.h. GEM structures and definitions. 383
gemdos Call a routine from GEM-DOS 383
gemouth GEM-DOS file formats and magic numbers 385
Getbpb, Get pointer to BIOS parameter block for a disk drive. . 385
gete. Read character from file stream. 386
getchar Read character from standard input 387
geteol Getacolorvalue o i v e v e 387
getenv. Read environmental variable. 388
Getmpb Copy memory parameter block 388
getpal Get the color palette settings. 389
getphys Get the base of the physical screen’s display 390
getrez Get screen’s current resolutiono 390
Getrez Read the current screen resolution. 390
gets. Read string from standard input 391
Getshift Get or set the status flag for shift/alt/control keys . . . 392
Gettime Read thecurrenttime. 393
getw Read word from filestream 394
Giaccess. Access a register on the Gl sound chip 394
(). T T C IR IR B 396
gmtime Convert system time to calendar structure 397
goto., Unconditionally jump within a function. 397
grafdragbox. Draw adragablebox. 398
graf.growbox Drawagrowingbox. 399
graf_handle GetaVDIhandle, 400
grafmbox Movea box o i i ittt e e 400

xii Mark Williams C for the Atari ST

graf_mkstate Get the current mouse state. 401
graf_mouse. Change the shape of the mouse pointer. 401
graf_rubbox Drawarubberbox. e 403
graf_shrinkbox Draw a shrinkingbox. v e 403
graf_slidebox Track the slider withinabox 404
graf_watchbox Drawawatchedbox.o 406
BANAIE . o o et e e e e 408
header flle ot o e 408
help. Print concise description of command 408
hidemouse Hide the mouse pointer.o co o v ov o 409
HOME . ottt e e et e 409
horizontal tab. 409
htom.............. Redraw screen from high to medium resolution. 410
hypot. Compute hypotenuse of right triangle 410
| { S U Execute a command conditionally. 411
i Introduce a conditional statement. 411
#EL oo Include code conditionally o 411
#ifdef Include code conditionally 412
#ifndef Include code conditionally 413
Ikbdws. Write a string to the intelligent keyboard device. 413
INCDER . et e e e e e e e e e 414
#include Copy a header file into a program- 414
index.............. Find a characterinastring 415
tnherit. Pass variabletochildshello 415
Initmous Initializethemouse« oo 415
3 Data tyPe . . v oo n e 416
IDEEETUPE . o o . ottt e e it e 416
Torec........c.cou... Setthel/Orecord oo 417
geet. Check if an environmental variableisset. 418
saalpum ... L. L L. Check if a character is a number or letter. 418
{mlpha. Check if a characterisaletter, 419
R LY 11 | Check if a character is an ASCII character 419
jgatty. Check if a deviceisaterminal. 419
isemtrl Check if a character is a control character 420
fsdigit Check if a characterisanumeral. 420
isleapyear Indicate if a year wasaleapyear. 420
islower. Check if a character is a lower-case letter. 420
fsprint Check if a characteris printable. 421
fspunct. Check if a character is a punctuation mark. 421
isspace. Check if a character prints white space 421
isupper Check if a character is an upper-case letter. F .. 422
JO .. Compute Bessel function 428
JU oo Compute Bessel function 424
jday.to_time. Convert Julian date to system time 424
jday totm Convert Julian date to system calendar format 424

Table of Contents xiii

Jdisint, ., Disable interrupt on muli-function peripheral device. . 425
Jenabint Enable a multi-function peripheral port interrupt. . . . 425
oo Compute Bessel function 425
Kbdvbase, Return a pointer to the keyboard vectors. 427
kbrate. Reset the keyboard'srepeatrate 429
Kbrate. Get or set the keyboard’'s repeat rate, 429
keyboard 430
Keytbl Set the keyhoard’s translation table 431
Kgettime Read time from intelligent keyboard's clock 432
kiek., Force TOS to reread the disk cache 433
Ksettime Set time in intelligent keyboard'sclock 433
List directory’s contents in columnar format. 434
lealloc. Allocate dynamicmemoryo 434
... . e Link relocatable objectfiles. 434
Mdexp.............. Combine fractionand exponent. 437
Lexiconc.0iiieeeeeonens e et 437
libaes. GEM AESbindingso 439
1111 S 439
TS T O S 440
LIBPATH. Directories that hold libraries 440
Iy e 440
Hbvadi. GEM VDIbindings.o v v 440
#line. Resetlinenumberingo 441
O 0 e T - U T 441
lineah. Declare Atari line A routines 445
e feed. i e e e e e 445
Imalloe Allocate dynamicmemoryo 446
localtime Convert system time to calendar structure 446
log. Compute natural logarithm 448
logl0.............. Compute common logarithm. 449
Logbase. Read the logical screen’s display base 449
long. Datatype v vttt e 450
longjmp............ Return fromanon-localgoto 450
lrealloc Reallocate dynamicmemory 451
Is. i List directory’scontents. 451
Iseek Set read/write position L 452
Itom Redraw the screen from low to medium resolution . . . 453
IVAIUE & o ot e e e e e e e e e e e e 453
IIACKO .+ o v o v v v e e et e e a e e e e e e e e 455
main.............. Introduce program’s main function. 455
make. Program building discipline 455
malloc. Allocate dynamicmemory 459
Malloc............. Allocate dynamicmemory- 461
manifest constant e e e e 462
MANLIBEA e e e e e e 462

xiv Viark Williams C for the Atari ST

mathh, Declare mathematics functions
mathematicslibrary
IOAXIICIL . L L ottt et e e e e e e e e e e e e
me. MicroEMACS screen editor
LT
Mediach. Check whether disk has been changed.
memchr. Search a region of memory for a character
memcmp Comparetworegions
memepy. Copy one region of memory into another
memory allocation
memset, Fill an area withacharacter.
K@M L L Lttt e e e e e e e e e e e e e
menwbar, Show orerase themenubar.
menw.icheck. Write or erase a check mark next to a menu item
menu_ienable. ., Enable or disable a menuitem,..........
menu_register. Add a name to the desk accessory menulist ,
menu_text, .. Replace text of a menuitem.
menu_tnormal Display menu title in normal or reverse video
metafile. L,
mf. Measure space leftin RAM. .,
Mfpint. Initialize the MFPinterrupt
Mfree. Free allocatedmemory
Midiwsg, Write a stringtothe MIDIport.
mkdir Createadirectory
mktemp. Generate a temporary filename,
modf.............. Separate integral part and fraction.
modulus. e
mo}l:sehidden Return how often mouse pointer has been hidden
meh. e
Mshrink. Shrink amount of allocated memory
mshversion, Print current versionof msh,
msleep. Stop executing for a specifiedtime
mtoh. Redraw the screen from medium to high resolution . .
mtol Redraw the screen from medium to low resolution . . .
miypeh. List processor code numbers.
mv. ... Rename files or directories.
mwtomw, .., Convert objects to 3.0format
mestedcomments L L L
newline
nm ..., Print a program’s symbol table
mot Invert logical value of an argument. I
notmem., .. . Check if memory isallocated.!
BOUL . L
nout.h Describe output format nout .,
NUL

Table of Contents xv

NULL R S0
mybble. 00 P R R P
fo.h,.... e Declare TOS objects and structures
z:;i:.:dd Redefine a child object within an object tree %;
objcchange Change objec_:t's state o
obje_delete. Delete an object from an objecttree o
objcdraw. D;aw an Obji?teét oS

it Edita textobject. IEREEREE
gg}cc:g(:ld Find if mouse pointer is over particular qb.Ject 509
objcoffset Calculate an object’s absolqte screen position 510
objcorder Reorder a child object within the object tree gi(l)
OBJEOE . . .o oo
fi P T I
ggjet‘!t. -o rm Print a hexadecimal dumpofafile. 520
Oﬂ:giblt Clear a bit in the sound chip’g Aport........... ﬁgi
Ongibit Turn on a bit in the sound chip'sAport 222
Openovennns Openafile.cvoivnnnnn o
operator,o e
ogglnd.h Declare TOS functions ggg
P R I IR A
‘x:th Build a path name forafile Egg
path.h Declarepath(). i 527
PATH Directories that hold executablefiles. ?.28
C T ;TS O I LRI
&el?l:n Extracta bytefrommemory.« ... 522
peekd. Extract a long frommemory. 5;
peekw Extract a word from memoryo 523
Perror System call error messages.o 0o b o
Pexec. Load or execute 8 Process e e 53
Physbase Read the physical screen’s display base 531
picture. Format numbersunder mask ggi
pomatch Match string pattern.o o
pointer B R R oo
pokeb Insertabyteintomemory e
pokel.............. Insertalongintomemory 0%
pokew Insertalongintomemory »537
e L s T T IR AR A
portabllity e gg
POW. . o it inii i Compute a power ofanumber
23 Paginateand printfiles. g
PrecedenCe.ot a e e e o4
printf. Formatoutputo oo vt v i o
[+ ¢ + T TOS logical device for parallel port. o
P T
?’miht (Jonerate a prototype boot sector ., 644

xvi Mark Williams C for the Atari ST

Prthlk Printa dump of thescreen,o oo vt 545
Pterm0. Terminate 8 ProcessS. - c -« v e o v oo s o m e 547
PtermO Terminate a TOS Process. oo oo oo v o v 547
Ptermres Terminate a process but keep it in memory 547
PUD . ottt et e 548
Puntaes............ Disable AES. . . oo i v i e ii e 548
pute, Write character tostream+ 548
putchar Write a character to standard output 649
puts. Write string to standardoutput.o e 550
putwo Writeword tostream oo 650
pwd. Print the name of the current directory. 650 -
gsort Sort arrays in MEMOTY . . .« o v v e v o e mvor v oo 552
rand00 Generate pseudo-random numbers. 653
Random. Generate a 24-bit pseudo-random number 65563
rARAOM BCCEBE o o o et e e e e 554
I 554
pational number 555
XCCOPY .« v cvmeme o Copyarectangleo oo 555
rcequal. Compare two rectangles.o 556
rc_intersect Check if two rectangles interseet 556
rc.unfon. Calculate overlap between two rectangles. 557
dy ... Create, save, and load rebootable RAMdisk 557
R T I I 6565
vead. Read fromafile v 566
readonly Storage class iee et 566
read-only MEMOKY. . o . o v v v e e s s m e e st 566
realloc. Reallocate dynamic memoryo s o v e et 6567
real BUIDBEr . . . o oot e 567
FECOTA & . o v o e e e e e 567
register Storage class e 567
PEIBLET . . . o 568
registervarfable 568
Xescomp. Resourcecompilerot v v e i oot 568
resdecom........... Resource decompiler.o 569
xesource. Invoke the resourceeditoro 670
returm Return a value and control to calling function 671
rewind. Reset filepointer.o aae e 571
Adndex Find a characterinastring 571
B 1 T Remove files. . . . v v v v oot i i e b 572
radic, L Remove directories.o v oo v oo n o s e 572
hsconf. Configure the serialport v ‘ .. b73
rsconf Configure the serialport 0. 575
rsre_free. Free memory allocated to a set of resources 576
rsre_gaddr Get the address of a resource object 576
rsrcload Load a resource fileintomemory. 671

Table of Contents xvii

rerc.obfix. Change the form of an object’s coordinates. 577
rsre.saddr Store address of a free string or a bitimage 678
runtime startup o e s 578
EVAIUO & & o o et em e tae s e s 579
Rwabs Read or write data ona diskdrive 579
sbrk, Increase a program'sdataspace., ... 6580
geanf. Accept and format input e e e 580
Serdmp Printadumpofthescreen. 582
gereem COMEIOL.t i e it 583
serpread. Read the scrap directoryo i i 584
serpwrite Write to the scrap directory oo v oot 585
Bet. Setamshvariable.ot 585
getbuf Set alternative stream buffers. 586
getcol, Reset @ color . . . oo i e nneoeeecnonens 586
Setcolor. Setonecolor . . . v v v vttt e 586
getenv Set an environmental variable. 687
Setexe0.- Get or set an exceptionvector. e 588
setjmp............. Performnon-localgoto o 589
getjmp.h. Define setjmp() and longjmpO. 589
setpal Regset the colorpalette.o 590
Setpallete. Set the screen's color palette. 590
setphys Reset physical screen’s display space. 591
getprt Reset the printerport.ot 591
Setprt Get or set the printer’s configuration 591
setrez Reset the screen resolution. 592
Setscreen. Set the video parameters. 592
Settime Setthecurrenttime.o oceeoonnn 693
Sgettime Read time from intelligent keyboard’s clock 596
sheLenvim Search for an environmental variable 596
gshelLfind Search PATH forfilename 598
shel.read........... Let an application identify the program that called it. . 598
shelLwrite Tell desktop which applicationtorunnext. 598
shellsort. Sortarrays inMemoryo s i e 599
short.............. Datatype . . oo v v v i e 600
shOwW Display a stored screenimage. 600
showmouse, Redisplay the mouse pointer. 601
signalh Define Atari ST signals. 601
sim. ... o Caleulatesine. v e v vvovnnennnnnns 601
ginh, Calculate hyperbolicsine 601
slze............... Print the size of an objectmodule 602
gizeof. Return sizeof adataelement 602
sleep.............. Stop executing for a specified time 603
BBAP Save a SCreeN iMAZE o . v o v v v v e v e a s oo 603
sort............... Sortlinesoftexto 604
sprintf. Formatoutputovvvonnronnons 605

xviii Mark Williams C for the Atari ST

sqrt., Computesquarerooto v e . 606
srand. Seed random number generator. e 608
vseanf Formatinputt eesnnn 606
LY Y- . A 607
standarderror S 608
stindardinput L. e e e 608
standardoutput L e e e e 608
stat Find fileattributes. 609
statth. Definitions and declarations used to obtain file status . 610
statle. Declare storageclass. 610
1 L3 xS 610
BEAIm . . L. e e e e e e e s 610
153 479,30 2 I 611
stdioh. Declarations and definitionsfor I/O 6812
Btdout e e e e e e e e 612
stime. Set the operating system time. 612
11 7 T 613
storageclass. e e e 614
streat, e e Append one stringtoanother 614
strehr Find a characterinastring 614
stremp. Comparetwostrings.o 615
strepy Copy one string intoanother. 816
strespo. L L L. L. Length one string excludes characters in another 615
1 1Y - Y R 816
strerror Translate an error number intoa string. 616
13 o T T I 617
stelp L. Strip tables from executablefile. 619
strlen. Measgure the lengthofastring. 619
atrmeat, Append one string onto another. 619
strmemp. Comparetwostrings.ttt 620
strnepy Copy one string intoanother. 620
strpbrk Find first occurrence of any character 622
sterchre, . Lol Search for rightmost occurrence of a character. 622
513 o ¢ 623
stretr. Find one string withinanother 623
struct.Datatype e 624
BtHUCtUI® e e e e e e e e e 624
structure assignment. L L e e e 624
BUFFE ., . oo ittt ettt ettt e e e e i e e 625
Super.............. Enter privilege mode P 626
Supexec............ Run a function under supervisormode ‘ . 626
Sversion, Get the version number of TOS. 628
swab Swapapairofbytes. 629
switch Test a variable againstatable. 829
system. Pass a command to TOS for execution. 630

systemvarlables. e 632
tall Printtheendofafile., 636
77 ¢ Calculatetangent.o v v v v e e o onon 636
tanh e Calculate hyperboliceosine. 638
tempnam Generate 8 unique name for a temporary file 637
tetdtotm Convert IKBD time to system calendar format. 637
Tgetdate Getthecurrentdate. 638
Tgettime Getthecurrenttime.cc0vvonnn 639
Tickeal. Return system timer’s calibration. 640
time e Time the execution ofa command 640
time Getcurrenttime.o 641
L 07T T T LI I R I S R N 641
thme Print current time/time execution of a command 645
timeh Give time-description structure 648
time_to_jday. Convert system time to Juliandate 646
TIMEZONE. Time zone information 646
tmtojday.......... Convert calendar format to Julian time 648
tm to_tetd Convert system calendar format to IKBD time. 649
¥ 134 1) 1 T T I N 649
tmpnam. Generate a unique name for a temporary file 649
toascif Convert charactersto ASCIT. 650
tolower Convert characters to lowercase 650
tolower. Convert letter tolowercase 651
toB. . .. e Execute GEM-DOSprogram. 652
L & o 7= 7 T T I LI IR ST A 652
touch, Update modification ime ofafile. 655
toupper Convert characterstouppercase 655
toupper. Convert letter touppercase 856
Tsetdate, Setanewdate it 658
Teettime Setamewtimeouierreocaaroan 658
typechecking. it e 658
typedef Defineanewdatatypeo 658
typepromotion. e 659
#undef. Undefine a manifestconstant 660
ungete. Return character to input stream. 660
union. Multiply declarea variable. 661
unfq. Remove/count repeated lines in a sorted file. 662
UNIXroutines,o vttt iiinnenoneess oo ensceenos 662
unlink Removeafile...........c00iiimeeeeennns 6683
unset. Discardashellvariable 664
unsetenv Discard an environmental variable e 664
ungigned Datatypeot v v ie i e 664
V.AEC Drawacircularare v v e 665
vbhar.............. Drawarectangle.c..... 885
v_bit.image Printa bitimagefile. 668

]
xx Mark Williams C for the Atari ST

veellarray. Draw a table of colored cells e e e 669
velrele, Drawacircle vttt 669
v.clear.disp_list Clear a printer’s displaylist 672
velrwk Clear the virtual workstation 672
velsvwk Close the screen virtual device. e e 673
velswk Close a virtual workstation. c.... 873
v_contourfill, Fillanoutlinedarea. 674
v_eurdown Move text cursor down onerow.o .o 877
v.eurhome Move text cursor to the home position. 877
voeurleft. Move text cursor leftonecolumn. 677
veewrright Move text cursor right onecolumn. 678
v.eurtext Write alphabetictext, 678
voeurup ... Move text cursor up onerow v oo 00 e s 678
vadspeur. Move mouse pointer to pointonscreen 879
veeol Erase text from cursortoend of screen ., 679
V.€EOS Erase from text cursor toend of screen 679
veellare Draw an ellipticalarc, 680
veellipse. Drawanellipse. 683
veellpile Draw an elliptical pieslice 685
v_enter_cur, Entertextmodet 686
v.exit_eur. Exitfromtextmode. 688
v.fillarea Draw a complexpolygon 689
vformadv, Advance the pageon a printer. e 692
v.get pixel.......... Seeifagivenpixelisset 692
vgtext. Drawgraphicstext., 692
v.hardecopy. Write the screen to a hard-copy device. 696
vohideee. ... L Hide the mouse pointer. 696
vjustified Justify graphiestext. o 696
v.meta_extents. Update extents header of metafile 697
veopnvwk. Open the virtual screen device. 697
vopawk. Open a virtual workstation. 698
v_output_window . . : .. Dump a portion of a virtual device to a printer 702
v.pieslice. Draw a circular pieslice s ... 702
v.pline. Drawaline v iivrennenn 702
v.pmarker Drawamarker. 00t ieevononn 704
vrbhox............. Drawarounded rectangle 705
vafbox, Draw a filled, rounded rectangle 707
Vmeur. Remove last mouse pointer from the screen 707
vavoff. End reverse video for alphabetictext. 708
VIVOR Display alphabetic text in reverse video 708
v.show.c Showthemousecursor. | . 708
vaupdwk, ... L. L Update a virtual workstation.0L. 709
v.write_meta Write a metafileitem 709
72 1) (U 710
vdibindh........... Declarations for VDI routines 718

Table of Contents xxi

version Print/create a version string. 718
verticRI 6D, e e e 719
vexbutv. Set new button interrupt routine.- 719
VEeX.CUTY, . . v v v v v v Set new cursor interrupt routine 720
vex_motv........... Set new mouse movement interrupt routine. 720
vextimv Set new timer interrupt routine. 721
vm_filename. Renameametafile. 721
void. Datatype .« oo v i i in e 722
volatile Qualify an identifier as frequently changing 722
vgecellarray Return information about cell arrays. 723
vg.cheells. Find how many characters virtual device can print. . . 724
vgqeolor............ Check/set colorintensityo0..on 725
vg.curaddress. Get the text cursor’s current position 725
vgextnd Perform extend inquire of VDI virtual device. 725
vogkey.s. Check controlkeystatus 726
VGIMOUSe ., Check mouse position and buttonstate 727
vq.tabstatus. Find if graphics tablet is available 727
vql attributes. Read the area fill’s current attributes 727
vgin.mode Determine mode of a logical input device 728
vgl.attributes. Read the polyline’s current attributes 728
vgm_attributes Read the marker’s current attributes 729
VOP.€ITOr. vt Inquire if an error occurred with the Polarcid Palette . 730
vgpfilms. Get films supported by driver for Polaroid Palette. . . . 730
vgp-state ., Read current settings of the Polaroid Palette driver. . . 731
vqt_attributes. Read the graphic text's current attributes. 731
vqtextent Calculate a string’slength 732
vqt_fontinfo Get information about special effects for graphics text . 733
vgtname. Get name and description of graphics text font 734
vgtwidth, Get charactercellwidth. 735
vexeefl Draw a rectangularfillarea 735
vetrmmfm Transform a rasterimage. 737
vro_epyfm Copy raster form, opaque.-- 738
vrgqchofce Return status of function keys when any key is pressed 743
viglocator. Find location of mouse cursor when a key is pressed. . 743
vrqstring. Read a string from the keyboard 744
vrg-valuator. Return status of shift and cursorkeys. 745
vitepyfm. Copy raster form, trangparent. 745
veelip............. Set the virtual device’s clipping rectangle. 747
vecolor............ Setcolorintensity 748
ve_curaddress. Move text cursor to specified row and column 748
vapalette. Select color paletie on medium-resolution screen 749
veeform Draw a new shape for the mouse pointer. 749
vefeolor Set a polygon'sfillcolor, 750
vsfinterior, Setapolygon'sfilltype. 750
vsf_perimeter. Set whether to draw a perimetc. around a polygon. . . 760

xxii Mark Williams C for the Atari ST N

vefstyle.Setapolygon'sfillstyle. 761

vsf_udpatDefineafill pattern el 152
vsin_modeSetinput mode for logical input devxce .. R . 762
vslLcolorSetaline’scolor RN .. 153
vsLends.Attachendstoalipe. 753
veltype............ Setaline'stype. 754
vsLudsty «. . Set user-defined line type, 754
vstidth...........Setalmes\mdth coe.... 185
vsm._choice. Return last function key pressed 165
vsmeolor. Set a polymarker’s color e e e 756
vsm_height. Set a polymarker's height 756
v.m_locator Return mouse pointer's position 757
vs:istring. Read a string from the keyboard . R Y
vsn _type Set polymarker'stype. 758
vsm .valuator Return shift/cursor key status. 759
vep-message. Suppress messages from Polaroid Palette device. 760
vSp_3ave. Save to disk current setting of Polaroid Palette driver . 760
vsp_state e Set the Polaroid Palette driver. e e 760
vst_alignment. Realign graphicstext 761
vst.eolor Set color for graphicstext 762
vst_effects Set special effects for graphics text 762
vstfont Selectanewfont. 763
vet_height Reset graphics text height, in absolute values 763
vst_load fonts. Load fonts other than the standard font. 764
vet.point Reset graphics text height, in printer’s points 765
vst_rotation Set angle at which graphic textisdrawn ., 765
vst_unload _fonts. Unloadfonts. vt ns 766
vswr.mode. Set the writing mode e ... 168
Veyne. Synchronize with the screen. e e 767
WEC. e e Count words, lines, and characters i m ﬁles ..., 168
while. Introducealoop 768
while. Execute a conditional loop 768
wildeards. e ... 169
wind_calc. Calculate awindow'srectangle 769
wind_close Close a window and preserve itshandle. 770
wind_create Createawindow it 770
wind_delete Delete a window and free its resources 711
wind_find. Determine if the mouse pointer is in a window 772
wind_get Get information abouta window 772
windopen Open or reopen awindow Ceeg. 173
windset Set specified fields within the window el 774
wind.update, Lock or unlock awindow. e i, 776
window

write. Write to a file

xbios.............. Call a routine from the extended TOS BIOS

Table of Contents

xbiosh.

Permuted List of Lexicon Entries.

571 12 S R T T

Declare xbios constants and structures
Xbtimer......... Imtxahze the MFP timer .

PO R

Section 1:
Introduction

Congratulations on choosing Mark Williams C, the leading C compiler for the Atarl
ST. Mark Williams C has the state-of-the-art power and flexibility that the profes-
sional programmer needs, but is easy enough for the beginner to learn quickly.

Mark Williams C is part of the Mark Williams Company family of C compilers,
which supports many different operating systems and processors. The operating
systems supported include:

COHERENT MS-DOS TOS

CP/M-68K RMX VAX/VMS
ISIS-II
The processors supported include:
PDP-11 68000 80186
28001 68020 80286
78002 8086
What is Mark Williams C?

Mark Williams C is a professional C programming system designed for the Atari
ST. It consists of the following:

o The Mark Williams C compiler, plus a linker, an assembler, a preprocessor,
and other tools,

Mark Williams C for the Atari ST

A set of commands selected from the COHERENT opemt'ing system, including
the MicroEMACS screen editor and the make programming discipline.

A full set of libraries, including the standard C libraxy., mathemt_:tics library,
plus libraries that implement the Atari AES, VDI, and Line A routines.

A set of sample programs, including full source code for the MicroEMACS
editor.

The Mark Williams micro-shell msh, a command processor designed to control
the operation of the compiler and its commands.

A full toolkit for building and maintaining GEM resources. These incl}lde
resource, the Mark Williams resource editor; rescomp, a resource compiler;
and resdecom, a resource decompiler.

Hardware requirements

Mark Williams C runs on any Atari ST or Mega ST, with any conﬁgumti9n of (_iisk
dnves. It is recommended that a 520 ST have at least two single-sided disk drives
or one double-sided disk drive.

Changes from release 2.0
Release 3.0 differs from release 2.0 on the following points:

Mark Williams C now allows you to create static arrays that are larger than 64
kilobytes.

Mark Williams C now can generate modules that can be debugged with the
Mark Williams C source debugger csd. csd brings full-featured C source
debugging to the Atari ST. It works with programs that access the GEM AES
and VDI, as well as with traditional, text-oriented programs. csd lets you walk
through your source code and observe how it executes step by step. You set
breakpoints and traps, evaluate expressions that you type in during program
execution, and single-step through your program to help you find bugs.

For more information about esd, contact Mark Williams Company or your
local software dealer.

The symbolic debugger db has been improved to work through the aux port,
and to work with GEM programs. You can plug a terminal into the aux port
and use it to give commands to db; the program’s output is shown on the ST
monitor. This allows you to debug programs that use AES or VDI calls. db
can be used to debug programs that are assembled by as, the Mark V}lilliams
assembler, as well as those compiled from C source. !

db has a new switch, -t, which causes stdout, stderr, and stdin to go to the
console regardless of redirection on the command line or in the shell.

Introduction 3

db now supports symbol tables larger than 64 kilobytes.

To support csd, Mark Williams C now stores debug information in the
GEMDOS symbol segment instead of following the relocation stream. Utilities
that access this information (file, strip, size, nm, 1d, db) will no longer ac-
cept executable programs compiled by Mark Williams C versions 2.1.7 or ear-
lier. A new utility, mwtomw, is included to convert executable programs
from the old Mark Williams format into the new format.

Mark Williams C now includes a full set of resource tools: resource, a full-
featured resource editor; rescomp, a resource compiler; and resdecom, a
resource disassembler.

resource is a screen-oriented resource editor. With it, you can build GEM
menus, dialogues, and icons easily. For each resource it creates, resource
generates a header file that you can use with your C program.

resdecom is a disassembler that translates a resource into a file of descriptive
text. This text can be checked and edited by band, then reassembled with the
resource compiler rescomp. The resource compiler can also compile resources
that you write by hand.

The MicroEMACS screen editor now has an on-line help feature to assist with
C programming. Its help file includes the synopsis and binding for every
library function and macro included with Mark Williams C. To invoke the
help feature, type <ctrl-X>? and type the name of the function or macro for
which you need information, or move the cursor over the function or macro in
your program and type <esc>?. In a moment, a help window will open on
your screen; it will contain a synopsis of the function or macro and its binding.
If you wish, you can copy information from the help window into your
program. To erase the help window, type <esc>2.

The compiler can now compile programs to use PC-relative addressing. PC-
relative addressing is fagter than the absolute addressing that Mark Williams
C uses by default. This can only be used when the program has no global
references that are greater than 32 kilobytes away from where they are
referenced. For many programs and utilities, however, this is not a problem;
for them, PC-relative addressing creates an executable that is noticeably
smaller and faster than one that uses absolute addressing.

To use PC-relative addressing in your program, use the option -VSMALL on
the cc command line.

For programs whose code size is small but use large amounts of static or
global data (for example, MicroEMACS), use the option -VCOMPAC. This
uses PC-relative addressing for the code references and absolute addressing to
handle the data.

4 Mark Williams C for the Atari ST

Pointers are not affected by the -VSMALL or -VCOMPAC options. You can
link modules compiled -VSMALL or -VCOMPAC with modules that are com-
piled into the default format of absolute addressing.

e The compiler now includes an optional peephole optimizer, for further op-
timization of your programs. To invoke the peephole optimizer, use the option
-VPEEP on the cc command line.

© Many of the utilities have been compiled with the -VSMALL option, to make
them smaller and faster.

¢ The compiler command ec now has several new switches:

-VCSD Include esd debug information in the object and executable.

-VPEEP Enable peephole optimization.

-VSMALL Enable PC-relative addressing for global data and function
references.

-VCOMPAC Enable PC-relative addressing for function references.
-VNOOPT Turn off all optimization, to speed up compilation,

@ The compiler now recognizes the ANSI type qualifiers const and volatile. It
produces a warning message if volatile is encountered in a source file that is
being compiled with the option -VPEEP. The old, unused keyword entry is
no longer recognized.

© The microshell msh now has a built-in command mshversion. This makes
the version of the release available to you without calling in any programs.

e asB8toas has been changed to accept input and output file specifications. Its
usage is as follows:

agb8toas <infile> [-o0 <outfile>]

e msh now works with the Mega-ST internal clock and ROMs.
© The RAM-disk utility rdy now runs on the Mega-ST. It also allows creation of

larger RAM disks.

° The symbol-table utility mm now supports symbol tables larger than 64
kilobytes.

e pr now implements two features from UNIX System III:
eck Expand tab char ¢ at positions k+1, 2*°k+1, 3*k+1, etc,, on lr}put ¢

defaults to ‘\t’ and k defaults to elght

Introduction §

ick Insert tab char ¢ for spaces at positions k+1, 2*°k+1, 3*°k+1, etc., on
output. ¢ defaults to \t’ and & to eight.

e The utility drtomw no longer uses the -f flag. It now transforms executables
from the DRI object format into the new Mark Williams object format. If you
convert an object library from DRI format into Mark Williams format, you
should use the archiver ar to produce a “ranlib header”.

The standard library libe has the following changes:
e The function time now works properly on a Mega-ST.

© Two new date/time routines have been added: Ssettime and Sgettime.
These are similar to Ksettime and Kgettime except that they do not directly
access the intelligent keyboard’s clock for time resolution within one second;
instead, they use the xblos time/date routines, which have a resolution of two
seconds. These routines were added hecause Kgettime does not work as ex-
pected on Mega-STs.

° The following string functions have teen added: memchr, memcmp,
memcpy, memset, strchr, strespn, strerror, strpbrk, strrchr, strspn,
strstr, and strtok.

The following problems found in previous releases have been fixed:

o Ift was a signed long int, t> > 18 produced the wrong result. This has been
corrected.

o If t and x were signed long fnt, ¢ % x produced unexpected results for some
combinations of values. This has been corrected.

How to use this manual

This manual is in nine sections. Section 1, which you are now reading, introduces
Mark Williams C.

Section 2 shows you how to install Mark Williams C on your computer. It also in-
troduces the microshell msh and its commands, introduces the MicroEMACS
screen editor, and shows you how to compile simple C programs.

Section 3 introduces compiling with Mark Williams C. It describes the options to
the compiler controller cc, and shows you how to compile using different formats.
Debugging with Mark Williams C and using rdy, the Mark Williams RAM-disk
utility, are introduced. Technical issues that involve the 68000 microprocessor and
TOS are also discussed.

Section 4 is a tutorial on the MicroEMACS screen editor. It introduces most of the
MicroEMACS commands and includes exercises to help sharpen your skills at

editing programs.

6 Mark Williams C for the Atari ST

Section & is a tutorial on make, the Mark Williams programming discipline. make
is one of the most useful tools available for constructing and maintaining large, in-
tricate programs. This section describes make, from building relatively simple
programs to using make to control work other than compiling C programs.

Section 6 introduces resource, the Mark Williams resource editor. Section 7 intro-
duces the utilities resdecom and rescomp, which, respectively, disassemble a
resource into a file of source text and compile source text into a resource.
Together, these give you a powerful set of tools for creating, editing, writing, and
compiling GEM resources.

Section 8 lists all of the error messages that the Mark Williams C compiler, as-
sembler, and utilities can produce. This includes error messages from the resource
utilities. Many entries have hints to help you correct or avoid the error that the
message describes.

Finally, section 9 is the Lexicon. This is by far the largest part of the manual. The
Lexicon containg several hundred individual entries; each describes a command, a
function, defines a C technical term, or gives you other useful information. All of
the Lexicon's entries are in alphabetical order, and are designed to be easily used.
For example, if you want information on how to use the STDIO routines, simply
turn to the entry in the Lexicon on STDIOQ; there, you will find a list of all the
STDIO routines, a description of each, and instructions on how to use them. Or, if
you want information on how Mark Williams C encodes floating point numbers,
simply turn to the entry on fioat. There, you will find a full description of floating
point numbers. Many Lexicon entries have full C programs as examples; all have
cross-references to related entries.

The opening sections of this manual will refer constantly to the Lexicon. If you are
unfamiliar with a technical term used in this manual, look it up in the Lexicon.
Chances are, you will find a full explanation. If you are not sure how to use the
Lexicon, look up the entry for Lexicon within the Lexicon. This will help you get
started.

Finally, the back of the manual lists the Lexicon's entries sorted by category, and
gives an index.

User registration and reaction report

Before you continue, fill out the User Registration Card that came with your copy
of Mark Williams C. When you return this card, you become eligible for direct
telephone support from the Mark Williams Company technical staff, and you will
automatically receive information about all new releases and updates.

If you have comments or reactions to the Mark Williams C software or documénta-

tion, please fill out and mail the User Reaction Report included at the end of the

manual. We especially wish to know if you found errors in this manual. Mark

Williams Company needs your comments to continue to improve Mark Williams C.
If

{

Introduction 7

Technical support

Mark Williams Company provides free technical support to all registered users of
Mark Williams C. If you are experiencing difficulties with Mark Williams C, out-
side the area of programming errors, feel free to contact the Mark Williams Techni-
cal Support Staff. You can telephone during business hours (Central time), or
write. This support is available only if you have returned your User Registration
Card for Mark Williams C.

If you telephone Mark Williams Company, please have at hand your manual for
Mark Williams C. Please collect a8 much information as you can concerning your
difficulty before you call. If you write, be sure to include the product serial number
(from the sticker on the back of this manual) and your return address.

Bibliography

The following books may be helpful in developing your skills with C. This list also
contains all books that are referenced in this manual. It is by no means exhaustive;
however, it should prove helpful to both beginners and experienced programmers.

American National Standards Institute: Draft Programming Language C (October
1986 Draft). Washington, D.C.: X3 Secretariat, Computer and Business Equipment
Manufacturers Association, 19886,

AT&T Bell Laboratories: The C Programmer’s Handbook. Englewood Cliffa, N.J.:
Prentice-Hall, Inc., 1985.

Chirlin, P.M.: Introduction to C. Beaverton, Or.: Matrix Publishers, Inc., 1984.
Derman, B. (ed.): Applied C. New York: Van Nostrand Reinhold Co., Inc., 1986.
Feuer, A.R.: The C Puzzle Book. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1982.

Gehani, G.: Advanced C: Food for the Educated Palate. Rockville, Md.: Computer
Science Press, 1985,

Hancock, L.. Krieger, M.: The C Primer. New York: McGraw-Hill Book
Publishers, Inc., 1982.

Harbison, S.; Steele, G.: C: A Reference Manual. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1984.

Hogan, T.: The C Programmer's Handbook. Bowie, Md.: Brady Publishing, 1984,

Kelley, A.; Pohl, I.: C by Dissection: The Essentials of C Programming. Menlo
Park, Ca.: The Benjamin/Cummings Publishing Company, Inc., 1987.

Kernighan, BW.; Ritchie, D.M.: The C Programming Language. Englewood Cliffs,
N.J.: Prentice-Hal), Inc., 1978.

8 Mark Williams C for the Atari ST

Kernighan, B.W.; Plaager, P.J.: The Elements of Programming Style, ed. 2. New
York: McGraw-Hill Book Co., 1978.

Kochan, 8.G.: Programming in C. Hasbrouck Heights, N.J.: Hayden Book Co.,
Inc., 1983.

Knuth, D.E: The Art of Computer Programming, vol. 1: Basic Algorithms.
Reading, Ma.. Addison-Wesley Publishing Co., 1868.

Knuth, D.E: The Art of Computer Programming, vol. 2: Seminumerical
Algorithms. Reading, Ma.: Addison-Wesley Publishing Co., 1969.

Knuth, D.E: The Art of Computer Programming, vol. 3: Sorting and Searching.
Reading, Ma.: Addison-Wesley Publishing Co., 1869.

Plum, T.: Learning to Program in C. Cardiff, N.J.: Plum Hall, Inc., 1983.
Plum, T.: C Programming Guidelines. Cardiff, N.J.: Plum Hall, Inc., 1984.
Plum, T; Brodie, J.: Efficient C. Cardiff, NJ: Plum Hall, Inc., 1985.
Purdum, J.: C Programming Guide. Indianapolis: Que Corp., 1983.

Purdum, J.; Leslie, T.C.; Stegemoller, AL: € Programmer’s Library. Indianapolis:
Que Corp., 1984,

Traister, R.J.: Programming in C for the Microprocessor User. Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1984.

'II'raister, R.J.: Going from BASIC to C. Englewood Cliffs, N.J.: Prentice-Hall,
nc., 1984.

Vile, R.C., Jr.. Programming in C with Let’s C. Glenview, IL: Scott, Foresman and
Company, 1988.

;Naibe, M.; Prata, S.; Martin, D.: C Primer Plus. Indianapolis: Howard W. Sams,
nc., 1984,

Weber Systems, Inc.: C Language User’s Handbook. New York: Ballantine Books,
1984.

Zahn, C.T.: C Notes. New York: Yourdan Press, 1979.

Atari ST information

Balma, P.; Fitler, W.: Programmer’s Guide to GEM. Berkeley, Calif.: SYBEX, Inc,
19886,

Digital Research Institute: GEM Programmer's Guide. Pacific Grove, Calil.: Digi-
tal Research Institute, Inc., 1984.

Introduction 9

Field, S.; Mandis, K; Myers, D.: COMPUTE!'s ST Applications Programming in C.
Greensboro, NC: COMPUTE! Publications, Inc., 1887. Recommended.

General Instrument Corporation: Programmable Sound Generator Data Manual.
Hicksville, N.Y.: General Instrument Corporation, 1981.

Gerits, K; Englisch, L.; Bruckmann, R. Atari ST Internals: The Authoritative
Insider’s Guide. Grand Rapids, Mich.: ABACUS Software, Inc., 1986.

Leemon, S.: COMPUTE!’s Technical Reference Guide: Atari ST, Volume 1: VDI,
Greensboro, NC: COMPUTE! Publications, Inc., 1887.

M68000 16/32-Bit Microprocessor Programmer's Reference Manual, ed. 4.
Englewood Cliffs, N.J.: Prentice-Hall, Inc,, 1984.

Oren, T.: Professional GEM. Avuilable through CompuServe, ANTIC-ONLINE,
Atari ST forum. Recommended.

Szczepanowski, N.; Gunther, B.: Atari ST GEM Programmer’s Reference. Grand
Rapids, Mich.: ABACUS Software, Inc., 1086.

Section 2:

Installing and Running Mark Williams C

This section describes how to install Mark Williams C onto your computer, and
how to use it to compile simple programs.

Back up your disks!

Before you begin, you must make backup copies of your distribution disks. Never
work directly with your distribution disks!

The distribution disks for Mark Williams C are in ten-sector format; that is, each
track has ten sectors on it, instead of the nine sectors that the Atari ST uses by
default. This format lets you store more files on each disk. However, you cannot
copy one disk to another by dragging one disk icon to another, even if both disks
are in ten-sector format. If you do so, only nine sectors of every ten will be copied,
and the backup disk you create will be useless.

Mark Williams C includes a special utility for backing up your distribution disks:
working. To back up your distribution disks, place distribution disk 4 into drive
A, and click the icon labelled working.tos.

If you have two floppy disk drives on your system, working asks you which drive
holds the destination disk; it then formats that disk into a single-sided, ten-sector
format. Then, working asks you which drive holds the source digk; when you
answer, it copies the source disk to the destination digk one track at a time.

If your system has only one floppy disk drive, working will prompt you when to
insert the source disk and when to insert the destination disk into the drive.

You should continue to format and copy disks until you have backed up all of your
distribution disks. Now, put your original distribution disks away in a safe place,
and continue to work with the copies that you bave just made.

i1

12 Mark Williams C for the Atari ST

Installing Mark Williams C

Mark Williams C comes on five single-sided floppy disks. It can be used with any
currently available configuration of disk drives, hard disk, and RAM.

If your system has only one or two single-sided floppy disk drives, then you do not
need te install Mark Williams C. It will work on your system just as it comes out
of the package. All you need to do is back up your disks. Skip below to the gection
entitled, Using Mark Williams C with single-sided floppy disks.

If your system has either a hard disk or a double-sided floppy disk drive, you must
install Mark Williams C onto your system. In the case of a hard disk, installation
means copying the files from the distribution disks into the correct directories on
your hard disk. In the case of a double-gided floppy disk drive, it means copying
the source disks onto three double-sided floppy disks; doing so means that you can
compile and link without having to exchange floppy disks.

To begin installation, insert distribution disk 1 into disk drive A. Double-click the
icon labelled INSTALL.PRG. In a moment, the screen clears and a new menu bar
appears at the top of the screen. The title called Desk, as always, lets you invoke
your desk accessories; the title called Read Me gives you information about
install, should your memory need refreshing.

If you are installing Mark Williams C onto a double-sided disk drive, you should
first format three double-sided floppy disks. To format your disks, sweep the
mouse pointer over the title marked Options. From the menu that appears, click
the entry Format Diskette. A dialogue appears that describes how to format
floppy disks. Be sure to click the buttons for double-sided disks and for ten-sector
format; the ten-sector format allows you to write more files onto each disk. After
you have formatted your three disks, label one “compiler”, one “commands”, and
the third “sources”. Then exit from the Format Diskette dialogue by clicking the
Quit button.

To begin installation, sweep the mouse pointer to the title called Options, and
then double-click the entry Begin.

install begins by showing you what it thinks your system'’s configuration is. If it is
wrong, click the appropriate button to correct the description.

If you have a hard disk, install then shows you the default drive and the defauit
directories into which it normally installs Mark Williams C. You are not obliged to
use either the default drive or the default directories; you may change either to suit
your preferences. To change a directory name, simply click the appropriafe entry
and type your correction. The drive you select must have at least two megabytes of
free space. If you do not use the default names given by install, you must edit the
filoe profile, which is used by the micro-shell msh, and correct the entries for
PATH, LIBPATH, and INCDIR to show the directories that you have selected.

')

Installing and Running 13

Therefore, if you change the directory names, be sure to jot down the names that
you choose; the section that introduces msh, below, gives more information on
editing profile.

If you do not have a hard disk, you will be asked what pertion of Mark Williams C
you wish to install. We recommend that you install Mark Williams C in its en-
tirety; however, if you wish, you can install only the compiler, the commands and
utilities, the resource tools, or the source code and sample programs.

When install has asked all of its questions, it asks you to confirm your choices and
whether you wish to begin installation. If you answer “No”, install returns you to
its desktop; otherwise, installation begins.

install will prompt you when it needs either a new distribution disk or, in the case
of installing onto a double-sided floppy disk, when it needs a new target disk. If
you have only one double-sided floppy disk and no hard disk, install copies files
from the distribution disk into memory and then copies back onto the target floppy
disk.

When installation is finished, we suggest that you copy the installed disks, and
store the “original” installed disks in a safe place. This will spare you the trouble
of installing Mark Williams C again, should your installed disks be spoiled by some
mishap.

Using Mark Williams C with single-sided floppy disks

If your system has only one or two single-sided floppy disk drives and no hard disk,
you do not nzed to install Mark Williams C. It will work for you exactly as you un-
wrap it; all you need to do is make backup copies of your disks, and you are ready
to begin compiling.

To compile a program, you must use the -Z option to the cc command. cc controls
the compiler, and the -Z options tells cc that you are using single-sided disk drives.
A single-sided floppy disk is not large enough to hold the compiler, the linker, and
the libraries; therefore, the -Z option tells cc¢ to prompt you when compilation is
finighed, 8o you can remove the disk that holds the compiler, and insert the disk
that holds the linker.

Another way to use Mark Williams C with single-sided drives is to keep the com-
piler disk in drive A and the linker disk in drive B. You can store your source files
on either of these disks (although room will be limited) or on your RAM disk. If
you keep sources on a RAM disk, you should back them up frequently.

If you have only one single-sided floppy disk drive, you must keep your source files
on the RAM disk. By frequently changing disks, you will be able to compile and
link your programs, although you will be limited in the number and size of the
programs you can compile at any one time. '

14 Mark Williams C for the Atari ST

Using two double-sided floppy drives

The main advantage of using two double-sided floppy disk drives is that you can
keep the “commands” disk in the second drive at all times, which gives you im-
mediate access to all of msh’s commands and utilities. You can also use the second
drive to back up your source files and compiled programs. As with one floppy
drive, you will probably find it most useful to compile your source files from the
RAM disk. This section also introduces msh and its utilities, and describes how to
compile programs under Mark Williams C.

Introducing the Mark Williams micro-shell

Mark Williams C is designed to run under a micro-shell, called msh. msh allows
you create commands that would be too long or too complex to enter through the
GEM desktop. It also gives you an easy way to redirect the output of commands,
pipe output to other commands, build and access tree-structured directories, and
perform many other tasks to speed program development. msh comes with a full
complement of utilities and tools, to increase its usefulness.

What is msh?

msh is a command processor. It reads and interprets commands, which can either
be typed directly into msh or stored in files, called scripts. msh differs from icon-
driven or menu-driven systems in that you type words into it rather than clicking
items on the screen. If you have used COHERENT or UNIX, you will find that
msh combines aspects of the Bourne shell and the Berkeley C shell to create a
command processor that is simple yet powerful.

How to enter msh

Entering msh is easy. If you have a two-floppy disk system, just place your in-
stalled disk that is labelled “compiler” into drive A:, then use the mouse to open
drive A and display the contents of the folder named bin. If you have a hard disk,
use the mouse to display the contents of bin on the logical drive on which you have
stored the compiler. Point to the icon labelled MSH.PRG and click the left button
twice.

The screen clears and the current system date and time appear; then msh prints a
percent sign ‘%’ in the upper left-hand cormer. The percent sign is a prompt: it
means that msh is ready to accept a command.

To test msh, type the following command: i
echo foo

echo is a command that repeats all of the words, or arguments, that follow it.

'J

Installing and Running 15

When you press the Return key, the argument foo appeared on the next line of the
screen; then another percent sign appeared, which signals that msh is ready to ac-
cept another command.

Editing a file

msh includes a full-featured screen editor, called MicroEMACS. An editor is a
program that lets you type text into your computer, store it on digk, then recall it
from disk and change it. You will use an editor to type all of the programs that you
compile with Mark Williams C.

MicroEMACS allows you to divide the screen into sections, called windows, and dis-
play and edit a different file in each one. It has a full search-and-replace function,
allows you to define keyboard macros, and has a large set of commands for killing
and moving text. Also, MicroEMACS has a full help function for C programming.
Should you need information about any macro or library function that is included
with Mark Williams C, all you need to do is move the text cursor over that word
and press a special combination of keys; MicroEMACS will then open a window and
display information about that macro or function.

" Mark Williams C includes both a compiled, binary version of MicroEMACS that is

ready to use, and the full source code. We invite you to examine the code, modify
it, and enhance MicroEMACS to suit your preferences.

For a list of the MicroEMACS commands, see the Lexicon entry for me, the
MicroEMACS command. A following section of this introduction gives a full
tutorial on MicroEMACS. In the meantime, however, you can begin to use
MicroEMACS by learning a half-dozen or so commands.

To invoke MicroEMACS, type the command
me hello.c

at the msh prompt. This invokes MicroEMACS to edit a file called hello.c. Now,
type the following text, as it is shown here. If you make a mistake, simply back-
space over it and type it correctly; the backspace key will wrap around lines:

main()
{

printf("hello, world\n");
}

When you have finished, save the file by typing <ectrl-X> <etrl-8> (that is, hold
down the control key and type ‘X’, then hold down the control key and type ‘S').
MicroEMACS will tell you how many lines of text it just saved. Exit from the
editor by typing <ctrl-X> <ctrl-C>. :

16 Mark Williams C for the Atarl ST

Now, re-invoke MicroEMACS by typing
me hello.c

The text of the file you just typed is now displayed on the screen. Try changing the
word hello to Hello, as follows: First, type <ctrl-N>. That moves you to the next
line. (The command <ctrl-P> would move you to the previous line, if there were
one.) Now, type the command <ctrl-F>. As you can see, the cursor moved forward'
one space. Continue to type <ctrl-F> until the cursor is located over the letter ‘h
in hello. If you overshoot the character, move the cursor backwards by typing
<ctrl-B>.

If you prefer, you can also move the cursor by pressing the arrow keys.

When the cursor is correctly positioned, delete the ‘h’ by typing the delete com-
mand <ctrl-D>; then type a capital 'H’ to take its place.

With these few commands, you can load files into memory, edit them, create new
files, save them to disk, and exit. This just gives you a sample of what
MicroEMACS can do, but it is enough so that you can begin to do real work.

Now, again save the file by typing <ctrl-X> <etr]-8>, and exit from MicroEMACS
by typing <etrl-X> <atrl-C>.

Just as & reminder, the following table gives the MicroEMACS commands
presented above:

<ctrl-N> or { Move cursor to the next line
<ctrl-P> or t Move cursor to the previous line
<ctrl-F> or » Move cursor forward one character
<ctrl-B> or « Move cursor backward one character
<ctrl-D> Delete a character

<ctrl-X> <ectrl-S> Save the edited file
<ctrl-X> <ctrl-C> Exit from MicroEMACS

Setting the shell’s internal variables

msh allows you to alter the way it operates. In effect, you can customize msh to
suit your own needs. One way to do so is by using the set command.

For example, you may wish to change the prompt from the percent sign to some-
thing else. You can do this with the set command. To change the pmmptlto st>,
type the following command:

set prompt="gt> "
Try it.

Installing and Running 17

As you can see, the prompt changed as soon as you pressed the carriage return key.

If you type set by itself, a list of variables will appear. set allows you to define new
variables, which are read by msh and interpreted.

Try using set to create a “quick and dirty” command to clear the screen. As
shown in the Lexicon entry on screen control, the escape sequence that clears the
screen on the Atari ST is <esc>E — that is, the escape character followed by a
capital °E’. Note that ~[is the way the Atari ST echoes the escape character on the
screen. To create your new command, just type the following into msh:

set cls="echo -n “[E"

Now, try typing:
Scls

The dollar sign tells msh that the following string is a variable rather than a com-
mand. As you can see, the screen cleared and the cursor is now in the upper left-
hand corner of the screen. msh replaces cls with its defined value, and executes
echo as if it has been typed in from the keyboard.

To erase a variable, use the command unset. For example, to erase the variable
cls, type:

unset cls
Try typing $cls again. The shell sends you the message

variable ’'cls’ is not set

which shows that cls has been erased.

Setting the environment

msh manages a set of environmental variables. These can be used by programs
that run under msh. For example, when the compiler driver cc begins its work, it
looks for an environmental variable called LIBPATH, which tells cc which direc-
tories hold libraries. This system was designed to spare you the trouble of con-
stantly giving programs the same information. For example, you need to set the
LIBPATH variable only once; instead of telling ce where to look for the libraries
every time you compile a program, you can save space on the command line for
more important items, such as the names of the files you wish to compile.

The command setenv sets environmental variables. Try typing setenv. msh
replies by printing a list of the environmental variables that have already been set.
Most are set in the file profile, which msh reads as it begins; this will be
described in detail below.

18 Mark Williams C for the Atari ST

To see how a program can use an environmental variable, try resetting the environ-
mental variable HOME. This variable is used by the change directory command cd
when that command is entered without an argument. To set HOME to A:\, which
ia the root directory on drive A, type:

getenv HOME=a:\
Now, type the following commands:

cd

pwd
The first command changes directories for you; because you did not tell it which
directory to go to, it moved you by defauit to the directory named by the HOME
environmental variable. pwd prints the working directory; as you can see, the cur-
rent directory is a:\, which is the directory that ed moved you to.

The command unsetenv erases environmental variables, For example, you can
"erase the variable TIMEZONE with the following command:

unsetenv TIMEZONE

Now, type setenv again. As you can see, the TIMEZONE environmental variable
is no longer present.

Directories

You have probably noticed by now that msh uses tree-structured directories. This
means that its directories branch out from one another; each directory can contain
files and sub-directories that themselves can contain files and directories. One
directory is called the roof directory; this is the name of the device. For example,
the root directory for drive A is called a:\. The root directory can have one or more
sub-directories; these are also called child directories because they all stem from the
same parent directory. Thus, while a directory can have many child directories, it
can have only one parent directory.

Two dots “.” stand for the parent directory. The following examples will show
how to use this abbreviation.

msh comes with a full set of commands to create and remove directories, and copy,
rename, move, and remove files. As you will see, these are quite easy to use, and
quite powerful.

To begin, you can make a directory with the command mkdir. To create a directory
called stuff, type:

mkdir stuff

Try it. If you wish, you can specify a full path name to create a subdirectory in a
directory other than the one you are currently in. For example, to make the sub-

'J

Ingtalling and Running 19

directory temp in the directory stuff, just type:
mkdir stuff\temp

Try it. Now, tell the list com d,
oy it mand, ls, to show you the contents of stuff, as

1s stuff
As you can see, Is printed the name of the subdirectory you just created.

The remove directory command rmdir allows you to erase directories. T
the directory temp, use the following command: o8 o Tomave

rmdir stuff\temp
If temp had had files and subdirectories in it, rmdir would have giv
i) en you an er-
ror message. This is to help prevent you from accidentally erssing valuabyl'e files.
Renaming, moving, copying, and removing files
As mentioned above, msh has a number of commands to help you handle files.

The move command mv lets you rename a file. The following exam
file called smith, and then renames it jones:) o foTowing plo crostes o

echo stuff >smith
mv smith jones

If the file jones had already existed, it
smith given its name. A , it would have been removed and the file

You can also ;
ther cormant use mv to move a file from one directory to ancther. For example,

mv jones stuff

will move the file jones from the current directory to the directory stuff.

As mentioned above, two periods “..” is shorthand for a di ’

3 . rectory’s parent direc-
tory. Thus, to move the file jones back from the directory st
directory, type the following command: 1 stuff o the current

mv stuff\jones ..
If you type Is without any arguments, it will show the contents of the current

g:rectog It should show that the file jones has been returned to the current

The copy command cp will co
back into the file smlt{’h, type: Py one or more files for you. To copy the file Jones

20 Mark Williams C for the Atari ST

cp jones smith

As with the mv command, if the file smith had already existed, it would have been
removed and the new copy of jones given its name.

cp can also copy several files at once into another directory. To copy the files
smith and jones into directory stuff, type:

cp smith jones stuff

cp is intelligent enough to know that stuff is a directory; it will copy smith and
jones into stuff and give the copies the same names as the originals.

The command rm removes a file. To remove the files smith and jones from direc-
tory stuff, type:

rm stuff\smith stuff\jones

If you type rm without an argument, it will print an error message on the screen.

Redirecting input and output

msh allows you to change, or redirect, the place from which a program receives in-
put and the place to which it writes output. The technical term for this is 1/0
redirection.

The C language normally defines three channels through which data can be passed:
the standard input, the standard output, and the standard error. The standard in-
put and the standard output, respectively, are connected to the keyboard and the
screen by default. The standard error is the device on which error messages ap-
pear. By default, it is also the screen.

A redirection operator is a character that tells msh to redirect the standard input,

standard output, or standard error somewhere other than its default. The
Jollowing lists the more commonly used of msh’s redirection operators:

> file Redirect the standard output of a command into file. If file already ex-
ists, replace its contents with the output of the command. For ex-
ample, typing
echo hello >tempfile

opens the file tempfile and then echoes the argument hello into it.
If the file tempfile already exists, its contents will be replaced with
the string hello.

>> file Append the standard output of a command onto file. If file do*s not
exist, create it and fill it with the output of the command. For ex-
ample, the command

Installing and Running 21

echo goodbye >>tempfile
appends the word goodbye to the end of the file tempflle, which you
created in the earlier example.
2> file Redirect all material sent to the standard error into file.

2>> file Append all material sent to the standard error onto the end of file. If
file already exists, do not delete its contents.

8> file Redirect all material normally sent to the printer into file.
8>> file Append all material normally sent to the printer onto the end of file.

>& file Redirect both the standard output and the standard error of a com-
mand into file.

>>& file Append both the standard output of a command and the standard er-
ror onto the end of file. If file does not exist, create it and fill it with
the output and diagnostic messages generated by the command.

< file Use the contents of file as the standard input for a command.

Redirecting to peripheral devices

Redirection is most often performed into or out of files on disk. However, as will
be described below, C treats peripheral devices as if they were files. Therefore, you
can use a redirection symbol to send material to, for inst..ace, the printer or the
gerial port.

For example, if you have a printer plugged into your Atari ST, turn it on and type
the following command:

echo hello >prn:
This types the word hello on your printer.

Logical devices

TOS, the Atari’s operating system, has three logical devices built into it. msh can
use these logical devices in exactly the same way that it handles files: it can open
them, read data from them, write ddta to them, and close them again. The logical
devices are as follows: con:, which is the console’s screen; prm:, which is the
printer port; and aux:, which is the auxiliary, or serial, port. These are described
in more detail in their respective Lexicon entries.

I}eqlirecﬁng data to the printer port can be quite useful; for example, you can print
listings of your programs. Try this exercise. Turn on your printer, and type the
following command:

29 Mark Williams C for the Atari ST

pr -n hello.c >prn:

As you can see, a listing of your program appears on your printer, with each !ine
numbered for your convenience. The command pr formats material for printing,
and its -n option tells it to insert line numbers. pr is described more fully in the
Lexicon.

File-name substitutions

Often, typing in the names of a group of files is tedious. For that reason, msh
allows you to deal with files in groups, by using file-name substitutions.

msh can use the punctuation marka [} ? * { and } to substitute for all or part of &
file’s name. The following describes what each does:

[list], [a-z] .
In the first form, this looks for, or matches, any of the characters Li s ort
in the second form, it matches all of the characters between a and z.

Try the following exercise. First, use the echo command to create three
sample files, as follows:

echo stuffl >filea
echo stuff2 >fileb
echo stuff3 >filec

The following command tells the list command Is to find these files in the
current directory:

1ls file[abc)

As you can see, the shell expanded file{abc] into filea fileb fllec, which it
then handed to Is to find.

The next exercise uses the concatenation command cat to display the con-
tents of these three files. Type the following:

cat file(a-c]

msh expands file[a-c] into filea fileb filec. As you can see, cat opened all
three files and displayed their contents for you on the screen.

? Match any character. For example, typing
1s file?

will list every program in the current directory that is named ﬂleanL'letter.
The " is a wildcard character; see the entry for wildcard in the Lexiton for
more information.

Installing and Running 23

he Match any character, any string of characters, or no character. Try typing
1s *[a-c]
As you can see, Is lists all files whose names end with the character ‘a’

through ‘c’. The asterisk is also a wildcard; see the entry on wildeards in
the Lexicon for more information.

{list}
Use the enclosed letters Li,s,t to form a series of words. For example, the
command

1s file(a,b,c)
is equivalent to typing
1s filea fileb filec

To see how this differs from the ‘" ‘}’ characters described above, type the
following commands:

echo foolabc]
echo foo{a,b,c)
The first command prints
foo[abc]
whereas the second returns

fooa foob fooc

Quoted strings

At times, you want to pass a string to a command literally, without its being inter-
preted or matched by the shell. Passing a string in this manner is called quoting it,
because you indicate the special character of the string by enclosing it within quota-
tion marks or apostrophes. (An “apostrophe” is also known as a “single quote”;
the apostrophe is found on the same key as the quotation mark, directly to the left
of the carriage return key.)

If you quote a string with quotation marks instead of apostrophes, msh will treat
white space as part of the string, but further expand variables within the string.
To see how this works, type the following exercise:

T

e

(L

_ "UCOKa] Y} Ul PAQLIOEAP 1 S[qBLIEA YV
SPUBWWIOd 13Y}0 snowea 0} spodxs gsux jBY) S3[qBLIBA [SJUSWIUCIIAUD BY} 388

109:0:1S0=ANOZIHIL Aua3as
apnTouT\PATIPS=YIQONI AuUa32sS
du3z\oATapS§=dIJdH]l Aud31as

‘UTq\2ATIP$‘ QIT\PATIPS=HIVIAI] AUS3I2s
da33-‘so3-*3ad- ‘=1qns Aua3les

‘sauy] Jxau oy,

) -aqyoxd Ul SpUBWWIOd BY) JO 1531) AINIIX 0} A[qB 8 JOU [[IM Ysw
A[I991100 328 81 U] SIY) B83[U[) (28 UBAW 0} pajeidivjul 8] SAMPS JUY} JBqUIAUIAL)
puemmos\e £10)0311p oy} U] usy) ‘(Way} usamiaq Bulqiou YIM SBUWIIOd OM) 9}
£q peysarpuy s8) £10100.1p juesaid ey ul 181y $O[Y S[qEINIFXS 10} YOO 0) YewW S[[3)

pusmmod\2aTIpPS*

pUBRIWOD 943 JO 3591 Y], ‘J[e8

-31 qew ojuy 3[mq s} uj padA) eavy nok puswWIOd 8Y3 JI 838 puUs YIIYd 03 Y |

$1q, ‘£10}0015p PUBWIUIOD [BUISJU] 8, LML 10} SPUB}F ‘pmad* ‘£1070211p 181y BY], '$9[Y

S[(BINDAXS PUY 0 SISYM YW 8[[97 LOIYM ‘B[qBHIBA [BIUIWIUOIIAUD HLLVd oY} 5188
pusmuo0\9ATIpS ¢ ‘pwd =HIVd Auajes

‘aur yxau oY,

‘gsw £q e g8 pnaxd

-1jUl 8q [[LM QAP O|qULIBA 04} J¥Y) SUBAW B[], 8B 0} QAP d[(BLIVA 8Y] 8338
IB=9A1lp 198

‘ouy] 384y oYL,
g=A1038Fy 2398
, %,=3dwmoad 3es
10dD:0:1SD0=3NOZINIL auo3es
apnTouT\oATIPS=YIQGONI AUd33S
dua\eajapS=dIddH] AUa33s
‘utq\aAaTIp$‘ qQTT\PATAPS=HIVAAIT Aua]28
d33-‘so03° ‘8ad’ '=3I0nS ausles
purmmoo\eATIpS ‘ ‘pUd "=HIVd Au3e8
1e=aATAp 398

:ApueIsgIp 18YMAWOS SA[QBLIBA 853U} BUYIP

Avw pus ‘yeSre] yonw oq [im ejpoad inof !syrom epyoad moy eysrisUOUIAp 0}
‘f[uo sajdurexe ore 9say], "SPUBWIUIOD JO 198 BuLmol|o} 8} epnpul [[n ajgoad anox

9z Auyuuny pue JupeIsuy

"puey 78 §y58} Ay} pue seduaIdjaid 1ok yns 03 gew
ozpuojsnp usd nof ‘ejgoad inok 3uuayps Ag a1yl spuy U spuBUILIOd 3Y)} JO [[e
saqmaxalpua ajyoad pajed oy © speal AjEonewIoIns 3} ‘gBua 9}OAUL NOK JDABUBYM

o1y eyyoxd ayy,

“1J9] 8Y} UO PUBWIUIOD 3} WOY) 5388553 10110 Aum
pus jndino ay3 yjoq yAu 8y} uo puswwod 3y} 0} sossed jey} odid v wog ®|

-asn 0) 4sva apnb a4 ‘(npemod a3mb axe JBY) SpUBLILD JO

SUTBYD JPNLIISUCD 0] N0A MO[[B S[0qUIAS UORI3IIpPaL pus sadid ‘098 ued nok sy
-19jund 1nof uo parsad

-de 31 38y} 08 “uxd 2d1ap JedLd0] 3y 0 ndyno g1 peyaxrpas xd ‘Aqpury jnd
-ug §8 31 pasn YoM ‘ad puswruod uonpsuided a3 0} Jndyno sy ssed 03 81 PLoY
‘raramoy |, loquis adid oY) {u3aId8 dY3 0Ju0 jndino s3t sa3UM 8] ‘A[[BULION
('8[y youa JO IS 8Y)} §8 YINS ‘UONBULIOJUT BIIXD nok saArd yorym geurioy Juop
2y} Uy sawBY Y} NHM 0) 8] B9} |- YOUMS dY]) -£1079911p JUBIIND BY) Ul
$3[y Y} JO 8aWBU Y} SPBAI I8y B] puUBWIWOD O], -yojund anof uo pajund
Supeq 81 AI03021p JULLIND BY) UL §I[Y BY} JO SAWBU AR ‘338 uwd NoL 8BY

N iuad < ad | 1- 81

:adfy ueyy pue “asjuuid Inof uo winj 98I

-gjdwisxa Suimo(joj ey3 A1L, "IYBLr 3y} uo puBIWOD 3y JO jnduy piepusls ojul
9| 9y} uo puBwWIWOd 8y} Jo Indino paspuEls 8y} ssud ‘sy jey} ‘adid ® wixog |

"BOUSIUBA

-ued 10j ‘oul] SuIES 3Y} UO PUBIIUIOd U0 UBY] 0w ad£} 03 nok smoje
8iy], "JoYjo 9y} IoYe SUO URI 8IB [, UOJOIIUISE B £q pajesedas spuBwIUIO) ¢
:8mo][0] 8 Y58} pazifepads B surioptad 10je18do YoBY "SPUBLILIOD aersdas
pus utof 03 ‘ssojpsado 10 ‘TyIBUL vopjenpund juslaip JO JI3qUINU ¥ 8N YW

spusuruod uyjeredss puw Jururop

‘way} pusdxa j0u PIp Inq ‘g$ PuB V§ usdameq aoeds vn)
-xo oy paasasaid 0yda ‘esed PAIYY B} U] ‘WAY] UaIMIDG aouds BI1x0 oy} paarssaxd
pue ‘g¢ pue v§ popuedxs 31 ‘9580 pu0RB By} u] "wAlpy usamjaq sa0eds BIjNB
8y} Aeme maly3 Inq ‘g$ pus v§ popuedxo OYIa aged 81y 8Y) Ul ‘938 UBD nok sy

.95 v$, oyo?
"] V6. oyoo
4% v$ oyo?
«S¥OL=9 395
wZKXu=V 308

LS 1By oy} J0J D) Surel[I| I8

268 Mark Williams C for the Atari ST

Finally, the lines

set prompt='X '
set history=8

set the prompt to a percent sign ‘%’ and set the history buffer to hold the last
eight commands eutered. This is uged with the history command; the history com-
mand is described below.

You can use the proflle file to fine-tune msh so that it suits your needs and
preferences.

msh also uses another file, called postfile, that restores the desktop environment
when you exit from msh.

Embedded commands

msh allows you to embed a command within another command; the output of the
inner command is automatically passed as input to the outer command. Command
substitutions are indicated by quoting the inner command with grave accents. For
example, the command:

pr ‘ls *. ¢

first invokes the list command 18 to read the contents of the current directory, and
then passes its output to the pagination command pr, which paginates the files
named by the s command and displays them on the standard output device.

One form of embedded command is included in the standard profile: the command
date ‘date -1i‘
resets the GEM clock from the keyboard clock after a warm boot.

The .cmd directory

The directory .cmd holds user-defined commands. You can create a new command
and load it into .cmd by using the set command. For example, the following com-
mand to msh creates a new list command for you:

set in .cmd lec="1ls -wf"

This tells msh to equate the command le with the command ls -wf, which prints
the contents of a directory in columnar format.

Installing and Running 27

Device-sensitive prompts
msh contains two useful shell variables: ewd and ewdisk. cwd holds the name of
the current directory, and cwdisk the name of the current physical device.
To create a prompt that always shows the current device, use the following com-
mand:

get prompt='Scwdisk> '
Your prompt will automatically change to ahowr }vhich physical device you are on.
The following command creates a directory-sensitive prompt:

set prompt='§cwd>
This prompt will change automatically to show the name of the directory you are
in, l}:;ers ?amiliar with the MS-DOS operating system may find this feature help-
ful.

if command
msh has a number of commands built into it that help you to wr_ite loops and con-
ditional statements. The most important of these is if. Its syntax is as follows:

if wordl word2 [word3]

If wordl executes successfully, then word2 is executed; otherwise, if word3 is
present, it is executed. Each of the words may be a list of commands that is
enclosed within parentheses. For example, this command:

if (cc example.c) (cp example.c b:\sources)

automatically copies the source file example.c into the .directory b:\sources if it
compiles correctly. This sequence ig helpful, especially if you are compiling your
source files from a RAM disk.

Parentheses

A list of commands that is enclosed within parentheses may extend across as many
lines of text as necessary. For example, the command

if (echo foo
echo bar
echo baz) (1ls -1)

echoes the strings foo, bar, and baz, and prints the contents of the current direc-
tory. The command or commands in the second word are executed if any of the
commands in the first word execute successfully.

28 Mark Williams C for the Atari ST

while command

msh also containg a while command, which allows you to run a conditional loop.
Its syntax is as follows:

while wordl word2

While word] executes successfully, word2 is executed. Each word may be a list of
commands enclosed within parentheses.

For example, the command
while (ls -1) (echo foo)

first prints the contents of the current directory, and then the string foo, in a per-
petual loop. while is often used with the test commands equal and not, which
are described below.

equal and not

Two built-in commands, equal and not, allow you to build conditional loops under
msh.

equal compares two strings. It succeeds if the strings are identical, and fails if they
are not. Its syntax is as follows:

equal argumentl argument?

Either argument can be a literal string, an integer, or an embedded command. For
example, the following command tells you if your screen is in high resolution or
not:

if (equal ‘getrez’'2) (echo "High res") \
(echo "Not high res”)

The if command tests whether the return value of the command getrez is equal to
2, which indicates that the screen ig in high resolution. If the test succeeds, the
command echoes the string High res onto the screen; if the test fails, it echoes
Not high res.

The not command inverts the logical result of its argument. For example, the
following command is another version of the resolution checker, shown above:
{f (not (equal ‘getrez‘2)) \
(echo "Not high res") (echo "High res")
In this example, the if command compares what is returned by getrez and two;

getrez normally returns two if the screen is In high resolution. The result is then
inverted by the not command, so that if the comparison fails, the If statement

'J

Installing and Running 29

overall would succeed and execute its first argument. In this instance, it would
echo the string Not high res onto the screen.

History command

The history command allows you to repeat commands without having to type them
over again.

To begin, the command Il re-executes your last command. Therefore, the com-
mands

1s -w
1

will give you two columnar listings of the contents of your current directory.

The command Iname re-executes the last command with name that is in your his-
tory directory. For example, when you type the following list of commands:

1s -w
echo foo >stuff
rm stuff

tls

the history command 118 reaches back and executes the command Is -w.

You can execute a previous command by its number relative to the current com-
mand. For example, I-1 re-executes the previous command; it is a synonym for 1.
To execute a command issued three commands ago, type 1-3. This will execute
echo foo >stuff. Remember that the number of each command changes every
time a new command is executed. Remember, too, that msh by default saves only
the last eight commands; to increase this number, use set to change the variable
history.

Three aliases .

msh includes a number of preset aliases. You can type these into a file of msh
commands (or a script), and msh automatically replaces them with their proper
values when you run the script.

The alias $* gives the arguments to the current command. For example, if the
following command is written into a file:

while () (echo §$%)

typing the file’s name plus any number of arguments causes those arguments to be
repeated endlessly.

30 Mark Williams C for the Atari ST

One use for this feature is to help control compilation. For example, the command
cc -V §*
when placed in a file, will compile all of the files listed as arguments to that file.

$# gives the number of arguments assigned to the current command., For ex-
ample, the command

echo S#
prints 1 on the screen, which is the number of arguments to that command.

Finally, the alias $< represents any line received from the standard input device,
up to the newline character.

The camefrom variable

The shell contains a built-in variable, called camefrom, which it maintains
automatically. camefrom is set to either auto, desktop, msh, execve, or NULL,
depending on where the current level of the shell thinks that it came from.

The is_set command

Finally, msh contains a built-in command called Ia_set. This returns zero if it is
passed an argument to a sheil variable that is already set. Its syntax is as follows:

is_set [in dir] name
which is much like that of the set command.

is_set can be combined in shell scripts with the if command to perform an action if
a particular environmental variable is set. You will find this to be especially helpful
to use with the RAM-disk utility rdy. As is explained in its Lexicon entry, rdy has
two interfaces: a command-line interface, and a graphics interface. It invokes its
command-line interface if the environmental variable CMD is set, and invokes its
graphics interface if that variable is not set. You can use Is_set to help ensure that
the correct interface is used, as follows:

if (is_set CMD) rdy (gem rdy)

If CMD is set, then rdy is invoked as normal and the command-line interface is
used. If CMD is not set, then Ia_set will return a non-zero value, the If condition
will fail, and rdy will then be invoked under the gem command, which will
prepare the environment correctly for the graphics interface. I

Installing and Running 381

For more information

Look in the Lexicon for more information on msh and its commands. msh itself
has an entry in the Lexicon; also see the entry for commands, which lists all of
the commands available with msh. See the entry for environment for a list of the
important environmental variables, each of which has its own entry within the
Lexicon. Also check the index at the end of this volume if you are searching for in-
formation on a particular topic. You should find it helpfu’.

R

Section 3:
Compiling with Mark Williams C

This section describes how to compile C programs with Mark Williams C.

In brief, a C compiler transforms files of C source code into machine code. Com-
pilation involves several steps; however, Mark Williams C simplifies it with the cc
command, which controls all the actions of the compiler.

The phases of compilation

Mark Williams C is not just one program, but a number of different programs that
work together. Each program performs a phase of compilation. The following sum-
marizes each phase:

cpp

ccl

ccl

cc2

cc3

The C prepmcessor.' This processes any of the ‘#’ directives, such as
#Include or #ifdef, and expands macros.

The parser. This phase parses programs. It translates the program into a
parse-tree format, which is independent of both the language of the source
code and the microprocessor for which code will be generated.

The code generator. This phase reads the parse tree generated by ec0 and
translates it into machine code. The code generation is table driven, with
entries for each operator and addressing mode.

The optimizer/object generator. This phase optimizes the generated code
and writes the object module.

Mark Williams C also includes a fifth phase, called ce3, which can be run
after the object generator, cc2. cc3 generates a file of assembly language in-
stead of a relocatable object module. This phase is optional, and allows you
to examine the code generated by the compiler. If you want Mark Williams

33

84 Mark Williams C for the Atari ST

C to generate assembly language, use the -8 option on the cc command line.

Unless you specify the -8 option, Mark Williams C creates an object module that is
named after the source file being compiled. This module has the suffix .0. An ob-
ject module is not executable; it contains only the code generated by compiling a C
source file, plus information needed to link the module with other program
modules and with the library functions.

As the final step in its execution, cc calls the linker Id to produce an executable
program.

Compiling from the GEM desktop

Mark Williams C was designed to be run through the micro-shell msh. However,
you can run cc and the compiler from the GEM desktop. To do so, perform the
following steps:

1. Move the following files plus your source code into the same folder:

ce.ttp
cc0.prg
cel.prg
cc2.prg
cc3.prg
cpp-prg
crts0.0
crtsg.o

ld.prg
libe.a
libm.a

Also move all of the header ﬁles. which have the suffix .h.

2. Use the mouse to double-click the icon labelled CC.TTP. When the Open ap-
plication box appears, enter the names of the files you wish to compile.

The micro-shell msh preserves the case of arguments passed to Mark Williams C.
The GEM-DOS desktop, however, translates all arguments to upper case, in some
instances changing their meaning.

Edit errors automatically

The first option, and one that you'll use most often, is the MicroEMACS option -A.
Often when you're writing a new program, you try to compile it, only to have the
compiler tell you that you’ve made a mistake. You must then invoke your editor,
change the program, exit from the editor, and start compiling the program again.

Compiling with Mark Williams C 35

To make this process easier, cc command has the automatic (or MicroEMACS)
option, -A. If Mark Williams C detects any errors in your program, it will automati-
cally invoke the MicroEMACS screen editor. MicroEMACS will display all error
messages in one window and your source code in another, with the cursor set at
the number of the line where the first error occurred.

Try the following example. Use MicroEMACS to create a program called error.c.
To invoke MicroEMACS, type the command

me error.c
at the msh prompt. Then type the following code:

main(),.
{

printf("Hello, world")
}

Note that the semicolon was left off of the printf statement. Type <ctrl-X> <ctrl-
8> to save the file to disk, and <ectrl-X> <etrl-C> to exit from MicroEMACS.
Now, try compiling error.c with the following cc command:

cc -A error.c

You will see no messages from the compiler because they are all being diverted into
a file to be used by MicroEMACS. Then, MicroEMACS will appear automatically.
In the upper window you will see the message:

4: missing ';’

and in the lower window you will see your source code for exrror.c, with the cursor
get on line 4. If you had more than one error, typing <ctrl-X> > would move you
to the next line with an error in it; typing <etrl-X> < would return you to the pre-
vious error.

With some errors, such as those for missing braces or semicolons, the compiler can-
not always tell exactly which line the error occurred on; it will point to a line that is
near the source of the error.

Now, ugse <ctrl-E> to move the cursor to the end of line 3, and type a semicolon
to correct the error. Type <ctrl-X> <ctrl-8> to save the file to disk, and then
type <ctrl-X> <ctrl-C> to exit from MicroEMACS. cc will recompile the program
automatically, to produce a normal working executable file.

cc will continue to invoke the MicroEMACS editor either until the program com-
piles without error, or until you exit from the editor by typing <ctrl-U> followed
by <ctrl-X> <ctrl-C>.

36

Mark Williams C for the Ataxi ST

Renaming executable files

When Mark Williams C compiles a source file, by default it names the executable
program after the source file. For example, when you compiled error.c, Mark
Williams C automatically named the executable file error.prg.

If you wish, you can give the executable file a different name. Use the -0 (output)
option, followed by the desired name. For example, should you wish the executable
file to have the name example.prg, use the command:

cc -o example.prg error.c

This command will compile the source file error.c and generate an executable file
called example.prg. The suffix .prg tells TOS that the file is executable.

Floating-point numbers

Often, you will need to use floating-point numbers in your programs. If you are
unsure what a floating-point number is, see the Lexicon entry for float.

The routines that print floating-point numbers are large, and most C programs do
not need to print floating-point numbers; therefore, the code to perform floating-
point arithmetic is not included in a program by default. You must ask Mark
Williams C to include these routines with your program by using the -f option with
the cc command.

For example, if the program example.c used floating-point numbers, you would
compile it with the following command line:

cc -f example.c

If your program prints floating-point numbers or reads them from an input device,
and it is not compiled with the -f option, it will print the following error message
when it is run:

You must compile with the -f option
to include printf() floating point!

Compiling multiple source files ' :

Many programs are built from more than one file of C source code. For example,
the program factor, which is provided with Mark Williams C, is built from the C
source files factor.c and atod.c. To produce the executable program factor, both
s<l)urce files must be compiled; the linker 1d then joins them to form an ekecutable
file.

[

Compiling with Mark Williams C 37

To compile a program that uses more than one source file, type all of the source
files onto the cc command line. For example, to compile factor type the following:

cc -f factor.c atod.c -1lm
This command compiles both C source files to create the program factor.

When the cc command line includes several file name arguments, by default it uses
the first to name the executable file. In the above example, cc produces the non-
executable object modules factor.o and atod.o, and then links them together to
produce the executable file factor.prg.

The argument -lm tells cc to include routines from the mathematies library when
the object modules are linked. This option must come afler the names of all of the
source files, or the program will not be linked correctly.

" Wildcards

A wildcard character is one that represents a variety of characters. The two most
commonly used wildcards are the asterisk **’ and the question mark ‘?". The as-
terisk can represent any string of characters of any length (including no character
at all), whereas the question mark can represent any one character.

For example, if the current directory held the following files:

a.c
ab.c
abc.c
abed.c

typing ls a?.e would print:
ab.c
whereas typing Is a*.c would print all four files.

The cc command lets you use wildcards in your command line to save you time
and effort. For example, you can compile all of the C source files in the current
directory simply by typing: ’

cc *.c

This command compiles all of the files with the suffix .c and links the resulting ob-
ject modules.

In another example, if the program example were built from the source files
examplel.c, example2.c, and exampled.c, you could compile them with the
following command:

38 Mark Williams C for the Atari ST

cc example?.c

Linking without compiling

When you are writing a program that consists of several source files, you will need
to compile the program, test it, and then change one or more of the source files.
Rather than recompile all of the source files, you can save time by recompiling only
the modified files and relinking the program.

For example, if you modify the factor program by changing the source file fac-
tor.c, you can recompile factor.c and relink the entire program with the following
command:

cc -f factor.c atod.o -1lm

The first two arguments are the C source file factor.c and the object module
atod.o. cc recognizes that atod.o is an object module and simply passes it to the
linker Id without compiling it. You will find this particularly useful when your
programs consist of many source files and you need to compile only a few of them.

To simplify compiling, especially if you are developing systems that use many
gsource modules, you should consider using the make command that is included
with Mark Williams C. For more information on make, see the entry in the
Lexicon, or see the tutorial for make that appears later in this manual.

Compiling without linking

At times, you will need to compile a source file but not link the resuiting object
module to the other object modules. You will do this, for example, to compile a
module that you wish to insert into a library. Use the -¢ option to tell cc not to
link the compiled program. This option is used most often to create relocatable ob-
ject nodules that can be archived into a library for later use.

For example, if you wanted just to compile factor.c without linking it, you would
type:

ce -c factor.c

To link the resulting object module with the object module atod.o and with the ap-
propriate libraries, type the following command:

cc -f factor.o atod.o -1lm

Compiling with Mark Williams C 39

Assembly-language files

C makes most assembly language programming unnecessary. However, you may
wish to write small parts of your programs in assembly language for greater speed
or to access processor features that C cannot use directly. Mark Williams C in-
cludes an assembler, named as, which is described in detail in the Lexicon.

To compile a program that consists of the C source file example.c and the as-
sembly-language source filo example.s, simply use the cc command as usual:

cc examplel.c examplel.s

cc recognizes that the suffix .8 indicates an assembly-language source file, and as-
sembles it with as; then it links both object modules to produce an executable file.

The Lexicon entry for the TOS function Setexc includes an example that
demonstrates how to combine routines written in assembly language with routines
written in C.

Changing the size of the stack

The stack is the segment of memory that holds function arguments, local variables,
and function return addresses. Mark Williams C by default sets the size of the
stack to two kilobytes (2,048 bytes). This is enough stack space for most programs;
however, some programs, such as the example program on page 26 of the first edi-
tion of The C Programming Language, require more than two kilobytes of stack. A
program that uses more than its allotted amount of stack will cause a stack over-
flow; this may force you to reboot your computer.

The size of the stack cannot be altered while a program i+ running. Should your
program need more than two kilobytes of stack, include the following global
statement anywhere in your program:

long _stksize = nL;

where n is an even decimal number of bytes.

Debugging with Mark Williams C

Mark Williams C comes with several utilities that help you debug your programs.
These include db, which is a powerful symbolic debugger; nm, which prints symbol
tables from programs for analysis; and od, which will print a formatted dump of a
file. It also supports csd, the Mark Williams C Source Debugger.

40 Mark Williams C for the Atari ST

csd: the C Source Debugger

Mark Williams C creates executable files that can be debugged with csd, the Mark
Williams C Source Debugger. csd lets you step through your source code one ex-
pression at a time, set break points, enter new expressions for evaluation, and com-
pare the execution of your source code with its screen output.

To connect the C source code with the compiled executable, csd uses a special, en-
larged debug table. To include csd's debug table when you compile a program, in-
clude the option -VCSD on your e¢c command line. If you do not compile the
program with this option, it cannot be debugged by csd.

A program that is compiled with the -VCSD option will run as quickly as one that
is compiled without it; however, it will be somewhat larger due to the extra debug
information that it holds. If you do not wish to recompile the program once you
have finished debugging it, you can use the command strip to remove the debug
table from the executable. This will not affect the program’s performance in any
way, and it will make the executable file noticeably smaller.

csd has proved invaluable to programmers of the IBM PC. It now makes source-
level debugging available on the Atari ST. For more information about csd, contact
Mark Williams Company or your local software dealer.

db: symboliec debugger

Mark Williams C includes the symbolic debugger db to assist you with debugging
your programs. Unlike csd, db works on the level of assembly language. db can
be used to debug programs that are assembled by as, the Mark Williams as-
sembler, as well as debug programs that are compiled by Mark Williams C.

To see what db can do, compile the program hello.e, which you created earlier in
this tutorial, by entering the following command:

cc hello.c

Now, step through the following script. db’s commands are in boldface in the
left-hand column; the right-hand column gives & brief description of what each
command does.

Compiling with Mark Williams C 41

db hello.prg invoke debugger

printf:b set breakpoint on printf

p display all breakpoints

) run program

it do traceback

HY look at the registers

printf,2071 symbolically disassemble 20 instructions

e continue execution

p display breakpoints; none shown as program is over
G quit db

As you can see, db allows you to set breakpoints, run through the program, and ex-
amine what it does in a variety of manners. For a fuller introduction to db, and in-
structions on how to use it to debug your programs, see the entry for db in the
Lexicon.

With release 3.0, db can work through the aux port, so you can debug programs
that use AES and VDI calls. This feature allows you to plug a terminal into tpe
aux port and send commands to db from it; the action of the program is then dis-
played on the ST screen. To use this feature, invoke db with the option -A.

od: formatted dump

od prints a formatted dump of a file. If you type od without an argument, it ac-
cepts what you type at the keyboard as input; when you type a <ctrl-Z> and car-
riage return, it then returns what you typed in hexadecimal. Normally, you give
od a file name as an argument; to display a hexadecimal dump of the file tempfile,
type:

od tempfile

od can also display files in octal, decimal, or characters, and in by\‘_.es or words,
whichever you prefer. See the Lexicon entry for od for more information.

nm: print symbol tables

nm prints out the symbol table from an object module or library. It is designeq to
work with libraries created with the archiver ar, and with object modules compiled
with Mark Williams C.

By default, nm only prints symbols with a C-style format. To use nm for the
library libe.a, use the ed command to move to the directory where you have stored
libe.a and then type:

nm libc.a

For more information on nm, see its entry in the Lexicon.

42

Mark Williams C for the Atari ST

Creating smaller, faster programs

Mark Williams C creates executables that are small and fast. However, Mark
Williams C includes a number of features that let you increase the speed and
decrease the size of your programs.

PC-relative addressing

By default, Mark Williams C uses absolute addressing in the programs it compiles.
This allows a program to address the full scope of memory, and to build objects
that are extremely large.

The Atari ST, however, can use another type of addressing, called PC-relative ad-
dressing. PC stands for program counter. In this mode of addressing, a 16-bit of-
fset is added to or subtracted from the value in the program counter register.

The advantage of PC-relative addressing is that on the M68000, it often is faster
than absolute addressing. Also, programs that use PC-relative addressing are
smaller than those that use absolute addressing because it uses only 18 bits, in-
stead of a full, 32-bit address. The disadvantage is that a program can jump only
32-kilobytes from the address in the program counter. Therefore, a program that
uses extremely large objects or that has global references that are more than 32
kilobytes apart cannot use PC-relative addressing. However, if your program is
small, you may wish to consider PC-relative addressing for its advantage in size and
speed.

The cc command has two options for generating PC-relative addressing: -VSMALL
and -VCOMPAC, -VSMALL is for programs whose code and data both can use
PC-relative addressing. -VCOMPAC is for programs that have small amounts of
code and large amounts of static or global data (e.g., a text editor); it uses PC-rela-
tive addressing for code and absolute addressing for data.

Both options produce executables that have full, 32-bit pointers. Thus, a module
compiled with the -VSMALL or -VCOMPAC option can be linked with modules
compiled with the default of absolute addressing. If a function is used repeatedly
within your program, you may wish to compile it to use PC-relative addressing to
speed up the program.,

Strip

Once a program is compiled and linked, it often does not need the debug and
relocation tables that the compiler builds into it. These tables are neetled only if
fun her debugging will be performed on the program, such as with esd} the Mark
Williams C Source Debugger. These tables can be removed from an executable
program with no loss in performance, and with a considerable savings in space.

Compiling with Mark Williams C 43

The utility strip, which is included with Mark Willilams C, removes the symbol and
debug tables from a linked executdble program. To use it under msh, simply type

strip filename

where fliename is the name of the executable you wish to alter. strip can be
used with the following options:

-d Keep debug table

-r Keep relocation table

-8 Keep symbol table

One note of caution: strip should not be used on an object module (that is, a file
whose suffix is .0), because if you do it cannot be linked.

Compiling with a RAM disk

Mark Williams C includes a utility, called rdy, which lets you build a rebootable
RAM disk on your Atari ST. The term “rebootable” means that the RAM disk and
its contents will not be affected by a warm boot on your computer. You can use a
RAM disk to hold the temporary files that Mark Williams C builds; this will
noticeably accelerate compilation on your system.

For a full description of rdy, see the Lexicon. The following describes in brief how
to install and use a RAM disk.

rdy works by creating a prototype RAM disk, which it stores in a file. This
prototype contains information concerning the size of the RAM disk in kilobytes, its
device name (e.g., whether it is disk E or G), and other necessary information.
Then rdy will load the prototype RAM disk into memory.

rdy can copy a RAM disk plus all of its contents into a file; this allows you to back
up a RAM disk easily. You can create a RAM disk, load utilities into it, then back
up the RAM disk. Thus, whenever you need to recreate a8 RAM disk, you can use
your backup copy and spare yourself the trouble of reloading your utilities. rdy can
also remove a RAM disk from memory.

Building a RAM disk

To begin building a RAM disk, insert the copy of distribu*‘on disk 1 into drive A,
and then click the icon labelled rdy.prg. In a moment, the screen will clear and a
new menu bar will appear at the top of the screen. The title at the left of the
menu bar, called Desk, gives you access to all desk accessories. The title at the
right, Read Me, describes how rdy works. You can use this feature to refresh
your memory while using rdy. The title in the center, Options, lets you command
rdy to perform a task.

44 Mark Williams C for the Atari ST

If you sweep the mouse pointer over the Options title, a menu drops down; this
menu has six entries. The first entry, Create a RAM disk, creates a prototype
RAM disk and writes it into a file. The second, Load a RAM disk, loads a RAM
disk into memory. The third, Back up a RAM disk, writes a RAM disk and all of
its contents into a file that you can later reload into memory. The fourth, Remove
a RAM disk, removes a RAM disk from memory. The fifth, Get data on a RAM
disk, will display information either about a RAM disk that is currently in
memory, or about a RAM disk file that you created earlier, whichever you prefer.
The last entry, Quit, lets you exit from rdy.

To begin, click the {irst entry, Create a RAM disk. A series of dialogues will ask
you to describe the RAM disk that you want to build.

The first dialogue box asks you how much RAM your system has. Click the ap-
propriate button.

The next dialogue asks the size of the RAM disk you wish to create. Again, click
the appropriate button. Your RAM disk should be large enough to hold a sig-
nificant number of files, but not so big that it stops you from loading any program
that you use frequently. A good rule of thumb is to use a RAM disk that takes up
approximately one quarter to one half of the RAM on your machine.

The next dialogue asks what drive the RAM disk should be. You should not use a
drive that is already taken up by another device, such as a logical partition on your
hard disk or another RAM disk. If you do so, rdy will not be able to load your
RAM disk.

Then it asks if you want this RAM disk to be your systemn's boot disk. At present,
answer No to this question. For more information on using the RAM disk as your
boot disk, see the Lexicon entry for rdy.

rdy then asks the name of the file in which to store the prototype RAM disk.

When you have answered these questions, rdy displays the configuration of the
new RAM disk and asks you if it ig correct. If you answer “No”, you will return to
the rdy desktop; otherwige, the new prototype RAM disk will be written.

Finally, rdy asks if you wish to load the new RAM disk. If you answer “No”, rdy
returns you to its desktop. Answer ‘“Yes”, which tells rdy to load the new file. As
it installs a new RAM disk, rdy warm boots your system. Do not be alarmed when
the screen clears and you are returned to the GEM desktop: this indicates that the
RAM disk has been loaded successfully.

The next step is to install your new disk on the GEM desktop. To da so, first
single-click the icon for one of your existing storage devices; then move the mouse
pointer to the Options title on the menu bar, and double-click the entry Install
Disk Drive. Change the name of the drive from its old setting to the name of
your RAM disk and then type in the name that you want to appear under the icon
(e.g, “RAM DISK"). Then click the button labelled Install. The desktop will

i

i

Compiling with Mark Williams C 456

return with the new icon displayed.

Working with a RAM disk

A RAM disk speeds up your work by reducing the time the compiler needs to read
a file. For example, the compiler writes temporary files to pass information be-
tween its phases; writing the temporary files onto the RAM disk eliminates the
time taken by writing these files onto a disk and reading them back. Test com-
pilations have shown that this change alone will cut the time you need to compile
and livk a large program by more than half.

To take full advantage of your RAM disk, you will need to tell the Mark Williams
microshell msh that it exists and how you want it to be used. To do so, you must
edit the file profile, which msh reads when invoked. The profile file is described
in the Lexicon, under the entry for msh, In brief, the line that begins PATH=
lists all the directories where programs should look for executable files. Your RAM
disk should go near the beginning of that list. For example, this line may read as
follows:

PATH=.cmd, ,a:\bin, b:\bin

If your RAM disk is named as drive E, change the PATH description to the
following:

PATH=.cmd,e:\,,a:\bin,b:\bin

This tells msh that the RAM disk should be searched for executable files before
either of the floppy disk drives; naturally, a RAM disk can be searched much more
quickly than a floppy disk drive, which will save you time.

We suggest that you not attempt to alter the profile until after you have installed
Mark Williams C and have read the chapter in the manual that introduces msh. If
you alter the profile too radically without knowing how it works, you may confuse
msh and create difficulties for yourself.

" Finally, use the command mkdir to create the directories tmp and bin on your

RAM disk. For example, if your RAM disk is device E on your system, type the
following command:

mkdir e:\tmp e:\bin

You will find that rdy is both versatile and powerful. See the Lexicon for more in-
formation on rdy and its features. We urge you to experiment with it.

One warning: if you have a 520ST and you want to debug programs with csd, the
Mark Williams C Source Debugger, you may need to remove your RAM disk first.
This is because csd requires large amount of memory for its buffers, and a 520ST
may not have enough memory to hold cad, plus the program it is debugging, the
source files, and a RAM disk.

46 Mark Williams C for the Atari ST

Where to go from here

For more information on compiling, see the Lexicon entry for cc. This entry sum-
marizes all of ce's options, and presents many that are not discussed here. For
more information on the assembler as, see its entry in the Lexicon as well.

The following section introduces the MicroEMACS screen editor. If you have
worked the exercises in this part of the book, you have already used MicroEMACS
a little; this tutorial, however, will show you how to use all of its advanced features
to input text quickly and easily.

Then comes an introduction to make, the Mark Williams programming discipline.
If you are building programs that use multiple files of source code, you will find
make to be an invaluable tool.

Section 4:

Introductionto MicroEMACS

This section introduces MicroEMACS, the interactive screen editor for Mark
Williams C. It is written for two types of reader: the one who has never used a
gereen editor and needs a full introduction to the subject, and the one who has
used a screen editor before but wishes to review specific topics.

What is MicroEMACS?

MicroEMACS is an interactive screen editor. An editor lets you type text into your
computer, name it, store it, and recall it later for editing. Inferactive means that
MicroEMACS will accept an editing command, execute it, display the results for
you immediately, then wait for your next command. Screen means that you can
use nearly the entire screen of your terminal es a writing surface: you can move
your cursor up, down, and around your screen to create or change text, much as
you move your pen up, down, and around a piece of paper.

These features, plus the others that will be described in the course of this tutorisl,
make MicroEMACS a tool that is powerful yet easy to use. You can use
MicroEMACS to create or change computer programs or any type of text file.

The TOS version of MicroEMACS was adapted by Mark Williams Company from a
public-domain program written by David G. Conroy. This tutorisl is based on the
descriptions in his essay MicroEMACS: Reasonable Display Editing in Little Com-
puters. MicroEMACS is derived from the mainframe display editor EMACS, which
was created at the Massachusetts Institute of Technology by Richard Stallman.

For a summary of MicroEMACS and its commands, see the entry for me in the
Lexicon.

47

48

Mark Williams C for the Atari ST

Keystrokes — <ctrl>, <esc>

The MicroEMACS commands use control characters and meta characters.
Control characters use the control key, which is marked Control on your
keyboard; meta characters use the escape key, which is marked Ese.

Control' works like the shift key: you hold it down while you strike the other key.
Here, this will be represented with a hyphen; for example, pressing the control key
and the letter X’ key simultaneously will be shown as follows:

<ctrl-X>

Thg esc key, on the other hand, works like an ordinary character. You should
strike it first, then strike the letter character you want. Escape character codes will
not be represented with a hyphen; for example, escape X will be represented as:

<esc>X

B.:coming acquainted with MicroEMACS

Now you are ready for a few simple exercigses that will help you get a feel for how
MicroEMACS works.

To begin, use the mouse to invoke the Mark Williams micro-shell msh. If you do
not yet know how to use msh, see the section on msh in section 2 of this manual.
If you do not have a hard disk, insert the disk that holds MicroEMACS into drive A
as soon as the msh prompt appears. Then type

me sample

Withiq a few L?econds, your screen will have been cleared of writing, the cursor will
be positioned in the upper left-hand corner of the screen, and a command line will
appear at the bottom of your screen.

Now type the following text. If you make a mistake, just backspace over it and
retype the text. Press the carriage return or enter key after each line:
main()
{
printf("Hello, world!i\n");
)

Notice how the text appeared on the screen character by character as yot\ typed it,
much as it would appear on a piece of paper if you were using a typewritet.

MicroEMACS 49

Now, type <ctrl-X> <ctrl-8>; that is, type <ctrl-X>, and then type <ctrlv8?.
It does not matter whether you type capital or lower-case letters. Notice that this
message has appeared at the bottom of your screen:

[Wrote &4 lines]

This command has permanently stored, or saved, what you typed into a file named
sample.

Type the next few commands, which demonstrate some of the tasks that
MicroEMACS can perform for you. These commands will be explained in full in the
sections that follow; for now, try them to get a feel for how MicroEMACS works.

Type <esc> <. Be sure that you type a less-than symbol ‘<’ instead of a comma.
Notice that the cursor has returned to the upper left-h-.ad corner of the screen.
Type <esc>F. The cursor bas jumped forward by one word, and is now on the left
parenthesis. Type <ctrl-N>. Notice that the cursor has jumped to the next line,
and is now just to the right of the left brace ‘(’. Type <etrl-A>. The cursor bas
jumped to the beginning of the second line of your text. Type <etrl-N> again, and
the cursor is at the beginning of the third line of the program, the printf
statement.

Now, type <ctrl-K>. The third line of text has disappeared, leaving an empty
space. Type <ctrl-K> again. The empty space where the third line of text had
been has now disappeared.

Type <esc>>. Be sure to type a greater-than symbol ‘>’, not a period. The cursor
hes jumped to the space jus'. below the last line of text. Now type <ctrl-Y>. The
text that you erased a moruent ago has now been restored.

By now, you should be feeling more at ease with typing MicroEMACS's control and
escape codes. The following sections will explain what these commands mean. For
now, exit from MicroEMACS by typing <etrl-X> <ctrl-C>, and when the message

Quit [y/n]?
appears type y and then <return>. This will return you to msh.

Beginning a document

Now, edit the file called examplel.c. First, use the ed to move to directory \sre,
which is where this file was stored when you installed Mark Williams C. If you
stored the sample programs in a different directory, then use the cd command to
transfer to that directory. Now, type the following command:

me examplel.c

50 Mark Williams C for the Atari ST

In a moment, the following text will appear on your screen:

/*
* This is a simple C program that computes the results
* of three different rates of inflation over the
* span of ten years. Use this text file to learn
* how to use MicroEMAGS commands
* to make creating and editing text files quick,
* efficient and easy.
*/
ffinclude <stdio.h>
main()
{
int §; /* count ten years */
float wl, w2, w3; /* three inflated quantities */
;haro *mgg = " A2d\txf Xf Xf\n";/* printf string %/
wl =1.0;
w2 = 1.0;
w3 = 1.0;
for (L = 1; i<= 10; 1++) (
wl %= 1.07; /* apply inflation */
w2 *= 1,08;
w3 *= 1.10;

printf (msg, {, wl, w2, w3);

)

When you type the MicroEMACS command and a file name, Mi i

) , MicroEMACS copies
that file into memory. Your cursor also moved to the upper left-hand corner ofpthe
screen. At the bottom of the screen appears the status line, as follows:

-~ ST MicroEMACS v1.2.- examplel.c File: examplel.c -----

The word to the left, MicroEMACS, is the name of the editor. The word in the cen-

ter, examplel.c, is the name of the buffer that you are using. What a b
how it is used will be covered later. The n to & ot e
Ble that yon aril b asiotme ame to the right is the name of the text

|

MicroEMACS 651

Moving the Cursor

Now that you have read a text file into memory, you will want to edit it. The first
step is to learn to move the cursor.

Try these commands for yourself as they are described in the following paragraphs.
That way, you will quickly acquire a feel for handling MicroEMACS's commands.
You can use your arrow keys with MicroEMACS. The arrow keys are found on the
pad to the right of the alphabetic keyboard. The arrow keys move the cursor in the
direction indicated (left, right, up, or down); this tutorial, however, will refer
primarily to the basic cursor movement commands displayed below:

Moving the cursor forward
This first set of commands moves the cursor forward.

<ctrl-F> Move forward one space
<esc>F Move forward one word
<ctrl-E> Move to end of line

To see how these commands work, do the following: Type the forward command
<ctrl-F>. This is equivelent to pressing <—+>. As before, it does not matter
whether the letter ‘F’ is upper case or lower case. The cursor has moved one space
to the right, and now is over the character **’ in the first line.

Type <esc>F. The cursor has moved one word to the right, and is now over the
space after the word this. MicroEMACS considers only alphanumeric characters
when it moves from word to word. Therefore, the cursor moved from under the *
to the space after the word this, rather than to the space after the ¢, Now type
the end of line command <ctrl-E>, The cursor has jumped to the end of the line
and is now just to the right of the e of the word three.

Moving the cursor backward
The following summarizes the commands for moving the cursor backwards.

<ctrl-B> Move back one space
<esc>B Move back one word
<ctrl-A> Move to beginning of line

To see how these work, first type the backward command <ctrl-B>. This is equiv-
alent to pressing <«>. As you can see, the cursor has moved one space to the left,
and now is over the letter e of the word three. Type <esc>B. The cursor has
moved one word to the left and now is over the t in three. Type <esc>B again,
and the cursor will be positioned on the o of the word of.

52

Mark Williams C for the Atari ST

Type the beginning of line command <ctrl-A>. The cursor jumps to the begin-
nning of the line, and once again is resting over the ‘/’ character in the first line,

From line to line

<ctrl-P> Move to previous line
<ctrl-N> Move to next line

These two commands move the cursor up and down the screen. Type the next line
command <ctrl-N>. The cursor jumps to the space before the ‘*’ in the next line.
Type the end of line command <e¢trl-E>, and the cursor moves to the end of the
second line to the right of the period.

Continue to type <ctrl-N> until the cursor reaches the bottom of the screen. This
is the same as if you typed <!>. As you reached the first line in your text, the
cursor jumped from its position at the right of the period on the second line to just
right of the brace on the last line of the file. When you move your cursor up or
down the screen, MicroEMACS will try to keep it at the same position within each
line. If the line to which you are moving the cursor is not long enough to have a
character at that position, MicroEMACS will move the cursor to the end of the line.

Now, practice moving the cursor back up the screen. Type the previous line com-
mand <etrl-P>, This has the same effect as pressing <t>. When the cursor
jumped to the previous line, it retained its position at the end of the line.
MicroEMACS remembers the cursor's position on the line, and returns the cursor
there when it jumps to a line long enough to have a character in that position.

Cot tinue pressing <ctrl-P>. The cursor will move up the screen until it reaches
the top of your text.

Moving up and down by a screenful of text

The next two cursor movement commands allow you to roll forward or backwards
by one screenful of text.

<ctrl-V> Move forward one screen
<esc>V Move back one screen

If you are editing a file with MicroEMACS that is too big to be displayed on your
screen all at once, MicroEMACS will display the file in screen-sized portions (22
lines at a time). The view commands <ctrl-V> and <esc>V allow you to roll up
or down one screenful of text at a time.

Type <ectrl-V>. Your screen now contains only the last three lines of tHe file. This
:g because you have rolled forward by the equivalent of one screenful of text, or 22
ines.

MicroEMACS 53

Now, type <esc>V. Notice that your text rolls back onto the screen, and your cur-
sor istggsiﬁoned in the upper left-hand corner of the screen, over the character /
in the first line.

Moving to beginning or end of text

Finally, these two cursor movement commands allow you to jump immediately to
the beginning or end of your text.

<esc> < Move to beginning of text
<esc>> Move to end of text

The end of text command <esc>> moves the cursor to the end of your text. Type
<esc> >. Be sure to type a greater-than symbol *>’.
The beginning of text command <ese> < will move the cursor back to the begin-

ning of your text. Type <esc> <. Be sure to type a less-than symbol ‘<’. The cur-
gor has jumped back to the upper left-hand corner of your screen.

These commands will move you immediately to the beginning or the end of your
text, regardless of whether the text is one page long or 20 pages long.

Saving text and quitting

If you do not wish to continue working at this time, you should save your text, and
then quit.

It is good practice to save your text file every so often while you are working on it;
then, if an accident occurs, such as & power failure, you will not lose all of your
work. You can save your text with the save command <etrl-X> <ctrl-8>. Type
<ctrl-X> <ctrl-8>—that is, first type <ctrl-X>, then type <ctrl-8>. If you had
modified this file, the following message would appear:

[{Wrote 23 lines]

The text file would have been saved to your computer’s disk. MicroEMACS w.ll!
gend you messages from time to time; the messages enclosed in square br'ackets \
‘T’ are for your information, and do not necessarily mean that something is wrong.
To exit from MicroEMACS, type the quit command <ctrl-X> <etrl-C>. This will
return you to msh.

Killing and deleting

Now that you know how to move the cursor, you are ready to edit your text.
To return to MicroEMACS, type the command:

me examplel.c

64 Mark Williams C for the Atari ST

Within a moment, examplel.c will be restored to your screen.

By now, you probably have noticed that MicroEMACS is always ready to insert
material into your text; unless you use the <ctrl> or <ese> keys, MicroEMACS
will assume that whatever you type is meant to be text and will insert it onto your
screen where your cursor is positioned.

The simplest way to erase text is simply to position the cursor to the right of the
text you want to erase and backspace over it. MicroEMACS, however, also has a set
of commands that allow you to erase text easily. These commands, kill and delete,
perform differently; the distinction is important, and will be explained in a moment.

Deleting versus killing

When text is deleted, it is erased completely; however, when text is killed, it is
copied into a temporary storage area in memory. This storage area is overwritten
when you move the cursor and then kill additional text. Until then, however, the
killed text is saved. This aspect of killing allows you to restore text that you killed
accidentally, and it also allows you to move or copy portions of text from one posi-
tion to another.

MicroEMACS is designed so that when it erases text, it does so beginning at the
left edge of the cursor. This left edge is called the current position.

You should imagine that an invisible vertical bar separates the cursor from the
character immediately to its left; as you enter the various kill and delete commands,
this vertical bar moves to the right or the left with the cursor, and erases the
characters it touches. Therefore, if you wish to erase a word but wish to keep both
spaces around it, position your cursor directly over the first character of the word
and strike <esc>D. If you wish to erase a word and the space before it, position
the cursor at the space before you strike <esc>D, so that the invisible vertical bar
?vlzleeps away the space at which the cursor is positioned, as well as the word that
ollows.

Erasing text to the right

The first two commands to be presented erase text to the right.

<ctrl-D> Delete one character to the right
<esc>D Kill one word to the right

<ctrl-D> deletes one character to the right of the current position. <ese>D
deletes one word to the right of the current position.

To try these commands, type the delete command <ctrl-D>. The chariacter ¢/’ in
the first line has been erased, and the rest of the line has shifted one space to the
left.

MicroEMACS 556

Now, type <esc>D. The ‘*’ character and the word This have been erased, and
the line has shifted six spaces to the left. The cursor is positioned at the space
before the word is. Type <esc>D again. The word is has vanished along with the
space that preceded it, and the line has shifted four spaces to the left.

<etrl-D> deletes text, but <ese>D kills text.

Erasing text to the left
You can erase text to the left with the following commands:

 Delete one character to the left
<ctrl-H> Delete one character to the left
<esgc> Kill one word to the left
<ese> <ctrl-H> Kill one word to the left

To see how to erase text to the left, first type the end of line command <ctrl-E>;
this will move the cursor to the right of the word three on the first line of text
Then, type . The second e of the word three has vanished.

‘Type <esc>. The rest of the word three has disappeared, and the cursor
has moved to the second space following the word of.

Move the cursor four spaces to the left, so that it is over the letter o of the word of.
Type <esc> . The word results has vanished, along with the space that was
immediately to the right of it. As before, these commands erased text beginning im-
mediately to the left of the cursor. The <esc> command can be used to
erase words throughout your text.

If you wish to erase a word to the left yet preserve both spaces that are around it,
position the cursor at the space immediately to the right of the word and type
<esc> . If you wish to erase a word to the left plus the space that im-
mediately follows it, position the cursor under the first letter of the next word and
then type <esc> .

Typing deletes text, but typing <esc> kills text.

Erasing lines of text

Finally, the following command erases a line of text:
<ctrl-K> Kill from cursor to end of line

This command erases the line beginning from immediately to the left of the cursor.

To see how this works, move the cursor to the beginning of line 2. Now, strike
<ctrl-K>. All of line 2 has vanished and been replaced with an empty space. Strike
<ctrl-K> again, The empty space has vanished, and the cursor is now positioned
at the beginning of what used to be line 3, in the space before * Use.

56

Mark Williams C for the Atari ST

Block killing and moving text

As its name implies, the <ctrl-K> command kills the line of text.

Yanking back (restoring) text
The following command allows you restore material that you have killed:
<ctrl-Y> Yank back (restore) killed text

Remember that when material is killed, MicroEMACS has temporarily stored it
elsewhere. You can return this material to the screen by using the yank back com-

mand <etrl-Y>. Type <ctrl-Y>, All of line 2 has returned; the cursor, however,
remains at the beginning of line 3.

Quitting

When you are finished, do not save the text. If you do so, the undamaged copy of
the text that you made earlier will be replaced with the present changed copy.
Rather, use the quit command <ctrl-X> <ctrl-C>. Type <ctrl-X> <ctrl-C>. On
the bottom of your screen, MicroEMACS will respond:

Quit (y/n}?

Reply by typing y and a carriage return. If you type n, MicroEMACS will simply

rettlxlm you to where you were in the text, MicroEMACS will now return you to
msh,

As noted above, text that is killed is stored tem
text may be yanked back ontop your screen
was originally killed. This feature allows
another,

Moving one line of text

You can kill and move one line of text with the following commands:
<ctrl-K> Kill text to end of line
<ctrl-Y> Yank back text

To test these commands, invoke MicroEMACS for the text 1 i
the following command: examplel.c by typing

me examplel.c ;

When MicroEMACS appears, the cursor will be positioned in the upper left-hand
corner of the screen.

MicroEMACS &7

To move the first line of text, begiﬂ by typing the kill command <ctrl-K> twice.
Now, press <esc>> to move the cursor to the bottom of text. Finally, yank back
the line by typing <ctrl-Y>. The line that reads

/* This is a simple ¢ program that computes the results
is now at the bottom of your text.

Your cursor has moved to the point on your screen that is after the line you yanked
back.

Multiple copying of killed text

When text is yanked back onto your screen, it is not deleted from within the com-
puter. Rather, it is simply copied back onto the screen. This means that killed text
can be reinserted into the text more than once. To see how this is done, return to
the top of the text by typing <ese><. Then type <ctrl-Y>. The line you just
killed now appears as both the first and last line of the file.

The killed text will not be erased from its temporary storage until you move the
cursor and then kill additional text. If you kill several lines or portions of lines in a
row, all of the killed text will be stored in the buffer; if you are not careful, you
may yank back a jumble of accumulated text.

Kill and move a block of text

If you wish to kill and move more than one line of text at a time, use the following
commands:

<ctrl-@> Set mark
<ctrl-W> Kill block of text

If you wish to kill a block of text, you can either type the kill command <ctrl-K>
repeatedly to kill the block one line at a time, or you car use the block kill com-
mand <etrl-W>. To use this command, you must first set a mark on the screen,
an invigible character that acts as a signal to the computer. The mark is set with
the mark command <ctrl-@>.

Once the mark is set, you must move your cursor to the other end of the block of
text you wish to kill, and then strike <ctrl-W>, The block of text will be erased,
and will be ready to be yanked back elsewhere.

Try this out on examplel.c. Type <esc> < to move the cursor to the upper left-
hand corner of the screen. Then type the gset mark command <ctrl-@>. By the
way, be gure to type ‘@’, not ‘2’. MicroEMACS will respond with the message

[Mark set]

at the bottom of your screen. Now, move the cursor down six lines, and type <ctrl-

58 Mark Williams C for the Atari ST

W>. Note how the block of text you marked out has disappeared.

Move the cursor to the bottom of your text. Type <etrl-Y>. The killed block of text
has now been reinserted.

When you yank back text, be sure to position the cursor at the exact point where
you want the text to be yanked back. This will ensure that the text will be yanked
back in the proper place.

To try this out, move your cursor up six lines. Be careful that the cursor is at the
beginning of the line. Now, type <ctrl-Y> again. The text reappeared above where
the cursor was positioned, and the cursor has not moved from its position at the
beginning of the line — which is not what would have happened had you positioned
it in the middle or at the end of a line.

Although the text you are working with has only 23 lines, you can move much
larger portions of text using only these three commands. Remember, too, that you
can use this technique to duplicate large portions of text at several positions to save
yourself considerable time in typing and reduce the number of possible typographi-
cal errors.

Capitalization and other tools

The next commands perform a number of useful tasks that will help with your
editing. Before you begin this section, destroy the old text on your screen with the
quit command <ctrl-X> <ctrl-C>, and read into MicroEMACS a fresh copy of the
program, as you did earlier.

Capitalization and lowercasing

The following MicroEMACS commands can automatically capitalize a word (that is,
make the first letter of a word upper case), or make an entire word upper case or
lower case.

<esc>C Capitalize a word
<esc>L Lowercase an entire word
<esc>U Uppercase an entire word

To try these commands, do the following: First, move the cursor to the letter d of
the word different on line 2. Type the capitalize command <esc>C. The word is
now capitalized, and the cursor is now positioned at the space after the word. Move
the cursor forward so that it is over the letter t in rates. Press <esc>C again. The
word changes to raTes. When you press <esc>C, MicroEMACS will eaf)italize the
first letter the cursor meets. !

MicroEMACS can also change a word to all upper case or all lower case. (There is
very little need for a command that will change only the first character of an upper-
case word to lower case, so it is not included.)

MicroEMACS 69

Type <esc>B to move the cursor so that it is again to the left of the word Dif-
ferent, It does not matter if the cursor is directly over the D or at the space to its
left; as you will see, this means that you can capitalize or lowercase a number of
words in a row without heving to move the cursor.

Type the uppercase command <esc>U. The word is now spelled DIFFERENT,
and the cursor has jumped to the space after the word.

Again, move the cursor to the left of the word DIFFERENT. Type the lowercase
command <esc>L. The word has changed back to different. Now, move the cur-
sor to the space at the beginning of line 3 by typing <ectrl-N> then <ctrl-A>.
Type <esc>L once again. The character “*’ is not affected by the command, but
the letter U is now lower case. <esc>L not only shifts a word that is all upper
case to lower case: it can also un-capitalize a word.

The uppercase and lowercase commands stop at the first punctuation mark they
meet after the first letter they find. This means that, for example, to change the
cage of a word with an apostrophe in it you must type the appropriate command
twice.

Transpose characters

MicroEMACS allows you to reverse the position of two characters, or transpose
them, with the transpose command <ctrl-T>.

Type <ctrl-T>. The character that is under the cursor bas been transposed with
the character immediately to its left. In this example,

* ugse this
in line 3 now appears:
* us ethis

The space and the letter e have been transposed. Type <ctrl-T> again. The
characters have returned to their original order.

Screen redraw

Occasionally, the characters on your screen may become mixed up, due to an un-
foreseen’ complication beyond your control. The redraw screen command <ctrl-L>
will redraw your screen to the way it was before it was scrambled.

Type <ctrl-L>. Notice how the screen flickers and the text is rewritten. Had your
screen been spoiled by extraneous material, that material would have been erased
and the original text rewritten.

60 Mark Williams C for the Atari ST

The <ctrl-L> command also has another use: you can move the line on which the
cursor is positioned to the center of the screen. If you have a file that contains more
than one screenful of text and you wish to have that particular line in the center of
the screen, position the cursor on that line and type <ectrl-U><etrl-L>,
Immediately, the screen will be rebuilt with the line you were interested in
positioned in the center.

Return indent

<ctrlJ> Return and indent

You may often be faced with a situation in which, for the sake of programming
style, you need many lines of indented text. After every line, you must return, then
tab the correct number of times, then type your text. Block indents can be a time-
consuming typing chore. The MicroEMACS <ctrl-J> command makes this task
easier. When you type a file that has many lines of indented text, such as a C
program, you can save many keystrokes by using the <ctrl-J> command. <ctrl-
J> moves the cursor to the next line on the screen, and positions the cursor at the
previous line’s level of indentation.

To see how this works, first move the cursor to the line that reads
w3 *= 1.10:
Press <ctrl-E>, to move the cursor to the end of the line. Now, type <ctrl-J>,

As you can see, a new line opens up and the cursor is indented the same amount
as the previous line. Type

/* Here is an example of auto-indentation #*/

This line of text begins directly under the previous line.
Word wrap

<ctrl-X>F

Although you have not yet had much opportunity to use it, MicroEMACS will
automatically wrap around text that you are typing into your computer. Word
wrapping is controlled with the word wrap command <etrl-X>F, To see how the
word wrap command works, first exit from MicroEMACS by typing <etrl-
X> <ctrl-C>; then reinvoke MicroEMACS by typing

me cucumber

Set word wrap

When MicroEMACS re-appears, type the following text; however, do not type any
carriage returns:

MicroEMACS 61

A cucumber should be
well sliced, and dressed
with pepper and vinegar,
and then thrown out, as
good for nothing.

When you reached the edge of your screen, a dollar sign was printed and you were
allowed to continue typing. MicroEMACS accepted the characters you typed, but it
placed them at a location beyond the right edge of your screen.

Now, move to the beginning of the next line and type <etrl-U>. MicroEMACS will
reply with the message:

Arg: 4
Type 30. The line at the bottom of your screen now appears as follows:
Arg: 30

(The use of the argument command <ctrl-U> will be explained in full in a few sec-
tions.) Now type the word-wrap command <etrl-X>F. MicroEMACS will now say
at the bottom of your screen:

[Wrap at column 30]

This sequence of commands has set the word-wrap function, and told it to wrap to
the next line all words that extend beyond the 30th column on your screen.

The word wrap feature automatically moves your cursor to the beginning of the
next line once you type past a preset border on your screen. When you first enter
MicroEMACS, that limit is automatically set at the first column, which in effect
means that word wrap has been turned off.

When you type prose for a report or a letter of some sort, you probably will want to
set the border at the 65th column, so that the printed text will fit neatly onto a
sheet of paper. If you are using MicroEMACS to type in a program, however, you
probably will want to leave word wrap off, 80 you do not accidentally introduce car-
riage returns into your code.

To test word wrapping, type the above text again, without using the carriage return
key. When you finish, it should appear as follows:

A cucumber should be well
sliced, and dressed with

pepper and vinegar, and then
thrown out, as good for nothing.

MicroEMACS automatically moved your cursor to the next line when you typed a
space character after the 30th column on your screen.

62

Mark Williams C for the Atari ST

If you wish to fix the border at some special point on your screen but do not wish
to go through the tedium of figuring out how many columns from the left it is,
simply position the cursor where you want the border to be, type <etrl-X>F, and
then type a cartiage return. When <ctrl-X>F is typed without being preceded by &
<ctrl-U> command, it sets the word-wrap border at the point your cursor happens
to be positioned. When you do this, MicroEMACS will then print a message at the
bottom of your terminal that tells you where the word-wrap border is now set.

If you wish to turn off the word wrap feature again, simply set the word wrap bor-
der to one.

S»arch and Reverse Search

When you edit a Jarge text, you may wish to change particular words or phrases.
To do this, you can roll through the text and read each line to find them; or you
can have MicroEMACS find them for you. Before you continue, close the present
file by typing <ctrl-X> <ctrl-C>; now, reinvoke the editor to edit the file
examplel.c, as you did before. The following sections will perform some exercises
with this file.

Search forward

<ctrl-8>
<esc>8

Search forward incrementally
Search forward with prompt

As you can see from the display, MicroEMACS has two ways to search forward: in-
crementally, and with a prompt.

An incremental search is one in which the search is performed as you type the
characters. To see how this works, first type the beginning of text command
<esc>< to move the cursor to the upper left-hand corner of your screen. Now,
type the incremental search command <ectrl-8>. MicroEMACS will respond by
prompting with the message

i-search forward:
at the bottom of the screen.

Wae will now search for the pointer *msg. Type the letters *msg one at a time,
starting with *. The cursor has jumped to the first place that a ® was found: at the
second character of the first line. The cursor moves forward in the text file and the
message at the bottom of the screen changes to reflect what you have typed.

Now type m. The cursor has jumped ahead to the letter & in *msg. Type 8. The
curgor has jumped ahead to the letter g in *msg. Finally, type g. The cursor is
over the space after the token *msg. Finally, type <esc> to end the string.
MicroEMACS will reply with the message

MicroEMACS 63

[Done]
which indicates that the search is finished.

If you attempt an incremental search for a word that is not in the file,
MicroEMACS will find a8 many of the letters as it can, and then give you an error
message. For example, if you tried to search incrementally for the word *msgs,
MicroEMACS would move the cursor to the phrase *msg; “wvhen you typed ‘g', it
would tell you

failing i-search forward: *msgs

With the prompt search, however, you type in the word all at once. To see how this

works, type <esc> <, to return to the top of the file. Now, type the prompt search

command <esc>8. MicroEMACS will respond by prompting with the message
Search [*msgs]:

at the bottom of the screen. The word ®*msgs is shown because that was the last

word for which you searched, and 8o it is kept in the search buffer.

Type in the words editing text, then press the carriage return. Notice that the
cursor has jumped to the period after the word text in the next to last line of your
text. MicroEMACS searched for the words editing text, found them, and moved
the cursor to them.

If the word you were searching for was not in your text, or at least was not in the
portion that lies between your cursor and the end of the text, MicroEMACS would
not have moved the cursor, and would have displayed the message

Not found

at the bottom of your screen.

Reverse search

<ctrl-R>
<esc>R

Search backwards incrementally
Search backwards with prompt

The search commands, useful as they are, can only search forward through your
text. To search backwards, use the reverse search commands <ctrl-R> and
<esc>R. These work exactly the same as their forward-searching counterparts, ex-
cept that they search toward the beginning of the file rather than toward the end.

For example, type <esc>R. MicroEMACS will reply with the message
Reverse search [editing text]:

at the bottom of your screen. The words in square brackets are the words you en-

64 Mark Williams C for the Atari ST

tered earlier for the search command; MicroEMACS remembered them. If you
wanted to search for editing text again, you would just press the carriage return.
For now, however, type the word program and press the carriage return.

Notice that the cursor has jumped so that it is under the letter p of the word
program in line 1. When you search forward, the cursor will move to the space
after the word you are searching for, whereas when you reverse search, the cursor
will be moved to the first letter of the word you are searching for.

Cancel a command

<ctrl-G> Cancel a search command

As you have noticed, the commands to move the cursor or to delete or kill text all
execute immediately. Although this speeds your editing, it also means that if you
type a command by mistake, it executes before you can stop it.

The search and reverse search commands, however, wait for you to respond to their
prompts before they execute. If you type <ese>S or <esc>R by accident,
MicroEMACS will interrupt your editing and wait for you to initate a search that
you do not want to perform. You can evade this problem, however, with the cancel
command <ctrl-G>. This command tells MicroEMACS to ignore the previous com-
mand.

To see how this command works, type <ese>R. When the prompt appears at the
bottom of your screen, type <ctrl-G>. Three things happen: your monitor chimes,
the characters G appear at the bottom of your screen, and the cursor returns to
where it was before you first typed <esc>R. The <esc>R command has been
cancelled, and you are free to continue editing.

If you cancel an incremental search command, <ctrl-8> or <esc-8>, the cursor
will return to where it was before you began the search. For example, type
<egc> < to return to the top of the file. Now type <etrl-S> to begin an incremen-
tal search, and type m. When the cursor moves to the m in simple, type <ctrl-
G>. The bell will ring, and your cursor will be returned to the top of the file, which
is where you began the search.

Search and replace

<esc>% Search and replace

MicroEMACS also gives you a powerful function that allows you to gearch for a
string and replace it with a keystroke. You can do this by executing thq search and
replace command <esc>%.

MicroEMACS 65

To see how this works, move to the top of the text file by typing <ese><; then
type <esc>%. You will see the following message at the bottom of your screen:

0ld string:
As an exercise, type mag. MicroEMACS will then ask:

New string: .
Type message, and press the carriage return. As you can see, MicroEMACS jumps
to the first occurrence of the string msg, and prints the following message at the
bottom of your screen:

Query replace: [msg] -> [message]

MicroEMACS is asking if it should proceed with the replacement. Type a carriage
return: this displays the options that are available to you at the bottom of your
screen:

<SP>[,] replace, [.] rep-end, [n] dont, [!] repl rest <C-G> quit
The options are as follows:

Typing a space or & comma will execute the replacement, and move the cursor to
the next occurrence of the old string; in this case, it will replace msg with mes-
sage, and move the cursor to the next occurrence of msg.

Typing a period *.’ will replace this one occurrence of the old string, and end the
search and replace procedure; in this example, typing a period will replace this one
occurrence of msg with message and end the procedure.

Typing the letter ‘n’ tells MicroEMACS not to replace this instance of the old
string, and move to the next occurrence of the old string; in this case, typing ‘n’
will not replace msg with message, and the cursor will jump to the next place
where msg occurs.

Typing an exclamation point ‘I’ tells MicroEMACS to replace all instances of the old
string with the new string, without checking with you any further. In this example,
typing ‘" will replace all instances of msg with message without further queries
from MicroEMACS.

Finally, typing <ctrl-G> aborts the search and replace procedure.

Saving text and exiting

This set of basic editing commands allows you to save your text and exit from the
MicroEMACS program. They are as follows:

66 Mark Williams C for the Atari ST

<ctrl-X> <ctrl-S> Save text
<etrl-X> <ctrl-W> Write text to a new file
<ctrl-Z> Save text and exit

<ctrl-X> <ctrl-C> Exit without saving text

You have used two of these commands already: the save command <ctrl
X> <etrl-S> and the quit command <ctrl-X> <etrl-C>, which respectively allow
you to gave text or to exit from MicroEMACS without saving text. (Commands that
begin with <ctrl-X> are called extended commands; they are used frequently in
the advanced editing to be covered in the second half of this tutorial.)

Write text to a new file

<ctrl:X> <ctrl-W> Write text to a new file

If you wish, you may copy the text you are currently editing to a text ﬁ!e other
than the one from which you originally took the text. Do this with the write com-
mand <ctrl-X> <ctrl-W>,

To test this command, type <ctrl-X> <ctrl-W>. MicroEMACS will display the
following message on the bottom of your screen:

Write file:

MicroEMACS is asking for the name of the file to which you wish to write the text,
Type sample. MicroEMACS will reply:
[Wrote 23 lines]

The 23 lines of your text have been copied to a new file called sample. The status
line at the bottom of your screen has changed to read as follows:

-- ST MicroEMACS V1.2 -- examplel.c -- File: sample -----

The significance of the change in file name will be discussed in the second half o
this tutorial.

Before you copy text into a new file, be sure that you have not selected a file name
that is already being used. If you do, whatever is stored under that file name will
be erased, and the text created with MicroEMACS will be stored in its place.

Save text and exit

Finally, the store command <ctrl-Z> will save your text and move you out of the
MicroEMACS editor. To see how this works, watch the bottom line of your ter-
minal carefully and type <ctrl-Z>. The MicroEMACS has saved your text, and
now you can issue commands directly to msh.

MicroEMACS 87

Advanced editing

The second half of this tutorial introduces the advanced features of MicroEMACS.

The techniques described here will help you execute complex editing tasks with
minimal trouble. You will be able to edit more than one text at a time, display more
than one text on your screen at a time, enter a long or complicated phrase
repeatedly with only one keystroke, and give commands to TOS without having to
exit from MicroEMACS.

Before beginning, however, you must prepare a new text file. Type the following
command to msh:

me example2.c
In a moment, example2.c will appear on your screen, as follows:

/* Use this program to get better acquainted
* with the MicroEMACS interactive screen editor.
* You can use this text to learn some of the
* more advanced editing features of MicroEMACS.

*/

f#finclude <stdio.h>
main()
{

FILE *fp;

int ch;

int filename[20};

printf("Enter file name: ");
gets(filename);

if ((fp =fopen(filename,"r")) !=NULL) ({
while ((ch = fgetc(fp)) != EOF)
fpute(ch, stdout); :

else

printf("Cannot open Xs.\n", filename);
fclose(£fp);

68 Mark Williams C for the Atari ST

Arguments

Most of the commands already described in this tutorial can be used with ar
guments. An argument is a subcommand that tells MicroEMACS to execute a com-
mand & given number of times. With MicroEMACS, arguments are introduced by
typing <ctrl-U>.

Arguments — default values

By itself, <etr]-U> gets the argument at four. To illustrate this, first type the next
line command <ctrl-N>, By itself, this command moves the cursor down one line,
from being over the ‘/’ at the beginning of line 1, to being over the space at the
beginning of line 2.
Now, type <ctrl-U>. MicroEMACS replies with the message:

Arg: 4

Now type <ctrl-N>. The cursor jumps down four lines, from the beginning of line
2 to the letter m of the word maln at the beginning of line 6.

Type <ctrl-U>. The line at the bottom of the screen again shows that the value of
the argument is four. Type <etrl-U> again. Now the line at the bottom of the
screen reads:

Arg: 16
Type <etrl-U> once more. The line at the bottom of the screen now reads:
Arg: 64
Each time you type <ctrl-U>, the value of the argument is multiplied by four.

Type the forward command <ctrl-F>. The cursor has jumped ahead 64 characters,
and is now over the | of the word flle in the prinif statement in line 11,

Selecting values

Naturally, arguments do not have to be powers of four. You can set the argument
to whatever number you wish, simply by typing <ectrl-U> and then typing in the
number you want,

. For example, type <ctrl-U>, and then type 3. The line at the bottom of the screen
now reads:
Arg: 3

Tyge the delete command <esc>D. MicroEMACS has deleted three words to the
right.

MicroEMACS 69

Arguments can be used to increase the power of any cursor movement command,
or any kill or delete command. The sole exception is <ctrl-W>, the block kill com-
mand.

Deleting with arguments—an exception

Killing and deleting were described in the first part of this tutorial. They were said
to differ in that text that was killed was stored in a special area of the computer
and could be yanked back, whereas text that was deleted was erased outright.
However, there is one exception to this rule: any text that is deleted using an argu-
ment can also be yanked back.

Move the cursor to the upper left-hand corner of the screen by typing the begin text
command <esc> <. Then, type <ctrl-U> § <ectrl-D>. The word Use has disap-
peared. Move the cursor to the right until it is between the words better and ac-
quainted, then type <ctrl-Y>. The word Use has been moved within the line (al-
though the spaces around it have not been moved). This function is very handy,

"and should greatly speed your editing.

Remember, too, that unless you move the cursor between one set of deletions and
another, the computer’s storage area will not be erased, and you may yank back a
jumble of text.

Buffers and files

Before beginning this section, replace the changed copy of the text on your screen
with a fresh copy. Type the quit command <etrl-X><ctrl-C> to exit from
MicroEMACS without saving the text; then return to MicroEMACS to edit the file
example2.c, as you did earlier.

Now, look at the status line at the bottom of your screen. It should appear as
follows:

-- ST MicroEMACS V1.2 -- example2.c -- File: example2.c -----

As noted in the first half of this tutorial, the name on the left of the command line
is that of the program. The name in the middle is the name of the buffer with
which you are now working, and the name to the right is the name of the file from
which you read the text.

70 Mark Williams C for the Atari ST

Definitions

A file is a text that has been given a name and has been permanently stored by
yoir computer. A buffer is a portion of the computer's memory that has been set
aside for you to use, which may be given a name, and into which you can put text
temporarily. You can put text into the buffer by typing it in from your keyboard or
by copying it from a file.

Unlike a file, a buffer is not permanent: if your computer were to stop working
(because you turned the power off, for example), a file would not be affected, but a
buffer would be erased. :

You must name your files because you work with many different files, and you
must have some way to tell them apart. Likewise, MicroEMACS allows you to
name your buffers, because MicroEMACS allows you to work with more than one
buffer at a time.

File and buffer commands

MicroEMACS gives you a number of commands for handling files and buffers.
These include the following:

<etrl-X> <ctrl-W> Write text to file
<ctrl-X> <ctrl-F> Rename file
<ctrl-X> <ctrl-R> Replace buffer with named file
<ctrl-X> <ctrl-V> Switch buffer or create a new buffer
<ctrl- X>K Delete a buffer
<ctrl-X> <ctrl-B> Display the status of each buffer

Write and rename commands

The write command <ctrl-X> <ctrl-W> was introduced earlier when the com-
mands for saving text and exiting were discussed. To review, <ctrl-X> <ctrl-W>
changes the name of the file into which the text is saved, and then writes a copy of
the text into that file.

Type <ctrl-X> <ctrl-W>. MicroEMACS responds by printing
Write file:
on the last line of your screen. ’

i
Type junkfile, then <return>. Two things happen: First, MicroEMACS writes
the message

MicroEMACS 71

{Wrote 21 lines]

at the bottom of your screen. Second, the name of the file shown on the status line
has changed from exampleZ.c to junkfile. MicroEMACS is reminding you that
your text is now being saved into the file junkfile.

The file rename command <etrl-X><ctrl-F> allows you rename the file to which
you are saving text, without automatically writing the text to it. Type <ctrl-
X> <etrl-F>. MicroEMACS will reply with the prompt:

Name:

Type example2.c and <return>. MicroEMACS does not send you a message
that lines were written to the file; however, the name of the file shown on the
status line has changed from junkfile back to exampleZ.c.

Replace text in a buffer

The replace command <ctrl-X> <ctrl-R> allows you to replace the text in your
buffer with the text taken from another file.

Suppose, for example, that you had edited example2.c and saved it, and now
wished to edit examplel.c. You could exit from MicroEMACS, then re-invoke
MicroEMACS for the file example2.c, but this is cumbersome. A more efficient
way is to simply replace the exampleZ2.c in your buffer with examplel.c.

Type <ctrl-X> <ctrl-R>. MicroEMACS replies with the prompt:
Read file:

Type examplel.c. Notice that example2.c has rolled away and been replaced
with examplel.c. Now, check the status line. Notice that although the name of the
buffer is still example2.¢, the name of the file has changed to examplel.c. You
can now edit examplel.c; when you save the edited text, MicroEMACS will copy it
back into the file examplel.c — unless, of course, you again choose to rename the
file.

Visiting another buffer

The last command of this set, the visit command <ctrl-X> <ctrl-V>, allows you
to create more than one buffer at a time, to jump from one buffer to another, and
move text between buffers. This powerful command has numerous features.

Before beginning, however, straighten up your buffer by replacing examplel.c
with example2.c. Type the replace command <ectrl-X> <ctrl-R>; when
MicroEMACS replies by asking

Read file:

at the bottom of your screen, type example2.c.

72 Mark Williams C for the Atari ST

You should now have the file exampleZ.c read into the buffer named example2.c.

Now, type the visit command <ectrl-X> <ctrl-V>, MicroEMACS replies with the
prompt
Visit file:

at the bottom of the screen. Now type examplel.c. Several things happen.
example2.c rolls off the screen and is replaced with examplel.c; the status line
changes to show that both the buffer name and the file name are now examplel.c;
and the message

[Read 23 lines]

appears at the bottom of the screen.

.

This does not mean that your previous buffer has been erased, as it would have
been had you used the replace command <ctrl-X> <etrl-R>. example2.c is still
being kept “alive” in a buffer and is available for editing; however, it is not being
shown on your screen at the present moment.

Type <ctrl-X> <ctrl-V> again, and when the prompt appears, type exampleZ.c.
examplel.c scrolls off your screen and is replaced by example2.c, and the mes-

sage
[01d buffer]

appears at the bottom of your screen. You have just jumped from one buffer to
another.

Move text from one buffer to another

The visit command <ctrl-X> <ctrl-V> not only allows you to jump from one
buffer to another, it allows you to move text from one buffer to another as well. The
following example shows how you can do this.

First, kill the first line of example2.c by typing the kill command <ectrl-K> twice.
This removes both the line of text and the space that it occupied; if you did not
remove the space as well the line itself, no new line would be created for the text
when you yank it back. Next, type <ctrl-X> <ctrl-V>. When the prompt

Visit file:

appears at the bottom of your screen, type examplel.c. When examplel.c has
rolled onto your screen, type the yank back command <ctrl-Y>, The line P'ou killed
in example2.c has now been moved into examplel.c. :

MicroEMACS 73

Checking buffer status

The number of buffers you can use at any one time is limited only by the size of
your computer. You should create only as many buffers as you need to use im-
mediately; this will help the computer run efficiently.

To help you keep track of your buffers, MicroEMACS has the buffer status com-
mand <etrl-X> <ctrl-B>, Type <ctrl-X> <ctrl-B>. The status line has moved up
to the middle of the screen, and the bottom half of your screen has been replaced
with the following display:

C Size Lines Buffer File
* 655 24 examplel.c examplel.c
* 403 20 example2.c example2.c

This display is called the buffer status window. The use of windows will be dis-
cussed more fully in the following section.

The letter C over the leftmost column stands for Changed. An asterisk on a line
indicates that the buffer has been changed since it was last saved, whereas a space
means that the buffer has not been changed. Size indicates the buffer’s size, in
number of characters; Buffer lists the buffer name, and File lists the file name.

Now, kill the second line of examplel.c by typing the kill command <etrl-K>.
Then type <ctrl-X> <ctrl-B> once again. The- size of the buffer examplel.c has
been reduced from 657 characters to §95 to reflect the decrease in the size of the
buffer.

To make this display disappear, type the one window command <ectrl-X> 1. This
command will be discussed in full in the next section.

Renaming a buffer

One more point must be covered with the visit command. TOS will not allow you
to have more than one file with the same name. For the same reason,
MicroEMACS will not allow you to have more than one buffer with the same name.

Ordinarily, when you visit a file that is not already in a buffer, MicroEMACS will
create a new buffer and give it the same name as the file you are visiting. However,
if for some reason you already have a buffer with the same name as the file you
wish to visit, MicroEMACS will stop and ask you to give a new, different name to
the buffer it is creating.

For example, suppose that you wanted to visit a new file named sample, but you
already had a buffer named sample. MicroEMACS would stop and give you this
prompt at the hottom of the screen:

74 Mark Williams C for the Atari ST

Buffer name:

You would type in a name for this new buffer. This name could not duplicate the
name of any existing buffer. MicroEMACS would then read the file sample into
the newly named buffer.

Delete a buffer

If you wish to delete a buffer, simply type the delete buffer command <ectrl-X>K.
This command will allow you to delete only a buffer that is hidden, not one that is
being displayed. .

Type <ctrl-X>K MicroEMACS will give you the prompt:
K11l buffer:

Type example2.c. Because you have changed the buffer, MicroEMACS asks:
Discard changes [y/n]? .

Type y. Then type the buffer status command <ctrl-X> <ctrl-B>; the buffer
status window will no longer show the buffer example2.c. Although the prompt
refers to killing a buffer, the buffer is in fact delefed and cannot be yanked back.

Windows

Before beginning this section, it will be necessary to create a new text file. Exit
from MicroEMACS by typing the quit command <ctrl-X> <etrl-C>; then rein-
voke MicroEMACS for the text file examplel.c as you did earlier.

Now, copy exampleZ.c into a buffer by typing the visit command <etrl-X> <ctrl-
V>. When the message

Visit file:

appears at the bottom of your screen, type example2.c. MicroEMACS will read
example2.c into a buffer, and show the message

[Read 21 lines]
" at the bottom of your screen.

Finally, copy a new text, called example3.c, into a buffer. Type <ctrl-X> <ctrl-
V> again. When MicroEMACS asks which file to visit, type example3.c. The mes-
sage |

[Read 123 1lines] ;

will appear at the bottom of your screen.

MicroEMACS 76

The first screenful of text will appear as follows:

/*

Factor prints out the prime factorization of numbers.
If there are any arguments, then it factors these. if
there are no arguments, then it reads stdin until
either EOF or the number zero or a non-numeric
non-white-space character. Since factor does all of
its calculations in double format, the largest number
which can be handled is quite large.

*/

{##include <stdio.h>

##include <math.h>

ffinclude <ctype.h>

* % % %k %+ ¥ %

{#idefine NUL ‘\O'
f#define ERROR Ox10 /* largest input base */
fidefine MAXNUM 200 /* max number of chars in number */

main(arge, argv)
int argc;
register char *argv([];

-~ ST MicroEMACS V1.2 -- examp1e3.'c -- File: example3.c -----

At this point, example3.c is on your screen, and examplel.c and example2.c
are hidden.

You could edit first one text and then another, while remembering just how things
stood with the texts that were hidden; but it would be much easier if you could dis-
play all three texts on your screen simultaneously. MicroEMACS allows you to do
just that by using windows.

Creating windows and moving between them

A window is a portion of your screen that is set aside and can be manipulated in-
dependently from the rest of the screen. The following commands let you create
windows and move between them:

<ctrl-X>2 Create a window
<ctrl-X>1 - Delete extra windows
<ctrl-X>N Move to next window

<ctrl-X>P Move to previous window

76

Mark Williams C for the Atari ST

The best way to grasp how a window works is to create one and work with it. To
begin, type the create a window command <ctrl-X>2,

Your screen is now divided into two parts, an upper and a lower. The same text is
in each part, and the command lines give example3.c for the buffer and file
names. Also, note that you still have only one cursor, which is in the upper left-
hand corner of the screen.

The next step is to move from one window to another. Type the next window com-
mand <ctrl-X>N. Your cursor has now jumped to the upper left-hand corner of
the lower window.

Type the previous window command <ctrl-X>P. Your cursor has returned to the
upper left-hand corner of the top window.

Now, type <ctrl-X>2 again. The window on the top of your screen is now divided
into two windows, for a total of three on your screen. Type <ctrl-X>2 again. The
window at the top of your screen has again divided into two windows, for a tqtal of
four.

It is possible to have as many as 11 windows on your screen at one time, although
each window will show only the control line and one or two lines of text. Neither
<ctrl-X>2 nor <ctrl-X>1 can be used with arguments.

Now, type the one window command <ctrl-X>1. All of the extra windows have
been eliminated, or closed.

Enlarging and shrinking windows

When MicroEMACS creates a window, it divides the window in which the cursor is
positioned into half. You do not have to leave the windows at the size MicroEMACS
creates them, however. If you wish, you may adjust the relative size of each window
on your screen, using the enlarge window and shrink window commands:

<ctrl-X>Z Enlarge window
<ctrl-X> <ctrl-Z> Shrink window

To see how these work, first type <ctrl-X>2 twice. Your screen is now divided into
three windows: two in the top half of your screen, and the third in the bottom half,

Now, type the enlarge window command <ctrl-X>Z. The window at the top of
your screen is now one line bigger: it has borrowed a line from the window below
it. Type <ctrl-X>Z again. Once again, the top window has borrowed a line from
the middle window, .

Now, type the next window command <ctrl-X>N to move your cursor into the
middle window. Again, type the enlarge window command <ctrl-X>Z. The middle
window has borrowed a line from the bottom window, and is now one line larger.

MicroEMACS 77

The enlarge window command <ectrl-X>Z allows you to enlarge the window your
cursor is in by borrowing lines from another window, provided that you do not
shrink that other window out of existence. Every window must have at least two
lines in it: one command line and one line of text.

The shrink window command <ectrl-X> <ctrl-Z> allows you to decrease the size of
a window, Type <etrl-X> <ctrl-Z>. The present window is now one line smaller,
and the lower window is one line larger because the line borrowed earlier has been
returned.

The enlarge window and shrink window commands can also be used with ar-
guments introduced with <etrl-U>. However, remember that MicroEMACS will
not accept an argument that would shrink another window out of existence.

Displaying text within a window

Displaying text within the limited area of a window can present special problems.
The view commands <ctrl-V> and <esc>V will roll window-sized portions of text
up or down, but you may become disoriented when a window shows only four or
five lines of text at a time. Therefore, three special commands are available for dis-
playing text within a window:

<etrl-X> <ctrl-N> Scroll down
<ctrl-X> <ctrl-P> Seroll up

<egc>] Move within window

Two commands allow you to move your text by one line at a time, or scroll it: the
gcroll up command <etrl-X> <ctrl-N>, and the scroll down command <etrl-
X> <etrl-P>. .

Type <ctrl-X> <ctrl-N>. The line at the top of your window has vanished, a new
line has appeared at the bottom of your window, and the cursor is now at the
beginning of what had been the second line of your window.

Now type <ctrl-X> <ctrl-P>. The line at the top that had vanished earlier has
now returned, the cursor is at the beginning of it, and the line at the bottom of the
window has vanished. These commands allow you to move forward in your text
slowly 8o that you do not become disoriented.

Both of these commands can be used with arguments introduced by <ectrl-U>.

The third special movement ¢ommand is the move within window command
<esc>. This command moves the line your cursor is on to the top of the window.

To try this out, move the cursor down three lines by typing <ctrl-U>3<ctrl-N>,
then type <esc>!. (Be sure to type an exclamation point ‘I’, not a numeral one ‘1’,
or nothing will happen.) The line to which you had moved the cursor is now the
first line in the window, and three new lines have scrolled up from the bottom of

78 Mark Williams C for the Atari ST

the window. You will find this command to be very useful as you become more ex-
perienced at using windows.

All three special movement commands can also be used when your screen has no
extra windows, although you will not need them as much.

One buffer

Now that you have been introduced to the commands for manipulating windows,
you can begin to use windows to speed your editing.

To begin with, scroll up the window you are in until you reach the top line of your
text. You can do this either by typing the scroll up command <ctrl-X> <ctrl-P>
several times, or by typing <esc> <.

Kill the first line of text with the kill command <ctrl-K>. The first line of text has
vanished from all three windows. Now, type <ctrl-Y> to yank back the text you
just killed. The line has reappeared in all three windows.

The main advantage to displaying one buffer with more than one window is that
each window can display a different portion of the text. This can be quite helpful if
you are editing or moving a large text.

To demonstrate this, do the following: First, move to the end of the text in your
present window by typing the end of text command <esc>>, then typing the
previous line command <ctrl-P> four times. Now, kill the last four lines.

You could move the killed lines to the beginning of your text by typing the begin-
ning of text command <esc> <; however, it is more convenient simply to type the
next window corrmand <ctrl-X>N, which will move you to the beginning of the
text as displayed in the next window. MicroEMACS remembers a different cursor
position for each window.

Now yank back the four killed lines by typing <etrl-Y>. You can simultaneously
observe that the lines have been removed from the end of your text and that they
have been restored at the beginning.

Multiple buffers

Windows are especially helpful when they display more than one text. Remember
that at present you are working with three buffers, named examplel.c,
example2.c, and example3.c, although your screen is displaying only
example3.c. To display a different text in a window, use the switch buffer com-
mand <ctrl-X>B.

Type <ctrl-X>B. When MicroEMACS asks
Use buffer:

MicroEMACS 79

at the bottom of the screen, type examplel.c. The text in your present window
will be replaced with examplel.c. The command line in that window has changed,
too, to reflect the fact that the buffer and the file names are now examplel.c.

Moving and copying text among buffers

It is now very easy to copy text among buffers. To see how this is done, first kill the
first line of examplel.c by typing the <ctrl-K> command twice. Yank back the
line immediately by typing <ctrl-Y>. Remember, the line you killed has not been
erased from its special storage area, and may be yanked back any number of times.

Now, move to the previous window by typing <ectrl-X>P, then yank back the
killed line by typing <etrl-Y>. This technique can also be used with the block kill
command <etrl-W> to move large amounts of text from one buffer to another.

Checking buffer status

The buffer status command <ctrl-X> <ctrl-B> can be used when you are already
displaying more than one window on your screen.

When you want to remove the buffer status window, use either the one window
command <ctrl-X>1, or move your cursor into the buffer status window using the
next window command <ctrl-X>N and replace it with another buffer by typing the
switch buffer command <ctrl-X>B.

Saving text from windows

The final step is to save the text from your windows and buffers. Close the lower
two windows with the one window command <ctrl-X>1. Remember, when you
close a window, the text that it displayed is still kept in a buffer that is hidden from
your screen. For now, do not save any of these altered texts.

When you use the save command <ctrl-X> <etrl-8>, only the text in the window
in which the cursor is positioned will be written to its file. If only one window is
displayed on the screen, the save command will save only its text.

If you made changes to the text in another buffer, such as moving portions of it to
another buffer, MicroEMACS will ask

Quit {y/n]:

If you answer ‘n’, MicroEMACS will save the contents of the buffer you are cur-
rently displaying by writing them to your disk, but it will ignore the contents of
other buffers, and your cursor will be returned to its previous position in the text.
If you answer ‘y’, MicroEMACS again will save the contents of the current buffer
and ignore the other buffers, but you will exit from MicroEMACS and return to
msh. Exit from MicroEMACS by typing the quit command <ectrl-X> <ctrl-C>.

80 Mark Williams C for the Atari ST

Keyboard macros

Anocther helpful feature of MicroEMACS is that it allows you to create a keyboard
macro.

Before beginning this section, reinvoke MicroEMACS to edit example3.c as you
did earlier.

The term macro means a number of commands or characters that are bundled
together under a common name. Although MicroEMACS allows you to create only
one macro at a time, this macro can consist of a common phrase or a common
command or series of commands that you use while editing your file.

Keyboard macro commands
The keyboard macro commands are as follows:

<ctrl-X>(Begin macro collection
<ctrl-X>) End macro collection
<ctrl-X>E Execute macro

To begin to create a macro, type the begin macro command <ctrl-X>(. Be sure to
type an open parenthesis ‘(’, not a numeral ‘9’. MicroEMACS will reply with the
message

[Start macro]
Type the following phrase:
MAXNUM

Thel:x type the end macro command <ctrl-X>). Be sure you type a close paren-
thesis), not a numeral ‘0". MicroEMACS will reply with the message

[End macro]

Move your cursor down two lines and execute the macro by typing the execute
macro command <ctrl-X>E. The phrase you typed into the macro has been in-
serted into your text.

Should you give these commands in the wrong order, MicroEMACS will warn you
tha_t you are making a mistake. For example, if you open a keyboard macro by
typing <ctrl-X>(, and then attempt to open another keyboard macro by again
typing <ctrl-X>(, MicroEMACS will say:

Not now !

Should you accidentally open a keyboard macro, or enter the wrong commands into
it, you can cancel the entire macro simply by typing <ctrl-G>.

MicroEMACS 81

Replacing a macro

To replace this macro with another, go through the same process. Type <ctrl-X>(.
Then type the buffer starus command <ctrl-X><ectrl-B>, and type <ctrl-X>).
Remove the buffer status window by typing the one window command <ctrl-X> 1.

Now execute your keyboard macro by typing the execute macro command <etrl-
X>E. The buffer status command has executed once more.

Whenever you exit from MicroEMACS, your keyboard macro is erased, and must
be retyped when you return.

Sending commands to TOS

The only remaining commands you need to learn are the program interrupt com-
mands <etrl-X>! and <ctrl-C>. These commands allow you to interrupt your
editing, give a command directly to TOS, and then resume editing without affecting
your text in any way.

The command <ctrl-X>! allows you to send one command line (one command, or
several commands plus separators) to the operating system. To see how this com-
mand works, type <ctrl>l. The prompt | has appeared at the bottorn of your
screen. Type Is. Observe that the directory’s table of contents scrolls across your
screen, followed by the message [end]. To return to your editing, simply type a
carriage return. The interrupt command <ctrl-C> suspends editing indefinitely,
and allows you te send an unlimited number of commands to the operating system.
To see how this works, type <ctrl-C>. After a moment, the msh prompt will ap-
pear at the bottom of your screen. Type date. msh will reply by printing the time
and date. To resume editing, then simply type exit.

If you wish, you can suspend MicroEMACS’s operation, tell msh to invoke another
copy of the MicroEMACS program, edit a file, then return to your previous editing.
To see how this is done, type <ectrl-C>. When the prompt appears at the bottom
of your screen, type

me examplel.c

It doesn’t matter that you are already editing examplel.c. MicroEMACS will
simply copy the examplel.c file into a new buffer and let you work as if the other
MieroEMACS program you just interrupted never existed.

Exit from this second MicroEMACS program by typing the quit command <ctrl-
X> <ctrl-C>. Then type exit. Your original MicroEMACS program has now been
resumed. However, none of the changes you made in the secondary MicroEMACS
program will be seen here.

82 Mark Williams C for the Atari ST

It is not a good idea to use multiple MicroEMACS programs to edit the same
program: it is too easy to become confused as to which edits were made to which
version,

The only time this is advisable, is if you wish to test to see how a certain edit would
affect your text: you can create a new MicroEMACS program, test the command,
and then destroy the altered buffer and return to your original editing program
without having to worry that you might make errors that are difficult to correct,

Now type <ctrl-X> <etrl-C> to exit.

Compiling and debugging through MicroEMACS

MicroEMACS can be used with the compilation command cc to give you a reliable
system for debugging new programs.

Often, when you’re writing a new program, you face the situation in which you try
to compile, but the compiler produces error messages and aborts the compilation.
You must then invoke your editor, change the program, close the editor, and try
the compilation over again. This cycle of compilation—editing—recompilation can be
quite bothersome.

To remove some of the drudgery from compiling, the cc command has the
automatic, or MicroEMACS option, -A. When you compile with this option, the
MicroEMACS screen editor will be invoked automatically if any errors occur. The
error or errors generated during compilation will be displayed in one window, and
your text in the other, with the cursor set at the number of the line that the com.
piler indicated had the error.

Try the following example. Use MicroEMACS to enter the following program,
which you should call error.c:

main() {
printf("Hello, world!\n")
)

TEo semicolon was left off of the printf statement, which is an error. Now, try
compiling error.c with the following cc command:

cc -A error.c

You should see no messages from the compiler because they are all being diverted
into a buffer to be used by MicroEMACS. Then MicroEMACS will appear
automatically. In one window you should see the message: [

3: missing *;’ i

and in the other you should see your source code for error.c, with the cursor set
on line 3.

Coas il

MicroEMACS 83

. . ext
If you had more than one error, typing <etrl-X>> would move you to the n
lini with an error in it; typing <,ctrl-x> < would return you to the previous error.
With some errors, such as those for missing braces or semxcolops, t:he compiler can-
not always tell exactly which line the error occurred on, but it will almost always
point to a line that is near the source of the error.
Now, correct the error by typing a semicolon at the end of line 2. Close the file by
typing <ctrl-Z>. cc will be invoked again automatically.

i i i i iles without
cc will continue to compile your program either ur}hl the program comp
error, or until you exit from MicroEMACS by typing <ctrl-U> followed by <etrl-
X><etrl-C>.

The MicroEMACS help facility

MicroEMACS has a built-in help function. With it, you can ask for information
either for a word that you type in, or for a word over vyhlch the cursor is
positioned. The MicroEMACS help file contains the bindings for all library
functions and macros included with Mark Williams C.

For example, consider that you are preparing a C program and want more informg-
tion aboug the function fopen. Type <ctrl-X>?. At the bottom of the screen will
appear the prompt

Topic:

Type fopen. MicroEMACS will search its help file, find its entry for fopen, then
open a window and print the following:

fopen - Open a stream for standard I/0

{#finclude <stdio.h>

FILE *fopen (name, type) char *name, “type;

If you wish, you can kill the information in the help window and copy it into your
program to ensure that you prepare the function call correctly.

Consider, however, that you are checking a program written 'earlie.r,. and you wish
to check the call to fopen. Simply move the cursor until it is posmm"led aver one
of the letters in fopen, then type <esc>?. MicroEMACS will open its help win-
dow, and show the same information it did above.

To erase the help window, type <esc>2.

84 Mark Williams C for the Atari ST

Where to go from here

For a complete summary of MicroEMACS's commands, see the entry for me in the
Lexicon.

The next section introduces make, a utility is helpful in building and maintaining
large programs. After that come sections that introduce the Mark Williams
resource tools: resource, the Mark Williams resource editor; rescomp, the
resource compiler; and resdecom, the resource decompiler.

Section 5:
make Programming Discipline

make is a utility that relieves you of the drudgery of building a complex C
program.

How does make work?

To understand how make works, it is first necessary to understand how a C
program is built: how Mark Williams C takes you from the C source code that you
write to the executable program that you can run on your computer.

The file of C source code that you write is called a source module. When Mark
Williams C compiles a source module, it uses the C code in the source module, plus
the code in the header files that the code calls to produce an object module. This ob-
ject module is not executable by itself. To create an executable file, the object
module generated from your source module must be handed to a linker, which
links the code in the object module with the appropriate library routines that the
object module calls, and adds the appropriate C runtime startup routine.

For example, consider the following C program, called hello.c:

main()
{

printf("Hello, world\n");
)

When Mark Williams C compiles the file that contains C code shown above, it
generates an object module called hello.o. This object module is not executable
because it does not contain the code to execute the function printf; that code is
contained in a library. To create an executsble program, you must hand hello.o to
the linker 1d, which copies the code for printf from a library and into your

86

86

Mark Williams C for the Atari ST

program, adds the appropriate C runtime startup routine, and writes the execut-
able file called hello.prg. This third file, hello.prg, is what you can execute on
your computer.

The term dependency describes the relationship of executable file to object module
to source module. The executable program depends on the object module, the
library, and the C runtime startup. The object module, in turn, depends on the
source module and its header files (if any).

A program like hello.prg has a simple set of dependencies: the executable file is
built from one object module, which in turn is compiled from one source module.
If you changed the source module hello.e, creating an updated version of
hello.prg would be easy: you would simply compile hello.c to create hello.o,
which you would link with the library and the runtime startup to create hello.prg.
Mark Williams C, in fact, does this for you automatically: all you need to do is type

cc hello.c
and Mark Williams C takes care of everything.

On the other hand, the dependencies of a large program can be very complex. For
example, the executable file for the MicroEMACS screen editor is built from several
dozen object modules, each of which is compiled from a source module plus one or
more header files. Updating a program as large as MictoEMACS, even when you
change only one source module, can be quite difficult. To rebuild its executable file
by hand, you must remember the names of all of the source modules used, compile
them, and link them into the executable file. Needless to say, it is very inefficient
to recompile several dozen object modules to create an executable when you have
changed only one of them.

make automatically rebuilds large programs for you. You prepare a file, called a
makefile, that describes your program’s chain of dependencies. make then reads
your makefile, checks to see which source modules have been updated, recompiles
only the ones that have been changed, and then relinks all of the object modules to
create a new executable file. make both saves you time, because it recompiles only
the source modules that have changed, and spares you the drudgery of rebuilding
your large program by hand.

Try make
The following example shows how easy it is to use make.
Before you begin to work the example, enter the Mark Williams Company micro-

shell msh. If you do not know how to use msh, see the section on using msh in
section 1 of this manual. '

Ll e

Introduction to make 87

To begin, make examines the time and date that TOS has stamped on gach'wum
file and object module. When you edit a source module, TQS marks it with the
time at which you edited it. Thus, if a source module has a time that is later than
that of its corresponding object module, then make knows th.at t}.xe source module
was changed since the object module was last compiled and it will coxppnle a new
object module from the altered source module, If you do not reset the time on your
system whenever you reboot, every time, some files will not have the correct date

and time and make cannot work correctly.

To see how make works, try compiling & program called factor. It is built from the
following files:

atod.c
factor.c
makefile

All three are included with your copy of Mark Williams C.

Use the ¢d command to shift into directory sre.

Now, type make. make will begin by reading makefile, w'hich describes all of
factor's dependencies. It will then use the makefile description to create factor.
The following will appear on your screen:

cc -c factor.c
cc -c atod.c
cc -f -o factor.prg factor.o atod.o -lm

Each of these messages describes an action that make has performed. The first
shows that make is compiling factor.c, the second shows that it is compiling
atod.c, and the third shows that it is linking the compiled object modules atod.o
and factor.o to create the executable file factor.pryg.

When make has finished, the TOS prompt will return. To see how your newly
compiled program works, type

factor 100

factor will calculate the prime factors of its argument 100, and print them on the
screen.

To see what happens if you try to re-make your file, type make again. make will
run quietly for a moment, and then exit. make checked the dates and times of .the
object modules and their corresponding source modules and saw that the object
modules had a time later than that of the source mouaules. Because no source
module changed, there was no need to recompile an object module or relink the ex-
ecutable file, so make quietly exited.

88 Mark Williams C for the Atari ST

To see what happens when one of the source modules changes, try the following.
Use the MicroEMACS screen editor to open the file factor.c for editing. Insert the
following line into the comments at the top, immediately following the /*:

* This comment 1s for test purposes only.

Now exit. Type make once again. This time, you will see the following on your
screen:

cc -c factor.c

cec -f -o factor.prg factor.o atod.o -lm

Because you altered the source module factor.c, its time was later than that of its
corresponding ooject module, factor.o. When make compared the times of fac-
tor.c and factor.o, it noted that factor.c had been altered. It then recompiled
factor.c and relinked factor.o and atod.o to re-create the executable file fac-
tor.prg. make did not touch the source module atod.c because atod.c had not
been changed since the last time it was compiled.

As you can see, make greatly simplifies the construction of a C program that uses
more than one source module.

Essential make

Although make is a powerful program, its basic features are easy to master. This
section will show you how to construct elementary make scripts.

The makefile

When you invoke make, it searches the directories named in the environmental
variable PATH for a file called makefile. As noted earlier, the makeflle is a text
file that describes a C program’s dependencies. It also describes the type of
program you wish to build, and the commands for building it.

A makefile has three basic parts.

First, the makefile describes the executable file’s dependencies. That is, it lists
the object modules needed to create the executable file. The name of the execut-

able file is always followed by a colon *’' and then by the names of files from which
the target file is generated.

For example, if the program feud.prg is built from the object modules hatfleld.o
and mecoy.o, you would type:
feud.prg: hatfield.o meccoy.o

If the files hatfleld.o and mccoy.o do not exist, make knows to creau.a them from
the source modules hatfield.c and mccoy.c.

Introduction to make 89

Seco r more command lines. The command line gives
the :o%:‘nh:ngl::‘ig:lepilllg‘gfeo::o:mm in question. The only difffemm:ek meg‘;lma.
makefile command line and an ordinary cc command is that & ma
mand line must begin with a space or & tab character.
For example, the makefile to generate the program feud.prg must contain the
following command line:

cc -o feud.prg hatfield.o mccoy.o

For a detailed description of the cc command and its options, refer to the entry for
ce in the Lexicon.

These are
i kefile lists all of the header files ti}et your program uses.
:i}\lrler:,szh :h?tamake can check if they vl/)er:nmlo(;i.lﬁed ge?imt.‘l:]eeyl?:;dsrmmmﬁle sh:tt:u l:'sl:
iled. For example, if the program hatfield.c u
z(:g;:if:ioy.:ruzed tl;\’e header files rifle.h and pistol.h, the makefile to generate

feud.prg would include the following lines:

hatfield.o: shotgun.h
mccoy.o: rifle.h pistol.h

Thus, the entire makefile to generate the program feud.prg is as follows:

feud.prg: hatfield.o mccoy.o
cc -o feud.prg hatfield.o mccoy.o

hatfield.o: shotgun.h

mccoy.o: rifle.h plstol.h .
A makefile may also contain macro definitions and comments. These are described
below.

Building a simple makefile

i i les, factor.c and atod.c.
rogram factor.prg 13 built from two source modul , -C ar
gltl)ehgader files are usgd. The makefile contains the following two lines:

factor.prg: factor.o atod.o
cc -f -o factor.prg factor.o atod.o -lm

i le file factor.pxg by
ine describes the dependency for tpe executable fi A /
I:gi:::hg Kt‘:m ggjcect modules needed to build it. Tbt; seco;;d fht[;:ee gol:re:mt::dal)i‘:e
eeded to build factor.prg. The option -Im st the end o ;
tn;ﬁ:i: that this program needs the mathematics library libm when the pmgra;n nx;
linked. No header file dependencies are described because these programs us

header files.

90 Mark Williams C for the Atari ST

Comments and macros

You can embed comments within a makefile. A comment is a line of text that Is
ignored; this lets you “document” the file, so that whoever reads it will now know
what it is for. make ignores all lines that begin with a pound sign ‘#’. For ex-
z;mple, you may wish to include the following information in your makeflle for
actor:

f# This makefile generates the program "factor”.

{## "factor" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library

"libm", but it requires no special header files.

"-f" lets you use printf for floating-point numbers.

factor: factor.o atod.o
ce -f -0 factor.prg factor.o atod.o -1m

Anyone who reads this file will know immediately what it is for by looking at the
comments,

make also lets you define macros within your makeflle. A macro is a symbol that
represents a string of text. Usually, a macro is defined at the beginning of the
makefile using a macro definition statement. This statement uses the following
syntax:

SYMBOL = string of text

'I:hereafter, when you use the symbol in your makefile, it must begin with a dollar
sign ‘$’ and be enclosed within parentheses.

Macros eliminate the chore of retyping long strings of file names. For e;cample,
wgth the makefile for the program factor, you may wish to use a macro to sub-
tEtqu;'ut,e for the names of the object modules out of which it is built. This is done as
ollows: :

This makefile generates the program "factor".

"factor" consists of the source modules "factor.c" and
#f "atod.c". It uses the standard mathematics library

"libm", but 1t requires no special header files.

ff "-f" lets you use printf for floating-point numbers,

OBJ = factor.o atod.o i i
factor: $(OBJ)
ce -o factor.prg $(OBJ) -1m

The macro OBJ is used in this makefile. If you use a macro that has not been

Introduction to make 91

defined, make substitutes an empty string for it. The use of a macro makes sense
when generating large files out of a dozen or more source modules. You avoid
retyping the source module names, and potential errors are avoided.

Setting the time

As noted above, make checks to see which source modules have been modified
before it regenerates your C program. This is done to avoid wasteful recompiling of
source modules that have not been updated.

make determines that a source module has been altered by comparing its date
against that of the target program. For example, if the object module factor.o was
generated on March 16, 1987, 10:52:47 AM.,, and the source module factor.c was
modified on March 20, 1987, at 11:19:08 A.M., make will know that factor.c needs
to be recompiled because it is younger than factor.o.

For this reason, if you wish to use make, you must reset the date and time every
time you reboot your system. Some users do not do this routinely; however, unless
the time is reset every time, make will not work correctly.

Use the command date to reset the date. date is described in the Lexicon.

Building a large program

As shown earlier, make can ease the task of generating a large program. The
following is the makefile used to generate the screen editor MicroEMACS:

#
Makefile for MicroEMAGS on the Atari ST

#

CFLAGS = -0

LFLAGS = lib\libterm.a

OBJ=ansi.o basic.o buffer.o display.o file.o \
fileio.o line.o main.o random.o region.o search.o \
spawn.o tcap.o termio.o vt52.o window.o word.o

me.ttp: $(OBJ)
cc -o me.ttp $(OBJ) $(LFLAGS)
$(0BJ): ed.h

The first line is commentary that describes the file.

The next five lines define macros that are used on the target and command line.
The first macros will be discussed in the following section. The second macro sub-
gtitutes for the name of a special library that is needed to create this program. The
third macro, which is three lines long, is defined as standing for the names of the

92 Mark Williams C for the Atari ST

source modules that produce MicroEMACS. A backslash ‘\’ must be
make that the definition is carried over onto the next line. \ veed to tell

The next line names the target file (me.ttp) and the files used i
represented by the macro OBJ. P s used to construct t, here

Next comes the command line, which dictates the compilati

N to be performed
The macro LFLAG must follow the the names of the ﬁ‘; o i is
line must be preceded by a space or a tab. s to be compiled. This

The last line lists the header file ed.h, which i i
St M , which is required by all of the files used to

Command line options

Although make is controlled by your makefile, you can also control make by

using command line options. These allow you to alte " ivi i
having to edit your makefile. Y v make's activity without

Options must follow the command name on the ¢ i i

must f T ommand line and begin with a
h rphen, ‘-, using the following format. The square brackets merely ilf(gl;mte that
you can select any of these options; do not type the brackets when you use the

make command:
make [-dinprst] [-f filename)
Each option is described below.

d . . - .
‘(Sgl;‘l;gf)":ake describes all of its decisions. You can use this to debug your

f filename

(file) option tells make that its commands are in a fil
B e e e in a file other than makefille.

make -f smith

tells make to use the file smith rather than mak
! ; eflle. If you do not use
this option, make searches the directories named in the envix)"onmentaj vari-

::liePATH, and then the current directory for a file entitied makefile to ex-
ute,

-1 (ignore errors) make ignores error returns from commands and continues
processing. Normally, make exits if a command returns an error status.

-n (no execution) make tests dependencies and modification times but does not

execute commands. This option is e i i
debugging a makefile. P specially helpful when constructing or

Introduction to make 93

-p (print) make prints all macro definitions and target descriptions.

-r (rules) make does not use the default macros and commands from
SLIBPATH\mmacros and $LIBPATH\mactions. These files will be
described below.

-8 (silent) make does not print each command line as it is executed.

-t {touch) make changes the modification time of each executable file and ob-
ject module to the current time. This suppresses recreation of the executable
file, and recompilation of the object modules. Although this option is used
typically after a purely cosmetic change to a source module or after adding a
definition to a header file, it must be used with great caution.

Other command line features

In addition to the options listed above, you may include uther information on your
command line.

First, you can define macros on the command line. A macro definition must follow
any command line options. Arguments including spaces must be surrounded by
quotation marks, as spaces are significant to msh. For example, the command line

make -n -f smith "CSD=-VCSD"

tells make to run in the no execution mode, reading the file smith instead of
makefile, and defining the macro CSD to mean -VCSD.

The ability to define macros on the command line means that you can create a
makefile using macroo that are not yet defined; this greatly incresses make's
flexibility and makes it even more helpful in creating and debugging large
programs. In the above example, you can define a command line as follows:

cc $(CSD) example.c

When you define the macro CSD on the command line, then the program is com-
piled using the -VCSD option, which creates an executable that can be debugged
with esd, the Mark Williams C Source Debugger. If the macro is not set, however,
then it is simply skipped when the command line is executed, and the program is
compiled in the usual manner.

Another command-line feature is the ability to change the name of the target file
on the command line. Normally, the target file is the executable file that you wish
to create, although, as will be seen, it does not have to be. As will be discussed
below, & makefile can name more than one target file. make normally assumes
that the target is the first target file named in makefile. However, the command
line may name one or more target. files at the end of the line, after any options and
any macro definitions.

94 Mark Williams C for the Atari ST

To see how this works, recall the i
3 program factor described above. f
generated out of the source modules factor.c and atod.c. The comx(r’lazld actor l»

make atod.o

with the makefile outlined above would produce the following cc command line:
cc -c atod.c
if the object module atod.o does not exist or is outdated. Here, make compiles

atod.c to create the target specified in the make command line, that is, atod.o,

but it does not create factor. This feature all
only & porsion of yeur practor. ows you to apply your makefile to

The use of special, or alternative, target files is discussed below.

Advanced make

This section describes some of make’s advanced fe

e eatures. For most of your w
you will not ne':ed these features; however, if you create an extremel);' com;{:'x
program, you will find them most helpful.

Default rules

The operation of make is

e n of governed by a set of default rules. Tl 1
designed to simplify the compilation of a typical program; howeverlezilr:uﬁ :Z:{:
may require that you bypass or alter the default rules. '

To begin, make uses information from th

N 0 e files mmacros and mactions to defi
g()e(ault macros and comgllatjon commands. make looks for these files in the d?rer:
tories named in the environmental variable LIBPATH. make uses the commands
in mmacros and mactions whenever the makefile specifies no explicit regenera-

tion commands. The command line opti
" 3 ption -r tells make no
actions defined in mmacros and mactions. ! 10 nse the macros and

As shown in earlier examples, make know:
2 s by default to j
module atod.o from the source module atod.c wi{h the commaflfinemte the oblect

cc -c atod.c

The macro .SUFFIXES defines the suffixes m
macr ake know
definition in mmacros includes both the .0 and .¢ sul”ﬁxets.s about by defavit. Its

make’s files mmacros and mactions use pre-defi increase i
scope and flexibility. These ere as follows: pre-defined macros to mIC their

Introduction to make 95

$< This stands for the name of the file or files that cause the action of a default
rule. For example, if you altered the file atod.c and then invoked make to
rebuild the executsble file factor.prg, $< would then stand for atod.c.

$° This stands for the name of the target of a default rule with its suffix
removed. If it had been used in the above example, $* would have stood for
atod. .
8< and $* work only with default rules; these macros will not work in a
makeflle.

8?7 This stands for the names of the files that cause the action and that are
younger than the target file.

$@ This stands for the target name.)
You can use the macros $? and $@ in a makefile. For example, the following rule
updates the archive libx.a with the objects defined by macro $(OBJ) that are out
of date:

1ibx.a: $(0BJ)
ar rv libx.a $7

mmacros also contains a default command that describes how to build additional
kinds of files:

© AS and ASFLAGS call the assembler to assemble .o files out of source
modules written in assembly language rather than C.

You can change the default rules of make by changing them in mactions and
changing the definition of any of the macros as given in mmacros.

Double-colon target lines

An alternative form of target line simplifies the task of maintaining archives. This
form wuses the double colon *“:” instead of a single colon *’ to separate the name of
the target from those of the filea on which it depends.

A target name can appear on only one single-colon target line, whereas it can ap-
pear on several double-colon target lines. The advantage of using the double-colon
target lines is that make will remake the target by executing the commands (or its
default commands) for the first such target line for which the target is older than a
file on which it depends.

For example, for the program factor.prg described earlier, assume that two ver-
sions of the source modules factor.c and atod.c exist: factora.c plus atoda.c, and
factorb.c plus atodb.c The makefile would appear as follows:

96 Mark Williams C for the Atari ST

OBJ1 = factora.o atoda.o
0BJ2 = factorb.o atodb.o

factor.prg :: $(OBJ1)
cc -c¢ $(OBJ1) -1m

factor.prg :: $(OBJ2)
cc -c¢ $(0BJ2) -1m

This makefile tells make to do the following: (1) Check if either factora.o or
atoda.o is younger than factor.prg. (2) If either one is, regenerate factor.prg
using this version of these files. (3) If neither factora.o nor atoda.o is younger
than factor.prg, then check to see if either factorb.o or atodb.o is younger than
factor.prg. (4) If either of them is, then regenerate factor.prg using the youngest
version of these files.

This technique allows you to maintain multiple versions of source files in the same
directory and selectively recompile the most recently updated version without
having to edit your makefile or otherwise trick the system.

You cannot target a file in both a single-colon and a double-colon target line.

Alternative uses

make is & program that helps you construct complex things from a number of
simpler things.

make usually is used to build complex C programs: the executable file is made
from object modules, which are made from source modules and header files.
However, make can be used to create any type of file that is constructed from one
or wore source modules. For example, an accountant can use make to generate
monthly reports from daily inventories: all the accountant has to do is prepare a
makefile that describes the dependencies (that is, the name of the monthly report
they wish to create and the names of the daily inventories from which it is created),
and the command required to generate the monthly report. Thereafter, to recreste
the report, all the accountant has to do to generate a monthly report is type make.

In another example, the makefile can trigger program maintenance commands,
For example, the target name backup might define commands to copy source
modules to another directory; typing make backup saves a copy of the source
modules. Similar uses include removing temporary files, building archives, ex-
ecuting test suites, and printing listings. A makeflle is a convenient place to keep
all the commands used to maintain a program.

The following example shows a makefile that defines two special target files, prin-
tall and printnew, to be used with the source files for the program factor.prg.

Introduction to make 97

{# This makefile generates the program "factor.prg”.

"factor.prg" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library

1ibm, but it requires no specisl header files.

OBJ = factor.o atod.o
SRC = factor.c atod.c

factor: $(OBJ)
cc -o factor $(OBJ) -1lm

program to print all the updated source modules
used to generate the program "factor.prg”

printall:
pr $(SRC) > prn:
echo junk > prnew

printnew: $(OBJ)
pr $? > prn:
echo junk > printnew

In this instance, typing the command
make printall

forces make to generate the target printall rather tk.n the target factor.prg,
which is the default as it appears first in.the makefile. The pr command, with
the output piped to the parallel port prm:, is then used to print a listing of all files
defined by SRC. The macro OBJ cannot be used with these commands because it
would trigger the printing of the object files, which would not be of much use. The
word junk is echoed into an empty file, prnew. This new file serves only to record
the time the listing is printed. This tactic is performed in order to record the time
that the listing was last generated so that make will know what files have been up-
dated when you next use printnew.

Typing the command
make printnew

forces make to generate the target printnew rather than the default target fac-
tor. printnew prints only the files named in the macro SRC that have changed
since any files were last printed.

98 Mark Williams C for the Atari ST

Special targets

A few target names have special meanings to make. The name of each special tar-
get begins with ‘.’ and contains upper-case letters.

The target name .DEFAULT defines the default commands make uses if it cannot
find any other way to build a target. The special target IGNORE in a makeflle
bas the same effect as the -i command line option. Similarly, .SILENT has the
same effect as the -8 command line option.

Errors

make prints “command exited with status n” and exits if an executed command
returns an error status. However, it ignores the error status and continues proces-
sing if the makefile command line begins with a hyphen ‘-’ or if the make com-
mand line specifies the -1 option.

make reports sn error status and exits if the user interrupts it. It prints “can’t
open file” if it cannot find the specification file. It prints “Target file is not
defined” or “Don’t know how to make target” if it cannot find an appropriate
file or commands to generate farget. Other possible errors include syntax errors in
the specification file, macro definition errors, and running out of space. The error
messages make prints are generally self-explanatory; however, a table of error
messages and brief descriptions of them are given in a later section of this manual.

Exit status

make returns a status of zero if it succeeds and -1 if an error occurs.

Where to go from here

make is summarized in the Lexicon. Look there for more information about how
to use it with C programs.

The next two sections introduce the Mark Williams resource tools: resource, the
resource editor; rescomp, the resource compiler; and resdecom, the resource de-
compiler.

Section 6:

Introduction to the Resource Editor

This section introduces resource, the Mark Williams Resource Editor. resource
gimplifies the creation of GEM icons, menus, dialogue boxes, forms, and alerts for
your program.

It is difficult to design an effective interface for a computer program. Y9u must
decide which elements to include and how they fit together. Implementing your
design can be even more difficult. Drawing the objects on graph paper, counting
character cells, and keeping track of spatial relationships are only the beginning.
You must also keep track of the genealogical relationships for all the elements
within the object tree and set pointers for each object correctly.

resource streamlines this editing process. You simply position objects on the
screen and edit images, strings, forms, and menus as you go. reaource_keeps track
of all tree relationships, leaving you free to concentrate on creating the interface for
your application.

How resource works

resource encodes objects that you display and manipulate on the editor’s desktop.
resource gets the X and Y coordinates, the width, and the beight of each olpect, as
well as its relative position within its object tree. It lets you name each object u?d
writes a header file that contains those names so that you can reference them in
your program,

In addition to the C header file, resource produces two other files that contain in-
formation that your application program will use to reproduce the interface you
have created. One file, with the suffix .rsc, is the resource file called by your ap-
plication program. The other is a “name and type” definition file with the sumx
.rsd. The definition file is used only by resource and by the resource decompiler

99

100 Mark Williams C for the Atari ST

resdecom. It is not used by the application programmer.

Planning your resource

Most programs present the user with information in the form of text, and expect
the user to type commands from the keyboard. These interfaces are essy to write
and manipulate, but may be difficuit for the user to learn.

The move away from text-based interface began with the invention of the menu. In
its erudest form, the menu is simply a list of choices, each of which is labelled with
one character. This list is printed on the screen, and the user indicates his
preference by typing the character that corresponds to his selection.

With a graphics interface, the user can use windows, icons, and menus to pass in-
formation to the program. An item is selected by maneuvering a pointer to it, usu-
ally by moving a mouse, roller-ball, or joystick. In this way, the user can see
graphic representations of the parts of the program.

Designing an interface

When you design a graphics interface, you must help the user interact with your
program in the most straightforward way possible. The program itself will usually
dictate the graphics tools to use.

For example, your program may require that the user answer the question, ‘Do
you really want to quit?” There are only two possible answers: yes or no. Under
GEM, you can gather this information easily by creating an alert box. An elert box
holds a string that poses a question, such as “Do you really want to quit?” It would
also contain two buttons, one labeled “Quit” and one labeled “Continue”. The user
clicks the appropriate button to indicate his choice.

The following sections describe some of the situations in which a given resource
e'ement is useful.

Buttons and radl;) buttons

Buttons allow the user to gelect from a number of alternatives. Radio buttons
together form a bank of buttons of which only one can be selected. If a second but-
ton is selected, then the first button is un-selected. The name “radio button”
comes from the bank of buttons on an automobile radio: when a button is punched,
the button that had been punched pops out.

Resource Editor 101

Text input

Text input is accepted from the keyboard. A program normally uses text to accept
information for which there are too many alternatives to encode in buttons or
menus, such as the name of a file or the user’s name.

Icons

An icon ususlly is used to represent an object in memory or a part of the computer
gystem itself. For example, the GEM desktop uses a drawing of a garbage can to
indicate the file-deletion utility. The garbage can is an unmistakable symbol; drag-
ging something in the garbage can means that you are throwing it away.

Images

Images are used solely for decoration. Often they are used to help distinguish ob-
jects from one another. For example, if a program has five objects, each with four
buttons, using images can help the user know instantly just which of the five ob-
jects he is dealing with.

Menus

A menu lists one or more alternatives from which the user can choose. A program
may have several menus available; the title of each is displayed in the menu bar.
To select an alternative, the user sweeps the mouse pointer over the appropriate
menu title, which invokes menu; then he selects an alternative from the menu.

As a rule, menus are used in two situations. First, they -2 used at the beginning
of a program to set the basic conditions of operation. For example, a game may use
a menu to ask the user if he wants to play, examine the copyright notice, or quit.

Second, menus are used to let the user invoke certain alternatives at any point in
the program. For example, a game may allow the user to turn off its sound effects
at any point in the game, and the easiest way to allow the user to access this fea-
ture at his whim is to make it available through a menu.

- Getting started

resource is designed to work in medium or high resolution. Many of its dialogues
contain large amounts of information and will not work correctly in low resolution.

The editor also has the following limitations:

102 Murk Williams C for the Atari ST

° The structure of a resource file limits it to 64 kilobytes.
° No text string can exceed 85 bytes.
® The colors of an object are limited to white, black, red, and green, and the

thickness of its border to four rasters (inside and out).

The files required to use the editor are resource.prg and resource.rsc. Both
should be copied into the same directory, and it should be one of the directories
named in the environmental variable PATH.

To run resource from msh, the Mark Williams micro-shell, type:
gem resource
at the prompt.
To invoke the Resource Editor from the GEM desktop, double-click the icon
labelled resource.pry.
The resource desktop

The resource desktop resembles the GEM desktop. When you first invoke
resource, the following desktop appears:

Desk Contrel Wew Optiens SQUTC tar

< . = ’

ZL0PTY DIfE FLOMPY DISE BLOCK DEVICH BIOCE DEVICE BLOCK DRVICY $10CE DEVICE

’@._'__J

A menu bar extends across the top of the screen, and two types of icont‘; are shown:
In the above example, the first six icons are for file systems and the last represents
the Shredder. Each file-system icon represents a RAM disk, a floppy disk, or a logi-
cal segment on a hard disk.

Resource Editor 103

To select a file on one of the file systems, you must open a ﬁle—s}fstem window. To
do 8o, double-click the appropriate icon for the file system you wish to access. The
root directory for that file system will be displ&yeq ina \..vmdow. The file window
displays two types of files: folders (also called subdirectories) and resource sets. To
display the contents of a folder in the file window, double-click its icon. resource
displays only folders and resource sets; it will not display other types of files.

You can also open a folder as a separate window. To do so, drag the folder out.of
the file window onto a free area of the desktop. resource creates a new file win-
dow and displays the contents of the folder in it.

You can create new folders by selecting the File entry in the N(_aw menu. Drag the
folder icon that appears in the File partsbox to the file window or icon that
represents the directory you want to contain the new folder. A name dialogue will
appear, which prompts you to name the new folder:

Desk Contrel Sptiens

Resource Fditor

n. A 4 & & & 25

piomy Biss riot Sise gusca evics eyece bevies seck oevicy eysts cavic pisEe
The first action expected by a name dialogue is that you name the new folder.

The resource menu bar

resource’s main menu appears across the top of the desktop. The following
describes the items in it.

104 Mark Williams C for the Atari ST

Desk Menu

This menu shows the desk accessories. When you sweep the mouse pointer under
Desk, the dropped box contains a menu of desk accessories.

About the Resource Editor
Click this item to display a brief description of the product and the version
number. Click the OK button once to return to the main menu.

Desk accessorles
If you have desk accessories loaded in memory when you invoke resource,
their names will appear here.

Control Menu

These menu items let you open and close windows, check file statistics, and exit
resource. Sweeping the mouse pointer under this main menu item displays the
following menu entries:

Open Clicking this item displays all of the folders and resource files in a selected
file system or folder, or opens a new resource set. You can also open a file
system or folder by double-clicking its icon.

Show information

This menu item may be used in three ways. If you single-click a file-system
icon, then single-click Show information, a box will appear that shows
the space statistics for that file system. When used in the same way on &
resource gtored on disk, this option displays the sizes and modification
dates of the two files in the resource. You can also rename files from
within their information box. The most important use of this feature is for
a resource that has been loaded into memory; there, it displays the block
counts and the size of the resource to be renamed.

Close Click this menu item to close the top window.

Close window
Click this item to close the top window entirely, even if clicking its close
box, in the upper left corner of the window, would have taken it up to the
next level.

Quit When you click this item, resource exits. You will return to the shell or
the GEM desktop. When you exit from resource, all information that has
not been saved is thrown away.

New Menu .

|
The menu items under New create new folders and resources, and create new
trees and objects.

Resource Editoi- 105

File Use this to open a new folder or resource file. Clicking the File option
opens the File partsbox. The File partsbox looks like this:

Besk _Ceatral Blim Options soure ter

o M

x_pevi _oev «_pwvi

To open a new folder or resource, drag the appropriate icon onto an open
area of the desktop.

Tree A resource consists of a number of discrete groups of information called
trees. The Resource Editor recognizes five types of trees, although forms
and menus, and alerts and strings are stored in the same way in the
resource file.

Clicking the Tree entry under New opens the tree partsbox, where icons
for the following tree types are displayed:

form

menu

free string
alert

free image

The Tree partsbox looks like this:

108 Mark Williams C for the Atari ST

Besk_ teatrsl RUTER Optisas Resource Edftor L'

A A & & & & @

These trees are described in detail later in this section.

An ohject is an AES data form that encodes an element to be displayed on
the screen. When you click Object, the partsbox opens, displaying the
following object types:

icon

image

ibox

editable string
button

text

¢ (character)

The Object partshox appears as follows:

Resource Editor 107

Desk_ Contrel I}m Sptiens Resgurce Editor

PR . . =

FLorey DISK__PLOPAY OISR S10CE DEVICE SLOCK CEVICE $LACK CEVICE Piock DEVICE o

Objects are linked together to form a tree.

For detailed information on these objects, see their separate headings later
in this section.

Options Menu

The options menu allows you to set three options that modify the ways in which
objects are manipulated. These options toggle with a click of the mouse pointer;
when they are on, a tick mark appears in front of the selected menu entry.

Auto Snap
When you select Auto Snap, all moving and sizing operations are adjusted
to the points of a character-sized grid within the parent object. The snap
grid makes it easy to accurately align objects with other snapped objects. It
also means that all snapped objects, except images and icons, are the same
gize and in the same place on medium- and high-resolution screens.

Auto Size
When Auto Size is enabled, the width of a STRING or TEXT object is
automatically recalculated whenever the string is changed. When it is dis-
abled, the width will only be changed if it must be enlarged to accom-
modate a longer text string.

108 Mark Williams C for the Atari ST

Compatibility

;:Ls: &oalgfigib;ity: mode when you run resource under high resolution and
Without having to modity them. The heiant of the oaem or bigh resoution
)] . e height of the ghost outline of i
Lx}x)}t:gcg ::1' flol\::lgﬁ ‘«;’h;l;d tl}:]eg; are t;mhggedd This shows you the hgg}llcto:}:e::
resolu i i
allowances for them as you build yourols.esr:sﬂ:? 2 thet you can make size

File operations

When you create a resource, the editor generates

g;/lz;u;;n;iglg The resource file, whichgsu the smﬁler:(‘:,ti};etg: Or:;“c);ﬁl: faﬂnedt}txz:

your ¢ hl:as at ;)xxm calls th.rough the function rsre_load. The definition fil

o i the x -r8d, contains ?he names and types of the items you creete%
ree. resource icon in a file window represents this pair of files,

which together form
are off g ‘ a resource set. Whenever you change a resource, both files

resource also produces a header or include file for each resource. The header file

contains definitions that can be used b
1 y & C program to j ithi
resource. A header file is named after its regource, and a?\(:grs: rfi':&bej?\fsfﬁr tll:m *

It .
mps:er;::.:nti :l:;uld happen to one of the files in a resource set, the icon that
St o cohe I r:zl;:c(e)fste}tect;:{x%es. .In'comp!le‘:te resource sets are marked to in
;] is missing. The letter ‘N’ i r
?hgehtr ec:;::r of the' resource icon if the definition file is miasiglg)pe'?‘;ae lllzzt:: . ‘1[1)13per
oo reu ﬂ::ee i::coonn ;;\;i:lc?l:es th?t t:}he regource file is missing. ff you havera col(:)l:
) the complete reso i H

tell you which file is missing ﬂ?om the s:tl.-ce ' drawn in red; the letters *N' and ‘D’

Display, copy, rename, and delete
The operations to dis
display, copy, rename, or delete i
s erations Y X resource files work in much th
came y € same operations on the GEM desktop, with the following exceplf
® Deleting a resource set deletes both of its files.
¢ Folders cannot be copied.
® Non-empty folders cannot be deleted,

resource will ask for verification of

verification. delete operations. Copies do not require

Resource Editor 109

Loading and saving

The desktop’s backdrop represents the structures that resource is holding in
memory. To load a resource in memory 80 that it can be edited, drag its icon from
the file window onto a free area of the desktop.

To create a new resource, select the File entry from the New menu, and drag the
resource jcon from the File partsbox to a convenient clear area on the desktop. To
gave a resource, drag its icon from the desktop either into a file window or onto a
file-systern icon.

If you drag & resource onto the icon of the drive from which it was loaded, it will
overwrite the old version unless you have renamed the resource. If the new
resource set will overwrite an existing resource set of the same name, other than
the original resource set from which it was loaded, you will be prompted to confirm
that you want the files to be overwritten.

Be sure that you copy & new or edited resource set to a file system before you quit
resource. It does not automatically save new or modified files before exiting. If
you click Quit before you save your resource, you will lose any changes or additions

you may have made to it.

Moving and copying trees and objects

Double dlicking a resource icon on the desktop opens a resource window, which dis-
plays the trees that the resource contains. -Several such windows can be opened for
the same resource. Trees may be deleted, copied, or dragged to another resource.
To a copy tree, move the mouse pointer over its icon and press either a sghift key or
the right mouse button along with the left mouse button.

To create a new tree, select Tree from the New menu and drag a tree icon from
the partsbox into the resource window. A new tree is always added to the end of
its group of trees. The groups correspond to the three fundamental types in the
resource file: forms and menus, alerts and free strings, and free images. Unlike file
icons, tree icons can be dragged only one at & time.

Adding a tree or clicking its icon invokes the name dialogue for that tree. The
name dialogue allows you to rename a tree, and in some cases change its type and
other global values. Selecting the edit button or double clicking, rather than single
clicking, the tree item allows you to edit the tree's contents.

110 Mark Williams C for the Atari ST

Trees

A resource consists of a number of discrete blocks of information called trees,
resource recognizes five types of trees, although forms and menus, and alerts and
strings are stored in the same way within a resource. When you select Tree on the
New menu, resource displays the following selection of trees in the Tree partabox

MENU
FORM
Alert
String
Image

The different types of trees are described as follows:

Forms

A form is a hierarchy of rectangles, strings, and icons that represent a screen dis-
ﬁlay. Each component of a form is called an object. Objects are arranged in &
inked tree structure. The hierarchical structure of & tree, in turn, reflects how the
objects you see on the screen are nested. See the Lexicon article on object for
more information on relationships within object trees.

Editing forms

To create a new form, drag the FORM icon from the Tree partsbox to the resource
window. When you releass the mouse button, the following name dialogue will ap-
pear:

Resource Editor 111

Resource Edftoer

ol
miol

o

& A & & 5

FLOPAY DIEK FLOPPY OEEK _BLOCK DRV X _OUVICE @10CK OEV! 160k Dwvics

The name dialogue for forms allows you to change the C name of the form. The
following options also appear on the name dialogue for forms.

menu

If the form can be treated as a menu, the button MENU will be enabled on the
name dialogue. Usually this is the case only when you have previously changed
type from MENU to FORM to edit the menu in non-standard ways (see MENU,
below).

test

If the form is to be used as a dialogue, this option allows you to test some of its
functions before you write the program. This button is only enabled if the form
has at least one exit button. When you click Test, a copy of the form will be dis-
played as a dialogue. This allows you to confirm that the buttons and editable
fields are working properly. This option is enabled only if the form has one or
more exit buttons. An exit button is one for which the exit flag is set. When an
exit button is selected, the return value from the AES function form_do is dis-
played in an alert box, together with the C name of the button, if any. You may
then either resume the dialogue or terminate the test mode by clicking either the
Continue or Exit on the test alert box.

edit

112 Mark Williams C for the Atari ST

When you click edit, you can view or edit the form’s structure. An edit dialogue
appears on the screen. It displays the choices you can make about your form’s ap-
pearance and contents. If your form is aleady open on the screen, double-clicking
anywhere on the form itself will also invoke the edit dialogue. The edit dialogue for
forms looks like this:

Desk Contrel Mewx Optiens Resource Editer |

Belectable . [thecked). {Eartable 1 (Flags 11)|

befauii] l '(mdm‘e.‘v]f] huc‘nglﬁ]: L__Sute ‘tl L

Gt) TR (i) (Suw)|
i i))

o]

[=lel

FLOPPY OISH _£10PPYV DISE BLOCK DEVICH SLOCY DEVICE BLOCR DEVICH SLOCH OAVICE

When edit is selected or the form's icon is double clicked, the resource window ks
replaced by a view of the form itself, The form display window scrolls over an area
that is half again the screen size in each direction, which allows you to edit forms
which are quite large. This area must contain exactly one root object inside; all
other objects in the form must be nested within the root object. This outer object -
is almost always a BOX or IBOX type. resource will not allow an object to be
added outside the root object. You can, however, discard and replace the root ob-
ject. resource will not allow you to save forms that do not have a root object. ’

You can only display one form, menu, or alert at a time in any window. However,
more than one such display either from the same or from different resources may
be on the screen simultaneously and objects may be moved between them. For
details about object trees and their organization, see the Lexicon entry for object.

Resource Editor 113

MENU

A menu is much like a form, but is structured somewhat differently. To be
processed correctly by resource, a menu must have a standard structure. This
restriction may force you to edit your menu as a form if you want your menu to
have some non-standard features. By dlicking the menu icon, you can invoke the
name dialogue for that menu, and choose the FORM or MENU buttons to change
a tree from a menu to a form and back again.

A menu is a graphics form that is used extensively in programs that run under
GEM. 1t is a specialized form of AES object that uses the structure OBJECT
described in the header file obdefs.h. Because the structure of a form is already
defined as an OBJECT, all menus must contain certain elements.

Each menu’s object tree must be built in a special way. By design, the first
(leftmost) title must be called Desk; it triggers the drop-down menu that names
the available GEM desk accessories.

Editing menus

The name dialogue for menu trees is the same as that for forms. The menu-editing
routines assume a menu of a standard format to make standard menus easy to edit.
If you wish to put non-standard elements into your menus, you must change the
tree type (at least temporarily) to Form and use the Form edit routines, It is con-
venient to use HIDE on those drop boxes you are not changing in this case. If,
after you edit a menu as a form, the Menu button is enabled on the name dialogue,
you may change it back to menu mode. If not, it is probably too changed to be a
menu, and you will have to treat it as a form.

When you edit a menu, the resource window contents are replaced by the menu
bar, Click a title to access the associated drop box. Click twice to edit the title it-
self.

When you test a menu, resource’s menu bar along the top of the screen is
replaced with the menu you created. Selecting menu items now brings up an alert
telling you the index selected and the name, if any.

All the objects that are manipulated while editing menus are strings, althovgh
those in the title bar are automatically typed as TITLE objects. resource
automatically sizes and positions strings within the title bar and drop boxes when
they are changed. There is no need to put extra spaces on the end of menu entries
to equalize their length. These adjustments are automatic.

An entry that consists of a repeated non-alphanumeric character and is flagged
DISABLED is regarded as a separator bar. Separator bars will be automatically
stretched or contracted to the width of the drop box. This is determined by the
longest text string in the drop box.

114 Mark Williams C for the Atari ST

Resource Editor 116

New title-bar entries are created by dragging a STRING type object into the tith
bar. New entries in the drop box under the title bar are added by dragging
STRINGS into the drop-box display. These strings need only rough positioning
The new order is determined by the relationship between the center of the ghost
object and the centers of the items that are already on the menu. When title

strings are added or deleted, the corresponding drop boxes are created and

destroyed. If you move a title string within the menu's title bar, it takes its drop

box with it; however, if you copy or move a title string to another tree, it does not -

take its drop box with it.

Both single and double clicking a menu entry displays its edit dialogue.

For consistent appearance, 8 menu entry should always begin with two spaces, and
a title entry with one space.

String

This is simply a text string and may consist of anything displayable, including the -

Atari ST graphics characters,
The free string edit is the simplest of all. The name dialogue contains the string.

You can turn a free string Into a STRING object by dragging its icon into a form
window. Conversely, when You drag a STRING object from a resource window, it
becomes a free string.

Alert

This is a string in the format recognized by the GEM routine form_alert. It is
stored as a free string. In C, it can be useful to treat these strings as format strings
for sprintf, alinwing variable data to be inserted before an actual form_alert call
is made.

The icon displayed in an alert is adjusted from the name dialogue. You can edit the
string and buttons within the alert by clicking the Edit button or by double-clicking
the alert’s icon.

The alert edit window behaves in many ways like the menu edit. As with the
menu edit, you need only to position new and moved strings and buttons roughly;
resource will reorganize the display to accommodate your revisions.

Image

A free image is & monochrome bit-image block with the structure BYi’BLK, which
is defined in the file obdefs. h. Generally, to display a free image, a program writes
its address into an OBJECT structure.

iting a free image treo i's gimilar to
E:lldt;wsgyou to change its size and color.
name dialogues for forms

iti i object. The name dialogue
edlg‘gigsa:anr::sag?alogue ia different from the
and menus. It looks like this:

Resource Editer |

Besk Contral Wliea Optiens

Sl

o]

o]

< °

f & O

SaVICH BLOCK PEVICE PLOCH OFVICR LS PEVICH

ZAOPPY _DIgE FLOPTY DISN PLGH

it
Clicking the edit button or double-clicking the tree icﬂn o;zens the icon/image edi
dialogue. This second level edit dialogue appears as follows:

diter
Desk Contral JTCER Options Resource Edit
SRHPLE
18
e E bl s
e x 5]
Toiv
< L) - "
PLOFEY DISN PLOPTY DISN BLOCK PEVICH OLOCE DEVION SLOCH DEVICE PLecH ouvicy D@

116 Mark Williams C for the Atari ST i

Objects A

An object is any graphics element: & bo
. ! x, a string, a button i
?hlgﬁ;rsb%mbled into trees. '!‘he root object is lgcated absol,u:elymgzuth:ﬂscrus;e' - B ¥
the otber ect:‘s < tt;re located relative to the root object. This is done so that the o} £ "
of the o {) o tree can be relocated easily, without having to compute

ocation for each when a tree is dragged from one location to angther‘ i

See the Lexicon article on object for a fuller discussion of objects and object treea. .3

New objects

tThoe c&:eo? :l;z'\:cgbject, single-click Object under New on the main menu bar. D “

the trpe of ecLJq t you want from the Object partsbox and place it where . wutr" i

L T S ot e Sl e e L
‘ : m to ¢ e .

dialogue will prompt you to change the type.oos © the editing dislogue. The editing

Icons and images
The first level icon edit dialogue looks like this: :
¥

Desk Coatrel Mew Qptiens Resource Edit
ar

K8 S S AT AT T TS B b T S
o Beluctabld [Thecked] (Fdltable] [Flegs 11 El
yl (Befouit] [Shadowed] {Touchexit] (State §)
[_Exdt "] [Butilned] [Dlsadled] [State 7] [Cancel])
Radlo Butd [Cfressed] [Flags 1§ Presefect] “‘r

Coacmer . Extended type # §____

Height! 78

- « [

Hes
(el Hidth: 32
Inage Im Dancer width! 10

5 ¥ T .

riorey
OISX _PLOFSYV DIJE SLOCK DWVICE $1OCK DEVICE S10CK DEVICE $LOCK DRV
18

On the icon dialogue, the i |
he e, con character and banner fiel ggred
;Sgtoigl;on ‘jgzga;eli:t.;;e to ttehe (ilconl; The banner as displayee:iie‘ofl tahye giealgl;)e is Ietf‘:
A » Wher centered when the icon is displ
width field is in characters, and is limited to 20. Ch?;xgz:dinmt?hr:‘ f‘)];ﬂ}xeTr‘:Si;’fk? are
re

{

Resource Editor 1 17

not reflected on the dialogue until you terminate the dialogue and edit again.

and banner field are mouse sensitive for dragging, you can-
not use the mouse to place the text cursor on them. Instead, use the down-arrow
key to move to the banner field and use the keyboard to edit the banner.

For icons and images, & second level of editing i8 available by clicking on the Edit

button on the first edit dislogue. The image edit dialogue appears 8s & window,
and while it is active resource jgnores all menu gelections and clicks in other win-

dows. The second level of image and icon editing looks like this:

Because the character

Desk Contrnl Nes Optlons Resgurce Editer
FORAL
W T Icon Edl ey
- [Clesr s HE of
XX g i
glur T Totite
ainting mode! Rt
Urd 444441
Eincel) B i
.
168, 5
ey 5
[1K
FLoree DIBN _PLOFEY DISK FLOCK paviCy PLOCK CEVICE wrocs DavICK N.Kévlﬂ _@___

To understand how the icon editor functions, it is necessary to understand how

GEM treats icons.

An icon consists of two bit-images: one for a mask and the other for data. In a bit
image, there is a one-to-one correspondence between bits and pixels: if a bit's value
is one, the pixel is turned on, whereas if its value is zero, the pixel is turned off.
When GEM draws an icon, it first draws the mask in the background color; it then
draws the data image in the foreground color.

When an icon is selected, GEM simply reverses the foreground and background
colors. Almost invariably, the foreground color is black and the background white.

The color indices are written into the top byte of the field ib_char. Each pixel has,
therefore, four possible gettings, two of which have the same effect. The enlarged

icon display on the right of the icon editor window gives a different grey level for
each state.

- e o SRS A

118 Mark Williams C for the Atari ST

Mask Data Effect Edit Display Color
0 0 Transparent White
0 1 Foreground Dark grey
1 0 Background Light grey
1 1 Foreground Black

Clicking a display cell cycles the state around these four values. To set multiple
cells to the same state, select the state on the buttons Draw, Mask, or Zero, and

while holding the mouse button down wipe the mouse pointer across the relevant
cells, ‘

The other facilities on the icon edit window are as follows:
Clear Zero both data and mask.
DtoM Copy the data image to the mask image.

Blur Sets all pixels in the mask to one if they are adjacent to an already set
bit. The quick way to produce a simple mask for most icons is to do D
to M and the Blur a few times to give a halo of mask around the image,

Arrows Clicking the arrows in the top left of the display shifts the image and
mask one pixel in the indicated direction.

Cancel Abandon changes.
OK Process changes.

Editing an image is similar, except that no mask exists; therefore, D to M and Blur
are not available.

You can resize an icon or image in their respective object dialogues. It is possible to
make an.image 80 large that the normal-sized view to the left of the image edit grid

cannot display the entire image. The different state views may overlap in this cass,
and the image shown bears little similarity to what you have in the grid.

Ibox

An IBOX is a box that is invisible on the screen. You can use an IBOX to group
tlements together. For example, if you wanted to use two discrete sets of radio
buttons on a form, you would put each group in its own IBOX.

Button

A BUTTON is a box with text in it. Text is limited to 20 characters, |

Resource Editor 119

Text
d edited in an unususal way.

field on the text dialogue is display_ed an ¥

T2t 2 e e S, e
in pink if you have a s .]
::;:tht:arﬁd:;g)::r c;:;rx;cters, hold down the Alternate key while typing. The Caps
1d.

Lock key has no effect on this fie o
When you first create a template, you must type at least as many chtm:ncteeg t:ll)le
the initial text object as there are validation characters. \Ilfstym\itv:m:m]l ! editable
field in a dialogue to be initially empty, your program must p hara
into the first field position.

When you create a new editable field by changing a TEXT item to FTEXT or
FBOXTEXT, remember to set the EDITABLE flag.

j i ith the OBJECT structure that is
bject in an object tree must be des.»::nbed with | ,
E:fl};r(;d‘ in the header file obdefs.h. This structure is declared as follows:

typedef struct object {

H * Object’s next sibling */
e Ob—:eXE: ;* Head of object’s children */
inz gz_tzil: /* Tall of object’s children */
n - ; :
unsigned int ob_type; /* Type of object */
unsigned int ob_flags; /* Flags i
unsigned int ob_states; /* Status' / f1eation %/
b..spec; /* Object’s specifica i
1oe® g —‘P ' /* X coordinate of object */
in: zb_;: /* Y coordinate of object */
n Y ¢
int ob_width; /* Widt: 04/
int ob-height; /* Height
) OBJECT

When you double-click an object, a Kox :iliegna;lh :dgpgigéogﬁemw% ‘:];pr?:dl t'il':;
f the the dialogue you see depe 0 ;
Zo{:;ex:\lxt)?eoobject edit dialogue will appear on your screen similiar to this:

120 Mark Williams C for the Atari ST

Desk Centrol Nesw Options

Resource Edftar

< » . .

PLomry
D18k _ Fyorev DI BLOCE DEVICE PLOCK DEVECH SLOCH DEVICE $10C% cHvICK

Every dialogue has a grou in i

p of 16 buttons in its upper left corner. Th
?l{low you to set the ob_flags and ob_states fields in the OBJECT stmecst?xr?ngg.
ollowing describes these buttons and fields: S
Selectable

Making the object you are editing Selectable means that clicking that

object fi ithi .
o bj_sta tl:(:m within an application program sets the SELECTED bit in

Default If no other object is selected, then this object is used by default.

Exit Clicking an exit object exits that part of the application program.
Radio Butn

Radio buttons are a set of buttons onl i

' ! y one of which can be selected

gny given time. For example, in a form where there are t?xeree md?;

buf:tolns labe}ed re(.:l, blue, and green, only one of these buttons may
e selected; if one is selected and then another of the group is clicked,

then the first button is “unselected”.

If you Wlsh to have more than one se , ¥
t of radio])lltt()lls on a form, you
must enclose each set within an IBOX.
CheCked Se]ectl g Checked hen edl ob, ect]H"S k m Tl :
n w ting an :
g i) a tic a k mn fmnt d

Resource Editor 121

Shadowed
Tell GEM to draw a shadow around an object.

Outlined Tell GEM to draw a border around an object.

Crossed If you select Crossed, the object has an X’ drawn over it. This works
on rectangles only.

Editable Such an object can be edited by the user. This is used almost ex-
clugively with string objects.

Touchexit
Click onece to end the dialogue.

Disabled Draw in shading rather than solid. Any item that has been disabled
cannot be selected, even if it is also marked as being SELECTABLE.

C name Give an object & name by which a C program can refer to it.

Extended type
The Extended type # filed allows you to put any desired byte in the up-
per half of the object-type word. These numbers are ignored by GEM,
so you can use them in your program as you see fit. This is useful
when you want your program to process a group of objects in similar
ways.

Preselect The Preselect button sets the SELECTED bit in ob_state.

Flags 10, Flags 11 .
Bits 10 and 11 of the flags member are not used by GEM. If you wish,
you may store values in these bits for your own use.

State 6, State 7
Along with the flags used by GEM, these buttons give you access to two
unused flag bits each in the members ob_state snd ob_flags, to use as

you see fit.

Manipulating objects

Much of the following applies not only to forms, but also to menus and alerts. It is
described here because forms are the most complete and flexible trees. The
operations for menus and alerts are subsets of those forms.

The Control key

When a parent object is entirely covered by its children, it may still be accessed by
use of the control key. The control key works on all mouse operations within form
windows, and causes the operations to reference the parent of the object on which
the mouse rests instead of the object itself.

122 Mark Williams C for the Atari ST

Moving an object

To move an object, place the mouse pointer on it and hold down the left mouse
button. The object will disappear, and its “ghost”, a simple outline, will replace the

object under the mouse pointer. Continue to hold the left mouse button, and drag

the object to its new position.

You can move objects within the form, or to other form windows. In some cases,
objects can be moved to other windows: strings and buttons can be moved to alerts,
strings to menus, and even strings and images to resource windows (thus becoming
free strings or free images).

You can also move objects onto the open desktop. You may then copy these objects

from the desktop into various windows. This is convenient if a common element i

to be used in several different forms.

When an object is moved within a form and the move causes it to have a new °

parent object, a dialogue box will appear and ask you to verify the move. When an
object is moved to cover other objects, you will be given the option of having it
adopt those objects as children to preserve their visual hierarchy.

Resizing

An object may be resized by putting the mouse pointer just inside its bottom right
corner and stretching it in the same manner that windows are resized. The object
may not be stretched outside the boundaries of its parent, nor may it be made too
small for any contents (text, bit image data, or children).

Copying

An object may be copied by being dragged with either a shift key or the right hand
mouse button held down. Holding down the right mouse button or shift key in-
itiates the copy operation; holding down the left mouse button and moving the
mouse drags the object.

If you use the right mouse button to initiate the copy operation, you must hold
down both mouse buttons at the same time. The usual dragging “ghost” outline
appears, but, unlike a simple drag, the icon of the object you are copying remains
on the desktop. The object is not copied unless the ghost has been moved. An ob-
ject can be copied anywhere it can be moved. Copies do not retain any of the
names that may have been assigned to the original.

i
i

Resource Editor 123

Deleting

To delete an object and all its children, position t:he mouse pointer on the object,
hold down the left mouse button, and drag the object to the Shredder. When the
mouse pointer is positioned over the Shredder, release the left mouse button.

_Other functions on objects

There are a number of miscellaneous operations that may be perfonqed on objeqts.
To use these operations, click once on the object in question. The object'wﬂl be in-
verted on the screen and a menu will appear just below the mouse pointer. You
may click one of the options or cancel by clicking unywhere off the pop-up menu.
Only functions meaningful for that particular object will be offered.

Edit
Hide

Unhlide

Flatten

Snap

Sort...

Retype

Edit the dialogue, as if it were double clicked.

Make an object and any of its children invisible by lsetting its
HIDETREE flag. This is useful for getting at objects which may be
underneath it.

Make any hidden children of this object visible by clearing their
HIDETREE flags. Remember to unhide any objects you have hidden
before you save the resource.

This removes an object but not its children. The children are trans-
fered to the parent of the deleted- object, but retain their relative screen
position.

This command adjusts the position and size of an object to the nearest
character grid position. Snap maskes it easy to align objects{. All
snapped objects, except images and icons, are the same size and in the
same place on medium- and high-resolution screens.

Order the object's children according to their screem Qosition. A
dialogue allows the order to be chosen from a number of options.

You can change the type of certain objects without altering their ap-
pearance. With Retype, you can change between TEXT and
STRING, BUTTON and BOXTEXT, and between ICON and IMAGE.
However, you may lose some information when you change an object to
a simpler type.

124 Mark Williams C for the Atari ST

Where to go from here

The following section introd
pie fo uces th_e other tools in th illi
t: rescomp, the resource compiler , and readecom? tm&::so‘?x’;&ag]eiom;?

resdecom ca i y
n decompl]e 4 resource that ou create “’ith resource, and creats &
]

file of resource-descripti
. on 1 .
recompile a dec Ompﬂegmsouggeg’“m that you can edit by hand. rescomp can

or compile a resource that you write by hand.

" Section 7:
Resource Compiler and Decompiler

Mark Williams C comes with a tool to help you create and maintain applications in-
terfaces. These tools include a resource editor (which is described in the preceding
section), a resource compiler, and a resource decompiler.

The resource compiler and decompiler let you create or change & resource file from
a textual description. It is easy to track changes between versions of your resource
by comparing decompiled resource files.

Using the compiler and decompiler

To create a GEM resource file from a resource description, use the resource com-
piler rescomp.prg. Its command line is as follows:

rescomp [-v}[-s][-o rscfile][-d rsdfile] [-h header] src

The -v, or verbose, option tells rescomp to report statistics to you as it compiles.
The option -o allows you to name the three files that the compiler creates. If you
do not use this option, rescomp names the resource after your description file.

When rescomp creates these files, it gives the resource file the suffix .rse, the
compiled resource description the suffix .rsd, and the C header file the suffix .h.
rescomp creates these three files from the description file, that is, from resfile. If
no file extension Lext] is given the infile on the command line, the compiler looks
for a file with the extension .rdl. For example:

rescomp -o sample example

Here, rescomp looks for the file example.rdl, and compiles a resource from the
resource descriptions in that file. The resulting resource files are named
sample.rsc, sample.rsd, and sample.h.

126

126 Mark Williams C for the Atari ST i

mpiler and Decompiler 127

Resource Co

To decompile an existing resource set into a resource description file, use ree-

decom.prg. Its command line is as follows:

resdecom [-m][-o outfile[.ext]][-d resdef[.ext]]) resfile[.ext]; ’

The option -d defile.[ext]] allows you to specify the name of the definition file.

resdecom looks for two files with the suffixes .rsc and .rsd. From them, it creates
a resource description file, which it names after the resource files, and adds the ex- .
tension .rdl. If you want your decompiled description file to have a name different -
from the resfile, or an extension other than .rdl, use the -0 option. :

For example, the command
resdecom -0 foo.des bar

tells the compiler to look for the resource sources bar.se and bar.rsd, and to
create the resource description foo.des from them. Likewise, the command

resdecom bar

tells resdecom to look for the files bar.rsc and bar.rsd and create a description
file named bar.rdl.

Language description

When you use resource editor resource to build a resource, you must begin by es-
tablishing an object tree. Then, you must order objects within the tree. The -
resource compiler expects you to describe resources in the same way: from the root
object out. You must describe a root object, then tell the compiler where to place
its child objects in relation to it. You must also indicate the level of child objects as
you want them nested on the screen.

Tree and object descriptions

Like any compiler, rescomp expects you to communicate with it in a specific way:
this is its language. Like any language, words must be in a particular order so that
they have a meaning when linked together: this is its syntax. The compiler lan-
guage and its syntax are described in the following paragraphs. At the end of this
section is the full description for the resource description language.

Each description you give rescomp must be terminated with a period. Strings and
single characters within icons are always bracked by quotation marks, * ",

i
H

Trees .
i tree:
& The resource compiler recognizes four types of
43
‘i ' menu
: form
image
string

Trees are always described in the following form:

tree type C-NAME .
you would describe a menu to th

o compiler by typing:

For example,
menu MENUNAME .

3y into a resource description file. ‘

ons of free images and free strin

free image i8 described as follows: I
image C-NAME level n size n data (

lor n options ...) .
e C NAME is the name by which you reference this free
e.

i i C program. For explanations of level, size, data, color, and options,
lsl:ea%ﬁ;i‘\\‘ :epafate headings later in this section. ‘
A free string is described to the compiler as follows:

string C-NAME »quoted string” .

gs are somewhat more complex. A
Tree descripti :

image is the tree nam

Objects

The resource com
form object—spec

on the type of object you want to d

din C
g:s‘::er?pﬁog is one of the following:

piler expects an object to be described in the following way:

t .
size offset options ex .
escribe, the object_spec part of this

128 Mark Williams C for the Atari ST

box name..and.level box_spec
ibox name.and..level box_spec
boxcharacter name_and.-level box_spec
button name—and_level string spec
string name_and_level string.spec
title name_and_level string spec
boxtext name_and_level text_spec
boxedit name_and_level text_.spec
text name_and_level text_spec
edit name..and_level text_spec
fcon name._and_level icon_spec
image name_and_level image_spec

Resource Compiler and Decompiler 129

banner
fconchar
fconcolox
iconsize
icondata
iconmask

These are described under separate headings, below.
image_spec contains any one of the following:

boxcolor
iconsize
icondata

These are described under separate headings, below.

name_and_level always consists of an optional C name plus the keyword level,
as described below.

box_spec contains any of the following optional characteristics:

Resource description elements

border

boxcolor

textcolor
bordercolor

fill

trans (transparent)
boxcharacter

extended .
This description element is optional; rescomp expects a description of ex-
tended to be in the form:

extended n
where n is an unsigned integer. extended allows you to put any .desnred
byte in the upper half of the object type word. These numbers are igno

i This is
by GEM, so you can use them in your program as you see fit.
useful when you want your program to process & group of objects in similar

These are described under separate headings, below.,

string_spec consists of a quoted string. Strings are always enclosed by quotation
marks.

text_spec includes one or all of the following:

text
template
validation
font
textbox

These are described under separate headings, below.

icon_spec requires one or all of the following:

ways.

bordercolor

This description element is optional; rescomp expects a description of box-
dercolor to be in the form:

bordercolor colors

where colors is one of the following:

white whitel
black blackl
red redl
green greenl
blue bluel
yellow yellowl
cyan cyanl
magenta magental

130 Mark Williams C for the Atari ST

fill This description element is optional. Th i ipti
fill to be in the following forrﬁ:) © compler expects a description of
fill n
where n is an unsigned integer from zero thr
ough three. These values
represent th ; i i
grgen. e colors used to fill boxes; respectively, white, black, red, and
transparent
This description element is opti 4 i
des ptional. When used, the compil
description of transparent to be in the following form: piler expects 4
transparent
Use the ke d i j i i
oty oy‘:'or to describe a box object through which you wish other ob-
template

This resource description element i i
r descr s optional. When -
pects its description in the following form: psed, rescomp ex

template fext
where fext is the text of the template used in an editable string or box
validation .

This description element is opti
des ptional. When d i
description to be in the following form: e, rescomp expects it

validation text
where fext is the validation character used in an editable string or box.

Justify

This is an optional description elemen i
t, uged to describe a stri
When used, rescomp expects justify to be in the following form:ng object

Justify justification

where justification is one of left, right, or center.

data This element is used to describe icons and images. rescomp expects data

to be described as follows:
data bitdata

where bitdata is a list of hexadecimal n 3
a umbers th: ibs
elements of the bit image you are creating. that describe the data

Resource Compiler and Decompiler 131

mask This element ig used to describe icons and images. rescomp expects that it
be described as follows:

mask bitdata

where bitdata is a list of hexadecimal numbers which describe the mask
elements of the bit image you are creating.

level n
This field describes the relationship of the object with the other objects

within the tree. A root object is always level 1, as are its siblings. Children
of the root object are level 2; their children are level 3, and so on.

gize [w,h]
The size of an object is always described in characters, with the exception
of images and icons; their size is described in pixels. Putting something in
this field is optional; the default is the size of the parent object. If there is
no parent ohject, the defauit size is the size of the screen.

border {+][-}{n] : .
border contains the information rescomp needs to draw a border around
certain objects. A border can be up to four pixels thick, inside or outside.
A number from one to four indicates the thickness of the border in pixels.
A preceding -’ indicates inside thickness, whereas ‘+’ indicates outside
thickness. This field is optional; the default border thickness is ‘+1'.

pattern n
The pattern field contains the word pattern, followed by the number
representing the interior pattern for the object. The patterns range from
no color to all color, with shades of eolor made with a dot or slash pattern
in between. The numbers for these patterns range from one to eight. This
field is optional; the default pattern in a box is one.

interior n
This field refers to the color of the pattern you have chosen for the object.
There are four colors, numbered from zero to three, representing white,
black, red, and green, respectively. Thig field is optional; the default is
zero.

textcolor n This is the field that sets the color of the text that will appear within
the object. As with interior, the colors are numbered zero to three,
representing white, black, red, and green, respectively. The textcolor field
is also optional, the default being zero.

text
Text is the description of a string that you want to appear in an object.
Strings are always enclosed within quotation marks. Single characters on
jcons are also quoted.

- TSR e Aoy

132 Mark Williams C for the Atari ST

133

Resource Compiler and Decompiler

offset [n,n] 3
The offset field contains the character coordinates for the placement of the P
object on the screen. The root object, as in the form box example, Is
started at 0,0. For children of the object, the coordinates represent the
relative position of the children to the root.

A resource file encodes an object’s coordinates in the form of character
coordinates; these coordinates are changed into pixel coordinates when the
resource file is loaded and the resolution of the screen is known.

optlons(...)
The options for an object are always found in parentheses at the end of the
object description, using the following form:
option (option name)

The options you can select for your object are words that encode the status .

of the object for ob_state in the OBJECT structure, and set the flags for
ob_flags in the same structure,

With the resource editor, you make these selections with the buttons in the
top left of the edit dialogue. For the resource description file, however, you
must type in the options you want your object to have.

The following table lists the options as they appear in the edit dialogue in
the Resource Editor, and the corresponding names that you must give res-
comp for those same states and flags.

C definition Resource definition

Sample resource description

SELECTABLE selectable
DEFAULT default
EXIT exit
EDITABLE editable
RBUTTON radiobutton
TOUCHEXIT touchexit
HIDETREE hidden
SELECTED selected
CROSSED crossed
CHECKED checked
DISABLED disabled
OUTLINED outlined
SHADOWED shadowed

Resource description grammar

gthx%he C name for the tree or object you create.

resource description without this field, but without a C nam
a tree from within an application.

rescomp will accept &
e, it is difficult to access

4 P p P! .
The fO“OWln is an &nll()mmd exam le Of a resource descn Hon of a sim le menu

Create a menu with the C name TOPMNU:
menu TOPMNU.
Add to the menu bar the title “Desk’:

title DESKMNU ° Desk ". ' N
Under the title “Degk”, add the selzc(:itag)le tﬁ:trcy ng\:;u;) %\és pm&l?,l.{he e s tor
How y KABO
i f the keyword entry, fc:(A
iilsésﬁ(t)le entry, and the option gelectable’™] N
entry DESKABOU " About this program...” OP
(selectable) ‘ . ot
Add a separator bar to the dropped box. It is described using the keywo

ing of disabled dashes:
the C name DESKSEP, and a string + wpctons \

entry DESKSEP ")
(disabled).
i , followed by the
Add the entries for the desk accessories, 'usn?gse tI};e keyword entry,
name of the string and the text of the string itsell:

" 1
entry DESKACCl Desk Accessory

» pesk Accessory 2
ntey ggﬁg—ggg « pesk Accessory 3
z:z:z STRNZOOG * Desk Accessory 4
entry STRN_007 " Desk Accessory z
entry DESKAGC6 Desk Accessory

T 3 3

2

The fo“()wmg lists the Backus-Naur form for the resource eompiler. Keywoldﬂ ap-

pear in bold.
resfile resource

resource . tree

184 Mark Williams C for the Atari ST

Resource Compiler and Decompiler 135

tree

formtree
formspec

objlist

object

object_spec

name_and._level

level..spec

size

offset

ext

box.spec

resource tree

formtree
menutree
freeimage
freestring

formspec objlist

tree c_name

object

objlist object
form object_spec size offset options ext

box name..and_level box._spec

ibox name..and_level box_spec
boxcharacter name._and_level box..spec
button name_and_level string spec
string name_and_level string-spec
title name..and_level string-spec
boxtext name_and_level text_spec
boxedit name_and_level text_spec
text name_and_level text_spec
edit name_and_level text.spec
fcon name_and-level icon.spec
tmage name_and..level image_spec

opt_cname level_spec

level unsigned..integer

/* null %/
slze coords

/* null */
offset coords

/% null */

extended unsigned_integer

border boxcolor textcolor bordercolor \
fill trans boxcharacter

)
.

'

border

textcolor

bordercolor

fill

trans

boxcharacter

nmenutree
menuspec

menulist

menu
menutitle

entrylist

entry
freestring
freeimage
text_spec
ted_text

template

e h W s

e th w e we v % ta ws s we i

/* null %/
border int

/* null */
textcolor colors

/* null */
bordercolor colors

/* null */
fill unsigned_integer

/* null */
transparent

/* null */
character numorchr

menuspec menulist
menu c_name ‘.’

/* null */
menulist menu

menutitle entrylist
title opt_cname string.spec options ‘.’

/* null */
entrylist entry

entry opt—cname string.spec options ‘.’
string c_name string.spec ‘.’

image c._name image.spec ‘.’

ted_text template vaiidation font textbox
text

/* null */
template text

136 Mark Williams C for the Atari ST

Resource Compiler and Decompiler 137

validation

font

textbox

Justify

image_spec

icon_spec

banner

iconchar

fconc

iconcolor

boxcolor

maskcolor

iconsize

iconoff

icondata
{conmask

bitoffset

/* null */
validation text

/* null */
font unsigned integer

border boxcolor textcolor bordercolor Justify

/* null */
Justify justification

boxcolor iconsize icondata

banner iconchar iconcolor iconsize fcondata \
iconmask

/* null */
banner text bitoffset

/* null */
character {conc bitoffset

/* null */
numorchr

boxcolor maskcolor

/* null */
color colors

/* null */
maskcolor colors

/* null */
size coords iconoff

/* null */
ofiset coords

data bitdata
mask bitdata

offset coords

bitsize
text

length

coords
ord

fine

bitdata

byte.list

number

int

.

colors

color

size coords

quoted_string length

L /% null */
| length unsigned—integer

: [Ofd ,ord]

unsigned_integer flae

J* null */
+ unsigned_integer
- unsigned_integer

{byte_list }

; /* null */
number
byte_list , number

int
BITCONSTANT
HEXCONSTANT

unsigned_integer
+ unsigned._integer
-unsigned_integer
: unsigned_integer
| color

white
black
red
green
blue
yellow
cyan
magenta
whitel
blackl
redl
greenl
bluel

188 Mark Williams C for the Atari ST L

urce Compiler and Decompiler 139

ol 2 Reso

justification

options

option_list

option

flag

gstate

numorchr

opt..cname

c-_name

yellowl : ' quoted_string

cyani string-spec :
magental ; '

left
right
center

/* null */
options (option_list)

option
option_list , option

flag
state

selectable
default
exit
editable
radiobutton
last
touchexit
hide
flags9
flags10
flags11l

gelected
crossed
checked
disabled
outlined
shadowed
state6
state?

unsigned_integer
SQUOTEDCHR

/% NIL */
c._name

ID_ALPHA

Section 8:
Error Messages

This chapter lists all of the error messages that can be produced by the compiler,
the assembler, the linker, make, resource, rescomp, and resdecom.

The messages are in alphabetical order, and each is marked to indicate which
program generated it (e.g., ¢cc0, cep). Each message from the compiler indicates
whether it is a fatel, error, warning, or strict condition. The compilation phases are
cpp, the preprocessor; cc0, the parser; ccl, the code generator; ec2, the optimizer;
and cc3, the disassembler.

A fatal message usually indicates a condition that caused the compiler to terminate
execution. Fatal errors from the later phases of compilation often cannot be fixed,
and may indicate problems in the compiler.

An error message points to a condition in the source code that Mark Williams C
cannot resolve. This almost always occurs when the program does something
illegal, e.g., has unbalanced braces.

Warning messages point out code that is compilable, but may produce trouble when
the program is executed. A strict message refers to a passage in the code that is
unorthodox and may not be portable.

. (a8, error)
Dot label error. This indicates that a period was used as a label, e.g., “.:".

a (as, error)
Addressing error. This is generated by nearly any kind of operand/instruc-
tion mismatch or semantic error in address fields.

address wraparound (1d, fatal)
A segment of the program has exceeded the size allowed by the
microprocessor’s architecture.

141

Mark Williams C for the Atari ST

Error Messages 143

n string adjusting object C-name to contain children (rescomp, warning)
All children of an object must fall inside the bounds of the object. The ob-
ject in question, at line number n, is being adjusted so that it covers all of
its children.
; after target or macroname (make, error)
A semicolon appeared after a target name or a macro name.
ambiguous reference to “string” (cc0, error)
string is defined as a member of more than one struct or union, is
referenced via a pointer to one of those structs or unions, and there is
more than one offset that could be assigned.
argument list has incorrect syntax (cc0, error)
The argument list of a function declaration contains something other than
a comma-separated list of formal parameters.
string argument mismatch (cpp, error)
The argument string does not match the type declared in the function's
prototype. Either the function prototype or the argument should be
changed.
array bound must be a constant (cc0, error)
An array's size can be declared only with a constant; you cannot declare an
array’s size by using a veriable. For example, it is correct to say foo[5],
but illegal to say
bar = 5;
foo[bar];

array bound must be positive (cc0, error)
An array must be declared to have a positive number of elements. The ar-
ray flagged here was declared to have a negative size, e.g., foo[-5].

array bound tno large (cc0, error)

The array is too large to be compiled with 16-bit index arithmetic. You
should devise a way to divide the array into compilable portions.
array row has 0 length (cc0, error)

This message can be triggered by either of two problems. The first
problem is declaring an array to have a length of zero; e.g., foo[0]. The
second problem is failing to declare the size of a dimension other than the
first in a multi-dimensional array. C allows you to declare an indefinite
number of array elements of n bytes each, but you cannot detlare n array

elements of an indefinite length. For example, it is correct say foo[][{5] but
illegal to say foo[5][].

x

i , error) lod.
Haseert %ﬁ?ggggﬁn being tested in & #assert statement bas failed

. i too com lex (ccl, fatal) . “4+") has too
associative exprex;e;:’;gn that \f’ses associative binary operators ;(gég" ;0:1 should

Ann;XP;pemmm. for example, {=11+12+i3+ ... +130s

ma g

simplify the expression.
e P ##, but
et begmmngeoga:lea:‘x;i 1?5%5 may contain tokens that are se];?:t‘mt';(}il el){o #a, b
}#f;crc(;r:nzt appear at the beginning or the end of t}:enx
either side of the ## are pasted together ln@ one token.
A i ##, but
e oo it may contain ks 5 ST L KLY
cannot appeer at the beginning or b :
fither side of the ## are pasted together into one token
bad arguAment Bﬁ:r%te staigfg%e%n:l;omge class that the compiler does not recog-
na :
nize.rgl‘uhe only valid storage class is register.

ize_tree (rescomp, panic) .
bad call X) ::;zl?_;)ointer was passed to the tree fixup function.

1ass (cc0, error)) . tor or
bad emﬂimﬁi;s been declared with an_mvahd storage class, e.g., regis
auto.

:) the ob-
bad ﬁeldA\V%(g,(lll \(Nciflft)l’lf.:rairdeclared either to be negative or to be larger than the

s-1 will trigger this
ject that holds it. For example, char foo:8 or char foo:-1 will trigge
error.

bed ﬁllerAﬁg:ﬁa:v;_‘(it‘lé (cw;:(%heivn;;)declared cither to be negative or to be larger than

2 :-1 will trig-
the object that bolds it. For example, char foo:9 or char foo:-1 wi g
ger this error.
i Jaration (cc0, error) s vou
bad ﬂele;:;irba‘); (:eria;r?s migsing an array{ bou;d;x;y";l eer.]gt; zﬁi};&s(&%n%l“t)}1’0“
i i ber of arre; 1 .)
- d:glal"iee;:r;n:zﬁr;t;; “tr heave n elements of an indefinite pumber of
can

bytes each,

Bad macro name (make, error)
A bad macro name was use
character.

d: for example, a macro name included a control

144

Mark Williams C for the Atari ST

Bad number input. (resource, warning)
You tried to give an object a value that is out of range.

To clear this message, press the left mouse button or any key.

name: bad name for include file (rescomp, fatal)
You have asked the compiler to create a file with an invalid name.

name: bad name for RDL source file (rescomp, fatal)
You have asked the compiler to look for a file with an invalid name.

name: bad name for resource file (rescomp, fatal)
You have asked the compiler to create a file with an invalid name.

Bad RSC file format. (resource, warning)

resource does not recognize the format of this resource file. The file may
be damaged or truncated.

To clear this message, press the left mouse button or any key.

bad tree in size_level (rescomp, panic)
An improperly formed tree was passed to the tree-sizing function.

baddisk:disk error (1d, fatal))
1d either cannot read or cannot write to the mass-storage device. Check
the disk you are using to see that it is working correctly.

break not in a loop (cc0, error)
A break occurs that is not inside a loop or a switch statement.

call of non function (cc0, error)

What the program attempted to call is not a function. Check to make sure
that you have not accidentally declared a function as a variable; e.g., typing
char *foo; when you meant char *foo();.

cannot add pointers (cc0, error)
The program attempted to add two pointers. ints or longs may be added

to or subtracted from pointers, and two pointers to the same type may be
subtracted, but no other arithmetic operations are legal on pointers.

cannot allocate enough memory for string (resdecom, fatal)

The resource decompiler cannot allocate enough memory to hold the
decompiled resource.

cannot apply unary ‘&’ to a register variable (cc0, error))
Because register variables are stored within registers, they do not have ad-
dresses, which means that the unary & operator cannot be used with them.

cannot apply unary ‘&’ to an alien function (cc0, error)
The unary ‘&’ operator cannot be used with any function that has been

Error Messages 148

declared to be of type allen. alien functions cannot be called by pointers.

ile i i e, warning)
t be saved while it contains an empty tree. .. (resource,
Canno Every tree in a resource must contain data before the resource can be

saved.

le to pointer (cc0, error) . .
cannot c’?gted:r‘g;:am g&empted to cast a double to a pointer. This is illegal.

i to double (cc0, error) .
cannot cr?‘;tepgmter : tge mpted to cast a pointer to a double. This is illegal.

re or union (cc0, error) .
canpot c'?‘ites;;uogm attempted to cast a struct or a union. This is illegal.

cture or unjon (cc0, error) L
camnot c%ixtet;;'é;“mm attempted to cast a variable to a union or struct. This is

illegal.

cannot create string (vesdecom, fatal)
You have run out of memory.
ing: ot create (as, error) .
sring c"i‘rllx: assembler cannot create the output file it was requesteg to alf:::fe
This often is due to a problem with t'he output device; check and m
that it is not full, and that it is working correctly.

ing: t create (cpp, fatal) . :
i 0";'?120Preprocessgx? epp cannot create the output file string that it was asked

to create. This often isduetoa problem with .the output device; check and
make sure that it is not full and that it is working correctly.

t create string (1d, fatal) .
canne C'F;e linkergld cannot create the output file it was requested to aimwre '{hh::
often is due to a problem with the output device; check and make su

it is working correctly and is not full.
cannot declare array of functions (cc0, error)

i s declares f to be an array
For example, the declaration extern int (*N[J(); declar >
o((’) pointerg to functions that return ints. Arrays of functions are illegal.

ible automatic array (cc0, error) .
cannot dﬁlg rgrf;;xr;m does not explicitly declare the pumber of elements in an
automatic array.
initialize fields (cc0, error) . o
cannot l"I“li:.‘e ;)zrzg'ram attempted to initialize bit fields within a structure. This is
not supported.

146 Mark Williams C for the Atari ST

cannot initialize unions (cc0, error)

The program attempted to initialize a union within its declaration.
unions cannot be initialized in this way.

string: cannot open (cpp, cc0, fatal) .
The compiler cannot open the file string of source code that it was asked to
read. cpp may not have been told the correct directory in which this file is
to be found; check that the file iz located correctly, and that the -I options,
if any, are correct.

cannot open string (resdecom, fatal)
The file you are trying to decompile cannot be opened.

cannot open definition file string (resdecom, warning)

The definition file for the resource you are trying to decompile cannot be
opened by the resource decompiler.

cannot open include file string (cpp, cc0, fatal)
The program asked for file string, which was not found in the same direc-
tory as the source file, nor in the defauit include directory specified by the
environmental variable INCDIR, nor in any of the directories named in -I
options given to the cc command.

cannot open string (seg number) (1d, fatal)
The linker 1d cannot open the object module that it was asked to read.
Make sure that the storage device is working correctly, and that Id hes

been given the correct names of the file and of the directory in which it is
stored.

string: cannot reopen (cc2, fatal)
The optimizer in cc2 cannot reopen a file with which it has worked. Make

sure that your mass storage device is working correctly and that it is not
full.

Cannot test this dialog since it has no exits. (resource, alert)
At least one object in a dialogue must be have the exit flag set before the
dialogue can be tested.

can’t allocate memory for identifier (rescomp, fatal)
This message indicates that you are out of memory.

can’t allocate memory for string token (rescomp, fatal)
This message indicates that you are out of memory.

can’t create C header file string (rescomp, fatal) i

There is not enough room on the disk to create the file, or you have used
an invalid file name.

Error Messages 147

it i fatal)
't create definition file string (rescomp, {i
oo There is not enough room on the disk to create

an invalid file name.

the file, or you have used

> lder. (resource, warning) .
Cant cr;&;}tﬁr:e::at;? m: be enough memory left on disk to hold a new folder, or the

disk may be write protected Check that your disk drive is working
properly.
You can clear this message by pressing any key or the left m

g ut file string (rescomp, fatal) .
can't creTahm;ao«::)tx]r)\piler could not create a GEM resource file. There is not enough

room on the disk to create the file, or you have used an invalid file name.

ouse button.

Can't delete thia file because it is read only (resource, warning)
A read-only file cannot be deleted.
. . . ing)
* this folder because it contains ﬁleg. (resource, warn
Con't de;%t: eal::not delete a folder if it contains a ﬁ}e. You must first delete the
files in the folder before you delete the folder itgelf. .

To clear this message, press the left mouse button or any key.

can’t expand bit image pool (rescomp, fatal)
You are out of memory.

can’t expand bitblk pool (rescomp, fatal)
You are out of memory.

can't expand iconblk pool (rescomp, fatal)
You are out of memory.

can't expand object pool (rescomp, fatal)
You are out of memory.

can’t expand string pool (rescomp. fatal)
You are out of memory.

can’t expand tedinfo pool (rescomp, fatal)
You are out of memory.
* for input (rescomp, fatal) .
cant op%‘r;‘eogr;:gﬁed input file (.rdl) cannot be ogened. Check that txl:: exmtes g:u:{e
you think it does, and check that you specified the proper path nam

’ ibstring.a (1d, fatal) _ N
cant op;‘x;llﬂifrtx’;:f l?i(cannot open a library that it has been asked to link into your

i d that the en-
. Make sure that you named the library c?rrecﬂy an €
&r:ogln?nrznml parameter LIBPATH is set correctly if you used the -1 option

148 Mark Williams C for the Atari ST

to the ce command line.
can't open string (1d, fatal)

The linker ld cannot open a file that it has been asked to work with. Make
sure that your mass storage device is working correctly, and that 1d has

been given the correct names of the file and of the directory in which it is
stored.

Can't open .RSD file. (resource, warning)
resource cannot open a resource file. Make sure that the file exists where
you think it does, and that you have used the correct path name for it.
To clear this message, press the left mouse button or any key.

can't open temp file (1d, fatal)

The linker 1d cannot open a temporary file. Make sure that your mass

storage device is working correctly, and that the environmental variahle
TMPDIR is set correctly.

Can't open the header file. (resource, warning)
resource cannot open a resource’s header file. The file may not exist in

the current directory, or you may have used the wrong path name for the
resource.

To clear the message, press the left mouse button or any key.
Can't open this file. (resource, warning)

A file cannot be opened. Make sure that the requested file exists in the
current directory.

can’t read string (1d, fatal)

The linker ld cannot read the file named. Make sure that your mass

storage device is working correctly, and that 1d has been given the correct
names of the file and of the directory in which it is stored.

cage not in a switch (cc0, error)

The program uses a case label outside of a switch statement. See the
Lexicon entry for case.

character constant overflows long (cc0, error)

The character constant is too large to fit into a long. It should be
redefined.

character constant promoted to long (ec0, warning)
A character constant has been promoted to a long. }
class not allowed in structure body (cc0, error) '

A storage class such as register or auto was specified within a structure.

Error Messages 149

i 0, error) eg.
compourd m:migz;e gl?z;:e:;;flfre’s a compound statement does not bave one, e.g.,
A constru

izati ent.
a function definition, array initialization, or awitch statem

. fatal) i ed the
condit!or;‘al:;gcel; o&erggré:gr%ss?ons is nested so deeply that it overflow

allotted stack space. You should simplify this code.
constant expression required (cc0, error)

be evaluated to a
A i #1f statement cannot

The ezmizs:xnt“ff pr“:l::blg uses a variable in a statement rather than &
numeric -

constant.

« " to long (cc0, vg’aming) though this
constant numberﬂpmx::rt:gted a constant in your program to lt‘t):rgi)t i po%t e
i :Osxfrii’cg; i%egal it may create problems when you a
is nof ,

ment
code to another gystem especially if the constant appears in an argu
e -’
list.) |
i cc0, strict ed out
constantAusz('l“;?ﬁ:’r:;lhei%x;t;go(n for an if, while, or for statement has tu
c

ill trigger this
to be always true or always false. For example, while(1) will trigge
message. .

construction not in Kernighan and Ritchie (cc0, strict)

g7 a guag ’ 4

This constr“chon is not fO“nd in ‘l'he C Pro mming Lan e ElthO‘J h
] p

it can be CO“lpl]ed by N{alk Williams C it may not be por t,able to am)t.hel

compiler.
. ' A i inside a for for while
continue oL I 8 Lo e tinue statement that is not insi
The program uses a con
loop. o
in finish.tree (rescomp, panic o function.
corrupt ngi::proper\y formed tree was passed to the tree p

j , warning) o
ino data size mismatch in icon object C-name (resqompdam ning) ek in line
n string data s t amounts of data were provu.ie(! for _1c<')nth a0 ek e oy
D‘fx{;‘: n8 The compiler zero-pads missing bits; the p
nu .
not be what you expected.
i , warning) h its
#define ;;gutrin %I:it?:;zrg? t:xl: ;iglll)ment in a #define stater:dent does not ma
sut?se:uent use. One or the other should be changed.

tax (cc0, error) o jom.
declaratl')rrhi)’;mgmm used incorrect syntax in 8 declaration

PO —

150 Mark Williams C for the Atari ST

Error Messages 151

default label not in a switch (cc0, error)

The' program used a default label outside a switch construct. See the
Lexicon entry for default.

disk error (1d, fatal)
The linker 1d encount_.ered a problem with the storage device when it at-
tempted to read' or write a file. Check that the disk is working correctly; if
‘ld'xs wor]upg with a floppy disk, make sure that the disk is sound and that
it is not write-protected.

divide by zero (cc0, warning)
The program will divide by zero if this code is executed. Although the
program can be parsed, this statement may create trouble if executed.

Duplicate file name. (resource, warning)

A file name duplicates that of a file that already exists in the current folder, -

If you proceed, the file that bears the name will be overwritten by the file
you are creating.

To clear this message, press the left mouse button or any key.

Duplicate name. (resource, warning)

This is a tree manipulation error. You have given the same name to two
trees within the same resource.

To clear this message, press the left mouse button or any key.

duplicateAd case constant (cc0, error)
case value can appear only once in a switch stat i
entries for case and switch. statement. See the Lexicon
#elif usiii without #if or #ifdef (cpp, error)
n #elif control line must be ded

An #elll o preceded by an #if, #ifdef, or #ifndef
#elif used after #else (cpp, error)

An #elif control line cannot be preceded by an #else control line.

#elge us:d without #if or #ifdef (cpp, error)
n #else control line must be preceded
An Helae p by an #If, #ifdef, or #ifndef
empty switch (cc0, warning)
A switch statement has no case labels and defi
Lexeon oty ot o no default ?abels. See the
#endif used without #if or #ifdef (cpp, error)

An #endif control line must be ed
fn #Fendif preceded by an #If, #ifdef, or #ifndef

EOF in comment (cpp, fatal)
Your source file appears to end in mid-comment. The file of source code

may have been truncated, or you failed to close a comment; make sure that
each open-comment symbol */*’ is balanced with a close-comment s__ymbol
‘*/'. Also, be sure that you did not accidentally embed a <etrl-Z> in the

line.

EOF in macro string invocation (cpp, error)
Your source file appears to end in a macro call. The source file may have
been truncated, or you may have accidentally embedded a <ctrl-Z> in the
line. :

EOF in midline (cpp, warning)
Check to see that your source file has not been truncated accidentally.
Also, make sure that you did not accidentally embed a <ctrl-Z> in the

line.

EOF in string (cpp ,error)
Your file appears to end in the middle of a quoted string literal. Check to
see that your source file has not been truncated accidentally. Also, check
that you did not accidentally embed a <etrl-Z> in the line.

#error: string (cpp, fatal)
An #error control line has been expanded, printing the remaining tokens

on the line and terminating the program.

error in #define syntax (cpp, error)
The syntax of u #define statement is incorrect. See the Lexicon entry for

#define for more information.

error in enumeration list syntax (cc0, error)
The syntax of an enumeration declaration contains an error.

error in expression syntax (cc0, error)
The parser expected to see a valid expression, but did not find one.

error in #include syntax (epp, error)
An #include directive must be followed by a string enclosed by either
quotation marks (") or angle brackets (< >). Anything else is illegal.

Expected ‘level’ (rescomp, error)
The compiler could not find the keyword level.

exponent overflow in floating point constant (cc0, warning)
The exponent in a floating point constant has overflowed. The compiler
has set the constant to the maximum allowable value, with the expected

sign.

162 Mark Williams C for the Atari ST

exponent underflow in floating point constant (cc0, warning)

The exvonent in a floating point constant has underflowed. The compiler
has set the constant to zero, with the expected sign.

expression too complex (ccl, fatal)

The code generator cannot generate code for an expression. You should
simplify your code.

external syntax (cc0, error)
This could be one of several errors, most often a missing ‘('
file ends within a comment (cc0, error)

The source file ended in the middle of a comment. If the program uses
nested comments, it may have mismatched numbers of begin-comment and
end-comment markers. If not, the program began a comment and did not
end it, perhaps inadvertently when dividing by *something, e.g., a=b/%cd;.

file name conflict (srcname, rscname, defname, hdrname) (rescomp, fatal)
You gave the same name to two or more files.
function cannot return a function (cc0, error)

The function is declared to return another function, which is illegal. A

function, however, can return a poinfer to a function, e.g., int (*sig
nal(n, 2))().

function cannot return an array (cc0, error)

A function is declared to return an array, which is illegal. A function,
however, can return a pointer to a structure or array.

functions cannot be parameters (cc0, error)
The program uses a function as a parameter, e.g., Int q(); x(q);. This is
illegal.
Icon/image size change will cause loss of significant looking data. Do it anyway?
(resource, alert)
A change that you requested in the size of an icon or image will cause it to
lose data that appear to be significant. Do you wish to proceed?
identifier string has too many arguments (cpp, error)
Too many actual parameters have been provided.
identifier “string” is being redeclared (cc0, error)
The program declares variable string to be of two different types. This of-
ten is due to an implicit declaration, which occurs when a function is used
before it is explicitly declared. Check for name conflicts. '
identifier “string” is not a label (cc0, error)
The program attempts to goto a nonexistent label.

Error Messages 163

I

)
e w09 ig not a parameter (cc0, error. list.
idennﬁe’?‘hztc:rgable “gtring” did not appear in the parameter

. cear “etring” i defined (cc0, error) .
ldennﬁe;‘h:t::fgl';:nn\?:esidenﬁﬁer string but does not define it

ing” 0, error)
i sfier “string’”’ not usable (cc0,
identif string is probably 2 member of &
gelf in an expression.
. c0, error) , b 8. b, L
egel ch:ﬂa:gt:]r :l?:f;i;tr (:onstant consists ‘of a a backslash Y\ followed by
n, r,t, v, X orup to three octal digits.
imal) (ec0, error) i - the
legel Ch:?(ﬁglnglﬁbrzzt:?;nas)embedded within the source code. number
decimal value of the character.

. ¢t (ec0, error) .
ilegel #Tc\?: 8;38" recognizes control lines of th

#file_name. Anything else is illegal.

. i) R ize.
e canga e CDPLCET0) o comptor dos ot recogioe

structure or union which appears by it-

e form #line_number (decimal) or

. decimal) (cpp, error) be a control
illegal cglx‘)hcehi;‘;"s;g nzcted cannot be processed by cpp- It may

character or & non-ASCII character. .

)

i integer constant suffix (cc0, error; .

iegel mlntgeger constants may be suffixed wi
long, or unsigoed long.

i ugtring” (cc0, error))

ilegel ‘a"l)‘i‘e sptr".cl)gfan(\cflse: the keyword string as 8 goto label.
each label must end with a colon.

o . . sy 00, error)) . hnd

iegel 093:?:&;:3;: (;;edtyt‘o)exéfmipulate a value returned by a function tbat

been declared to be of type void.

i cture assignment (ch, error)
egel SL';“}]\e structures have different sizes.

. . r) . . -
illegel S‘Xnm?:&‘: (::ir‘l) Otilelt:\:?):f:gjeg?om another pointer only if both point to ob
pol

jects of the same size.

legel Y 32&&",“;‘22 chsi?i Sféé’éfny, e.g., multiplied, divided, or &-ed. You may get

thu, U, 1, or Lto indicate unsigned,

Remember that

154 Mark Williams C for the Atari ST

the result you want if you cast the pointer to a long.

illegal use of a structure or union (cc0, error)
You may take the address of a struet, access one of its members, assign it
to another structure, pass it as an argument, and return. All else is illegal.

illegal use of defined (cpp, error)
The construction defined(token) or defined foken is legal only in #If,
#elif, or #assert expressions.
illegal use of floating point (cc0, error)
A float was used illegally, e.g., in a bit-field structure.
illegal use of “void” type (cc0, error)
The program used void improperly. Strictly, there are only vold functions;
Mark Williams C also supports the cast to vold of a function call.
illegal use of void type in cast (cc0, error)
The program uses a pointer where it should be using a variable.
Improper banner (rescomp, error)
A bad value was supplied for banner in the source.
Improper border (rescomp, error)
A bad value was supplied for border in the source.
Improper border color (rescomp, error)
‘A bad value was supplied for bordercolor in the source.
Improper character (rescomp, error)
A bad value was supplied for character in the source.
Improper color(rescomp, error)
A bad value was supplied for color in the source.
Improper data (rescomp, error)
A bad value was supplied for data in the source.
Improper extension (rescomp, error)
A bad value was supplied for extension in the source.
Improper fill (rescomp, error)
A bad value was supplied for fill in the source.
Improper font (rescomp, error)
A bad value was supplicd for font in the source.
Improper justification (rescomp, error) '
A bad value was supplied for justification in the source.

Irproper length (rescomp, error)
A bad value was supplied for length in the source.

Error Messages 156

level (rescomp, error) .
Imprope; \‘;;g value was supplied for level in the source.

k (rescomp, error) .
Imprope; ll?:g value was supplied for mask in the source.

ask color (rescomp, error)
Imprope; rt?ad value was supplied for mask color in the source.

menu name (rescomp, error) .
Imprope; bad value was supplied for menu name in the source.

bject type (rescomp, error) .
Impropell; cl')zi‘d Va'i}\?:e was supplied for objecttype in the source.

ffset (rescomp, error) .
Imprope; %ad value was supplied for offset in the source.

‘ er size (rescomp, error) .
fimprop A bad value was supplied for size in the source.

template (rescomp, error)
Imprope; badpva]ue was supplied for template in the source.

text color (rescomp, error) .
Imprope; bad value was supplied for textcolor in the source.

tree name (rescomp, error) .
Impmpe; bad value was supplied for treename in the source.

alidation (rescomp, error) .
Impmpe‘r\\;md value was supplied for validation in the source.

string inA#;;r(\gxp’es::rz»ccurred in a #if declaration. string describes the error in
detail.
i ke, error) "
e ;frtlereg‘e)g]er;(il;\ C‘y=('n:::)peared within or followed the definition ;)(f)d a mitl::;
name or target file; for example, OBJ =atod.o=factor.o will produce
error.

i i igned (cc0, error))
mappmerr}ﬁws?;‘:ed odiier may only be applied to char, short, int, or long

types.

i rflow (epp, fatal)
include ngtogg #lnclugg statements is nested so deeply that the allot;‘ltle;l stacé
space cannot hold them. Fxamines the files for a loop. You should try

fold some of the header files into one, instead of having them call each

166 Mark Williams C for the Atari ST

other.

Incomplete l.ine at end of file (make, error)
An incomplete line appeared at the end of the makefile.

inappropriate “long” (cc0, error)
Your program used the type long inappropriately, e.g., to describe a char,

inappropriate “short” (cc0, error)
Your program used the type short inappropriately, e.g., to describe a char.

inappropriate “unsigned” (ce0, error)

21{3‘:1;)]p;ogmm used the type unsigned inappropriately, e.g., to describe a

lndirecti%r;l through non pointer (cc0, error)

e program attempted to use a scalar (e.g.,, a long or fBint i
you must first cast it to a pointer. & 8 nt) 8 a pointer
initializer too complex (¢c0, error)

An initializer was too complex to be calculated a ile ti
> X rwas | t compile time. Y
simplify the initializer to correct this problem. P e. You should

Input and output names are both string (resdecom, fatal)
You used the same name for both input and output files.

1/0 error during delete. (resource, warning)
regource could not delete a file or folder due to a problem with the disk

drive. Make sure that the disk is not write- ive i
working correetly, ot write-protected, and that the drive is

To clear this message, press the left mouse button or any key.

integer ;’)ro}ilnter comparison {cc0, strict)
e program compares an integer or long with a pointer without casti
n
one to the type of 'the other. Although this is legal, the comparison mag
not work on machines \:\nth non-integer pointers, e.g., Z8001 or LARGE-
model 18086, or on machines with pointers larger than Ints, e.g., the 68000.

insufficient memory for relocation rewrite (Id, fatal)
The linker 1d cannot allocate enough memory to build its relocation tables
Y'ou should free up some memory within your system; if you have a RAM
disk, you may need to make it smaller or unload it altoéether.

integer pointer pun (cc0, strict)
The program assigns a pointer to an integer, or vice versa, without casting

the right. : . : h
exzr:g]ef hand side of the assignment to the type of the left-hand side. For

7}

Error Messages 157

char *foo;

long bar;

foo = bar;

Although this is permitted, it is often an error if the integer has less preci-
sion than the pointer does. Make sure that you properly declare all
functions that returns pointers.

internal compiler error (ccO, ccl, cc2, cc3, fatal)
The program produced a state that should not happen during compilation.
Forward a copy of the program, preferably on a machine-readable medium,
to Mark Williams Company, together with the version number of the com-
piler, the command line used to compile the program, and the system con-
figuration. For immediate advice during business hours, telephone Mark

Williamg Company.

internal error, c=number in expr. (as, error)
The assembler has detected a situation that “should not occur”. Please
send & copy of the source code that triggered this error to Mark Williams
Company. For immediate help during business hours, contact Mark
Williams Company.

Invalid or missing file name. (resource, warning)
This error message comes in the form of a message balloon. The folder
icon is surrounded by a thick, rounded rectangle linked to an error box.
When this type of message is presented, pressing any key, or the left mouse
button, clears it. ’

invalid token token (rescomp, error)
You have specified a token that the compiler does not recognize.

“gtring” is a enum tag (cc0, error)
“string” is a struct tag (ccO, error)
“string" is a union tag (cc0, error)
string has been previously declared as a tag name for a struct, union, or

enum, and is now being declared as another tag. Perhaps the structure
declarations have been included twice.

“string” is not a tag (cc0, error)
A struct or union with tag string is referenced before any such struct or

union is declared. Check your declarations against the reference.

“gtring” is not a typedef name {(cc0, error)
string was found in a declaration in the position in which the base type of
the declaration should have appeared. string is not one of the predefined
types or a typedef name. See the Lexicon entry on typedef for more in-
formation.

168 Mark Williams C for the Atari ST

“string” is not an “enum” tag (ce0, error)
An enum with tag string is referenced before any such enum has been
declared. See the Lexicon entry for enum for more information.

class “string” {number] is not used (cc0, strict)
Your program declares variable string or number but does not use it.

label “string” undefined (cc0, error)
The program does not declare the label string, but it is referenced in &
goto statement.

left side of “string” not usable (cc0, error)
The left side of the expression string should be a pointer, but is not.

lvalue required (cc0, error)
The left-hand value of a declaration is missing or incorrect. See the
Lexicon entries for lvalue and rvalue.

m (as, error)
Muitiple definition. The offending line is involved in the multiple definition
of a label.

macro body too long (cpp, fatal)
The size of the macro in question exceeds 200 bytes, which is the limit
designed into the preprocessor. Try to shorten or split the macro.

Macro definition too long (make, error)
Macro definitions are limited to 200 characters.

macro expansion buffer overflow in string (cpp, fatal)
A macro call has expanded into more characters than cpp can handle. Try
to shorten the macro, or break it up.

macro string redefined (cpp, error)
The program redefined the macro string.

macro sring requires arguments (cpp, error)
The macro calls for arguments that the program has not supplied.
macros nested number deep, loop likely (epp, error)
Macros call each other number times; you may have inadvertently created
an infinite loop. Try to simplify the program.
member “string” is not addressable (cc0, error)
The array string has exceeded the machine’s addressing capability, Struc-
ture members are addressed with 18-bit signed offsets on most machines.
member “string” is not defined (cc0, error)
The program references a structure member that has not been declared.

Error Messages 159

i 't need.
Memory is in short supply. Please remove anything you don’t n

o it away.

g‘;z?;“ﬁfé f:x]oemething in memory that you do not peed, throw
i i itical. (
ghortage is now getting cr €
Memorylf yol;xmcgopy or create many more I
unnecessary matter from memory.

i alert)
i ind ed box or t:t]e_ bar. (resource, box. This
Menu 1%“‘9 gla?: ggsligoxfzgr;n object outside the menu barnzz :goﬁgzgpmble ko
c:\‘llses the object you are trying to position to “snap

tion nearby.
To clear this message,

i (rescomp, fatal)
least one title in a menu tree
must hal‘:lzat;tle object was specified in a menu tree.

, alert)
rett:::;:c Sle editor will crash. Remove all

gelect a button on the form or press < return>.

mismatched conditional (cc0, error)

i ressions must be present.
In a ‘?° expression, the colon and all three exp

i «.» gnerator (cel, error) .
mlsplace,lf}he prggram used a colon wi
misplaced label.
iasing “(” (cc0, error)
mlssmg'[‘%xe if, while, for, and
thesized expressions.

thout a preceding question mark. It may bea

switch keywords must be followed by paren-

missing)" (cc0, error)

i thesis ‘(.
A right parenthesis)’ is missing anywhere after a left paren

missing;- ,;glc;l)' ;’;rr‘n;; ngﬁssing from the initialization of a variable declaration.
n

T et Cto
Note that this is a warning, not an error: this allows };‘Ia:kl ‘iV“l‘leem:f e
. ile programs with “old style” ininal‘xzer?z, such as hnn t,hé lages
‘f:g;:\;})re ig strongly discouraged, and it jmll disappear whe
standard for the C language is adopted in full.

missing “,” (cc0, error)

i i
A comma is missing from an enumeration member list.

2 at TR . ‘?'
miesing A‘ co(l‘:;\o:'?li-;o r‘zissing after a case label, after a default label, or after th
in a ‘?’-%" construction.

gt "o N .
miesing A' s;;g(c)ty)lz:??does not appear after an external data definition or decl
’

i tic data
i after s struct or union member declara}:on, afuir) znm :e\:‘tg:\ta
3::1;1ration or definition, after a statement, or in a for(;;

160 Mark Williams C for the Atari ST

Error Messages 161

missing ‘)’ (as, error)

The assembl i

b s er expected to find a right bracket in the present expression,
missing “T” (ce0, error)

A right bracket ‘} is missing fre i
oo o s foo[; om an array declaration, or from an array

missing “{" (cc0, error)

A left brace ‘{’ is missi

o e {* is missing after a struct tag, union tag, or enum tag in a
missing “}"” (cc0, error)

A right brace ‘}' is missing from a stru i

g - . ct’ i

itialization, or from a compound statementunlon, or definition, from en in
missing “while” (¢c0, error)

' A while command does not appear after a do in a do-while() statement.

misging #endif (cpp, error)

An #if, #ifdef, i

stateme'nt. ef, or #ifndef statement was not closed with an #endif

missing label name in goto (ccO, error)

A goto statement does not have a label.
missing member (cc0, error)

A “’or “->" is not followed by a member name.
missing output file (cpp, fatal)

The preprocessor cpp found a - i
na Preproc ompmpg‘)]e. a -0 option that was not followed by a file

missing right brace (ec0, error)

A right brace is missing at end of fil issi
lines with errors reportged earlieg. ® The missing brace probably precedes

missing “string” (cc0, error)

' The parser cc0 expects to see token string, but sees something else
missing semicolon (cc0, error) .
External declarations should continue with ‘' or end with %'

missing type in structure body (ce0, error) ’
A structure member declaration has no type.
i

Multiple actions for name (make, error) ‘
A target is defined with more than one single-colon target liné

1

o

multiple classes (cc0, error)
An element has been asigned to more than one storage class, e.g., extern

register.

Multiple detailed actions for name (make, error)
A target is defined with more than one single-colon target line.

multiple #else’s (cpp, error)
An #if, #ifdef, or #ifndef expression can be followed by no more than
one #else expression.

multiple types (cc0, error)
An element has been assigned more than one data type, e.g., int float.

Must use ' for name (make, error)
A double-colon target line was followed by a single-colon target line.

Name conflicts on resource file. (resource, alert)
You gave the resource the name of an existing file. The existing file will be

overwritten if you procecd.
To clear this message, prees the left mouse button or any key.

name C-name is not unique (rescomp, error)
You have given the same name to two objects.

n string name C-name truncated to len characters (rescomp, warning)
The name you assigned at line number n to an object was too long.
Maximum identifier length for objects is eight characters. This regtriction
is imposed by the resource editor and the .rdl file format.

nested comment (epp, warning)
The comment introducer sequence ‘/*’ has been detected within a

comment. Comments do not nest.

new line in string literal (cpp, error)
A newline character appears in the middle of a string. If you wish to
embed a newline within a string, use the character constant ‘n'’. If you
wish to continue the string on a new line, insert a backslash ‘\' before the

new line.

Newline after target or macroname (make, error)
A newline character appears after a target name or a macro name.

newline in macro argument (cpp, warning)
A macro argument contains a newline character. This may create trouble
when the program is run.

New object items must be dragged into form windows. (resource, alert)
You attempted to create an object item incorrectly. Follow the directions.

162 Mark Williams C for the Atari ST

New resource sets must be dragged onto empty desktop. (resource, alert)
You attempted to create a resource set incorrectly. Follow the directions.

New tree items must be dragged into RSC windows. (resource, alert) R
You attempted to create a tree item incorrectly. Follow the directions.

no input found (1d, fatal)
The 1d command line names no object or archive files to link.

nonterminated string or character constant (cc0, error)
A line that contains single or double quotation marks left off the closing
quotation mark. A newline in a string constant may be escaped with ‘\".

‘" not allowed for name (make, error)
A double-colon target line was used illegally; for example, after single-colon
target line.

no tree in finish_tree (rescomp, panic)
A null pointer was passed to the tree fixup function.

null pointer in addentry (rescomp, panic)
A null pointer was passed to the menu entry function.

null title in nextmenu (rescomp, panic)
No title was specified before an entry keyword.

number has too many digits (cc0, error)
A number is too big to fit into its type.

o (as, error)
An unrecognized opcode mnemonic was found. Contrast this with error ‘g,
where the opcode is recognized but the syntax is in error.

Object must be within outer box of form or menu. (resource, alert)
You attempted to drag an object onto the resource desktop. Try dragging
the object’s icon again.

name object not allowed in number window. (resource, alert)
You attempted to move an object into the wrong window.

Object now covers other object or objects. Adopt them as children? (resource,
alert)
You have positioned an object on top of one or more other objects. You
may wish to rearrange the tree so that the uppermost object becomes the
parent to those objects beneath it. .

Objects moved to desktop must be wholly on it. (resource, alert) .
You didn’t drag an object all the way onto the desktop. Try again.

Error Messages 163

only one default label allowed (ec0, error) .
The program uses more than one default label in a s?vitch e:gpression.
See the Lexicon entries for default and switch for more information.

Options require parens (rescomp, error)
i Th?z opﬁ%n specification syntax includes parentheses. One or both were
missing.
::: or : in or after dependency list (make, error) .
A triple colon is meaningless to make, and therefore illegal wh_erever it ap-
pears. A single colon may be used only in a target line (which is also called
the dependency list), and nowhere else.

Out of core (adddep) (make, error) . .
This results from a system problem. Try reducing the size of your
makefile.

Out of range number input. (resource, warning)
You attempted to use a numeric value that is out of range.

To clear this message, press the left mouse button or any key.

Out of space (make, error)
System problem. Try reducing the size of your makefile.

Out of space (lookup) (make, error)
System problem. Try reducing the size of your makefile.

out of space (1d, fatal) . .
malloc could not allocate adequate space in memory for the linker Id to

work.

out of space (cpp, cc0, ccl, cc2, cc3, fatal) . .
The compiler ran out of space while attempting to compile the program.
To remove this error, examine your source and break up any functions that

are extraordinarily large.

out of space for bit data (rescomp, fatal) . o
The amount of bit data specified for an icon or image exceeds the limit

allowed by GEM.

out of tree space (cc0, fatal)
The compiler allows a program to use up to 350 tree nodes; the program

exceeded that allowance.

outdated ranlib (Id, warning))
The date stamp on the library file is younger than that in the ranlib
header. If the library has been altered, the ranlib can be updated with the
archiver ar; see the Lexicon entry on ar to see how this is done. If the
library has not been altered, this message may be due to an installation er-

164 Mark Williams C for the Atari ST

ror; gee the Lexicon entry on ranlib for more information.

p (as, error)
Phage error. The value of a label changed during the assembly. An in-
struction has a size that differs between the first and second passes.

parameter string is not addressable (cc0, error)
The parameter has a stack frame offset greater than 32,767. Perhaps you
should pass a pointer instead of a structure.

parameter must follow # (cpp, error)
Macro replacement lists may contain # followed by a macro parameter
name. The macro argument is converted to a string literal.

Period missing in entry (rescomp, error)
Each object or tree specification must end with a period.

Period missing in form (rescomp, error)
Each object or tree specification must end with a period.

Period missing in image (rescomp, error)
Each object or tree specification must end with a period.

Period missing in menu (rescomp, error)
Each object or tree specification must end with a period.

Period missing in string (rescomp, error)
Each onject or tree specification must end with a period.

Period missing in title (rescomp, error)
Each object or tree specification must end with a period.

Period missing in tree (rescomp, error)
Each object or tree specification must end with a period.

rotentially nonportable structure access (cc0, strict)
A program that uses this construction may not be portable to another com-
piler.

preprocessor assertion failure (cpp, warning)
A #asgert directive that was tested by the preprocessor epp was found to
be false.

q (as, error)
Questionable syntax. The assembler has no idea how to parse this line,
and it has given up. .
r (as, error)]
Relocation error. The program attempted to create or use an expression in
a way that the linker cannot resolve.

Error Messages 185

Read error. (resource, warning)
An error appears to have occurred as resource was reading a file from
disk. Check that the disk drive is working correctly; then try again.

To clear this message, press the left mouse button or any key.

read ertor on definition file string (resdecom, warning)
The definition file (file.rdl) cannot be read.

Read error on beader in string (resdecom, fatal)
The header file you have specified cannot be read. -

Read error on resource data in string (resdecom, fatal)
The resource file you have specified cannot be read.

string redefined (cpp, error)
cpp macros should not be redefined. You should check to see that you are
not #includeing two different versions of a file somehow, or attempting to
use the same macro name for two different purposes.

return type/function type mismatch (ec0, error)
What the function was declared to return and what it actually returns do
not match, and cannot be made to match.

return(e) illegal in void function (cc0, error)
A function that was declared to be type void has nevertheless attempted to
return a value. Either the declaration or the function should be altered.

risky type in truth context (ec0, strict)
The program uses a variable declared to be a pointer, long, unsigned
long, float, or double as the condition expression in an if, while, do, or
‘7’4", This could be misinterpreted by some C compilers.

RSC too big. (resource, warning)
You have attempted to build or load a resource that is too large to be held
in memory. Try removing some items from memory to free space for the
resource.

To clear this message, press the left mouse button or any key.

8 (a8, error)
Segment error. The program attempted to initialize something in a seg-
ment that contains only uninitialized data.

size of string overflows size_t (cc0, strict)
A string was so large that it overran an internal compiler limit. You should
try to break the string in question into several small strings.

gize of struct “string” is not known (cc0, error)

166 Mark Williams C for the Atari ST

size of union “string” is not known (cc0, error)
A pointer to a struct or union is being incremented, decremented, or sub-
jected to array arithmetic, but the struct or union has not been defined,

size of string too large (cc0, error)
The program declared an array or struct that is too big to be addressable,
e.g., long a[20000]; on a machine that has a 64-kilobyte limit on data size
and four-byte longs.

sizeof truncated to unsigned (ccO, warning)

An object’s sizeof value has lost precision when truncated to a size_t in-
teger.

sizeof(string) set to number (cc0, warning)
The program attempts to set the value of string by applying sizeof to o
function or an extern; the compiler in this instance has set string to num-
ber.

Sorry, can't copy folders. (resource, warning)
resource can copy only files, not folders.

To clear this message, press the left mouse button or any key.

Sorry program must terminate immediately for lack of space. (resource, alert)
You have run out of memory.

storage class not allowed in cast (cc0, error)
The program casts an item as a register, static, or other storage class.
string initializer not terminated by NUL (cc0, warning)
An array of chars that was initialized by a string is too small in dimension
to hold the terminating NUL character, For example, char foo[3] =
"ABC",
structure “string” does not contain member “m” (cc0, error)
The program attempted to address the variable string.m, which is not
defined as part of the structure string. :
structure or union used in truth context (cc0, error)
The program uses a structure in an if, while, or for, or ‘7.’ statement,

switch of non integer (ce0, error)

The expression in a switch statement is not type int or char. You should

cast the switch expression to an Int if the loss of precision is not critical,
switch overflow (ccl, fatal) i
The program has more than ten nested switches.

Syntax error (make, error)
The syntax of a line is faulty.

Error Messages 167

o, warning)
i cannot be dragged onto the desktop. (resource,
This ﬁleot}‘;]l); resource files can be dragged onto the desktop.

To clear this message, press the left mouse button or any key.

reso rt)
Thi move il cuse the abect tres (o b reconaru S (RO TE o oo being
ing this object orce oing
gx(zrtl.ngThis maJy have a significant effect upon the program that uses

resource.

is tree is already open. (resource, warning)
This trp?\l:vindcw for this tree is already cpen on the desktop.

To clear this message, press the left mouse button or any key.

menu to relevant file window. (resource, alert)

To create folders drag icon frof folder incorrectly. Follow these directions.

You attempted to create a

i alert)
file drag it onto open desktop. (resource, .
Toload S!:;;g?%eg t}fe resgource file onto the desktop loads the file into memory.

>
To clear this message, select a button on the form or press the <return
key.
jecti 0, error))
wo manzagzjiﬁgl:?s(i;pe was described with too many of long, ghort, or un
gigned.

arguments (cc0, fatal) .
e man%’qo fi‘:lction may have more than 30 arguments.

too many arguments in a macro (cpp, fatal)

The program uses more than the allowed ten arguments with a macro.

too many cases (ccl, fatal)
The program canno

directories in include list (cpp, fatal)
w0 lmm'BI,‘he program uses more than the allow

t allocate space to build a switch statement.

ed ten #include directories.

too many initializers (ec0, error)

The program has more initializers than the space allocated can hold.

finitions (make, error) .)
Too mal}lyh??lilr:xg:r of macros you have created exceeds the capacity of your com
puter to process them.

e e)

too many structure mmalngrs (ceD, error
’}I"he program contains a structure
members.

initialization that has more values than

168 Mark Williams C for the Atari ST

Too many windows. (resource, alert)

You have attempted to o) i
e pen more windows than the AES all
one of your windows before you attempt to open another. allows. Close

To clear thi i
<return>. s message, click one of the buttons on the form or press

trailing *,” in initialization list (cc0, warning)

An initialization statement ends with a comma, which is legal.

Tree obj;it: carll only be dragged to resource windows ... (resource, alert)
on . N . 1} *
e ¢ y exception is that strings and images can be dragged to form win-
Trees must have names. (resource, warning)

Every tree must h
procreyed. st have a C name. You must name the tree before you can

To clear this message, press the left mouse button or any key.

type clash (ecO, error)
The parser expected to find matching types but did not. For example, the

types of el and e2 i . : ‘)
be poinbers.an e2in (x) 7 el : €2 must either both be pointers or neither

type of f}l‘l:?ﬁon “s{ring" adjusted to string (cc0, warning)
is warning is given when the type of a numeric constant is wi
t is widened
:yx;zl%?(ig, long, or unsigned lor_lg to preserve the constant’s value. T}::
e constant may be explicitly specified with the u or L constant

suffixes.

type of r&g}l;:r;eter “string” adjusted to string (cc0, warning)
rogram uses a parameter that the C language sa j

to a wider type, e.g., char to int or float to dog:blge. ye must b adjusted
type required in cast (cc0, error)

The typg'is missing from a cast declaration,
u (as, error) '

A symbol is used but never defined. The symbol's name is displayed

Unable to create string. (resource, alert)

resource, for any number of reasons, cann i

R ot create a file using th
that you rgquested. Check that the name is legal, and that gotu: :fme
storage devices are operating properly. - .- ' ; =

unexpected end of enumeration list (cc0, error)

An end-of-file fl i i i
enumerators.e ag or a right brace occurred in the middle of the list of

Error Messages 169

unexpected EOF (cc0, cel, cc2, cc3, fatal)
EOF occurred in the middle of a statement. The temporary file may have

been corrupted or truncated accidentally. Check your disk drive to see that
it is working correctly. Also, make sure that you did not accidentally
embed a <ctrl-Z> in the line.

n string unknown object index type type value (rescomp, warning)
A generated object has an unrecognized type at line number n. This usu-
ally indicates an internal error.

union “string” does not contain member m (¢c0, error)
The program attempted to address the variable string m, which is not
defined as part of the structure string.

string: unknown option (cpp, fatal) .
The preprocessor cpp does not recognize the option string. Try re-typing
the cc command line.

Warning: errors in .RSD file. (resource, warning)
resource has read a resource file that it does not recognize. It may be a
resource that was built by another, incompatible resource editor, or it may
have been damaged or truncated in some way.

To clear this message, press the left mouse button or any key.

= without macro name or in token list (make, error)
An equal sign ‘=" can be used only to define a macro, using the following
syntax: “MACRO =definition”. An incomplete macro definition, or the ap-
pearance of an equal sign outside the context of a macro definition, will

trigger this error message.

: without preceding target (make, error)
A colon appeared without a target file name, e.g., 8tring.

Write error. (resource, warning)
resource could not write a file. Check that the disk is not write protected,
and that the drive is working properly.

To clear this message, press the left mouse button or any key.

Write error on string. (resource, alert)
A write error occurred as resource tried to write a file. If you are writing

onto a floppy disk, make sure that it is not write protected.

write error on output object file (cc2, fatal)
cc2 could not write the relocatable object module. Most likely, your mass
storage device has run out of room. Check to see that your disk drive or
hard disk has enough room to hold the object module, and that it is
working correctly.

170 Mark Williams C for the Atari ST

You can’t reassemble shredded documents. (res
X ource, alert
A shredded document is gone forever. oY
zero modulus (cc0, warning)

The program will perform a modulo operation by zero if the code just

parsed is executed. Although the progra i
may create trouble if executegd. P m can be parsed, this statement

Section 9:

" The Lexicon

The rest of this manual consists of the Lexicon. The Lexicon consists of several
hundred articles, each of which describes a function or command, defines a term, or
otherwise gives you useful information. The articles are organized in alpbabetical
order.

Internally, the Lexicon has a free structure. The “root” entry is the one for
Lexicon. It, in turn, refers to a series of Overview entries. Each Overview entry
introduces a group of entries; for example, the Overview entry for string
introduces all of the string functions and macros, lists them, and gives a lengthy ex-
ample of how to use them.

Each entry cross-references other entries. These cross-references point up the
documentation tree, to an overview article and, ultimately, to the entry for
Lexicon itself; down the tree to subordinate entries; and across to entries on
related subjects. For example, the entry for getchar cross-references STDIO,
which is its Overview article, plus putchar and gete, which are related entries of
interest to the user. The Lexicon is designed so that you can trace from any one
entry to any other, simply by following the chain of cross-references up and down
the documentation tree. Other entries refer to The Art of Computer Programming
and the first edition of The C Programming Language.

For more information on how to use the Lexicon and how it is organized, see the
entry in the Lexicon on Lexicon.

171

172 example

example — Example

Give an example of Mark Williams Lexicon format
#include <example.h>
char *example(foo, bar) Int foo; long bar;

This is an example of the Mark Williams Lexicon format of software documenta.

tion. At this point, each entry has a brief narration that discusses the topic in
detail.

The lines in boldface describe how to use the function being described. The first
line, #include <example.h>, indicates that this function requires the imaginary
header file example.h. The second line gives the syntax of the function. char
*example means that the imaginary function example returns a pointer to a
char. foo and bar are example's arguments: foo must be declared to be an int,
and bar must be declared to be a long.

Example

The following program gives an example of an example.

main()

printf("Many entries include examples\n");

See Also
Lexicon, all other related topics and functions
Notes

If a Lexicon entry uses a technical term that you do not understand, look it up in

the Lexicon. In this way, you will gain a secure understanding of how to use Mark
Williams C.

abort —abs 178

abort — General function (libc)

End program immediately
void abort()
abort terminates a process and prints a message on the screen. It is normally in-

voked in situations that “should not happen”. abort terminates the program by
calling exit with a non-zero exit status.

See Also

exit, _exit

Diagnostics

abort prints the relative address from the beginning of the program, so that you

can look the location up in the symbol table. See the entry for nm for more infor-
mation on how to extract the symbol table from an executable program.

abs — General function (libc)

Return the absolute value of an integer
int abs(n) int n;

abs returns the absolute value of integer n. The abs.olute value of a number is its
distance from zero. This is n if n> =0, and -n otherwise.

Example

This example prompts for a number, and returns its absolute value.

#include <ctype.h>
#include <stdio.h>

main()

(4
extern char *gets();
extern int atoi();
cher string(64];
int counter;
int input;

printf("Enter an integer: *);
gets(string);

for(counter=0; counter<strien(atring); counter++)

frnput = *(stringscounter);
if ((isascii(input)) == 0)
¢
fprintf(stderr,
"Xs s not ASCII\n", string);
exit(1);

174 access

if ((isdigit(input)) == 0)
if Cinput I=s 7-7 L& counter 1= 0)
<

fprintf(stderr,
"Xs is not & number\n®, string);
exit(1);
)
input = atoi(string);
printf("abs(Xd) is Xd.\n", input, aba(input));
See Also
fabs, floor, int
Notes
On two's complement machines, the abs of the most negative integer is itself,

access — General function (libe)

Check if a file can be accessed in a given mode
#include <access.h>
Int access(filename, mode) char *filename; Int mode;

access checks whether a file can be accessed in the mode you wish. filename is the
full path name of the file you wish to check. mode is the mode in which you wish
to access filename, as follows:

1 AEXEC execute the file
2 AWRITE write into the file
4 AREAD read the file

The header file access.h defines the manifest constants that are commonly used
with access.

access returns zero if filename can be accessed in the requested mode, and a num-
ber greater than zero if it cannot.

Example
The following example checks if a file can be accessed in a particular manner.

#include <access.h>
#include <path.h>
#include <stdio.h>

main(srgc,srgv)
int argc; char *argv(l;
(¢
char *env, *pathnasme;
extern char *getenv(), *path();
int mode; .
extern int access();

access.h 1756

it (orge 1= 3)

¢ printf("Usage: access filensme mode\n");

exit(0);
>

switch(*argvi2])
<
case ‘e’:
case ‘E’:
mode = AEXEC;
break;
case fu's
case 'M’:
mode = AWRITE;
break;
case ‘r’:
case ‘R':
mode = AREAD;
break;
default:

¢ printf(“modes: e=execute, wewrite, rxread\n®);

ex{t(0);

)

etenv(PATH");
:?v(:p:thn.me - pathzenv,arqv[1l,mode)) 1= NULL)

printf("PATH » Xs\n", env); .
printf("pathname = Xs\n", pathnarhe);
cess(pathname, mode) == 0)
1 tee pr!n::;“ls accessible in mode Xs\n",
pathname, argvi2l);

eloe printf(“Xa not sccessible in mode Xd\n",

pathnsme, mode);

b
oo printf("file Xs of mode Xd not found in path\n®,
argvill, mode);
b
See Also
access.h, path
Notes

The only meaningful test that access can perform on the Atari ST is to check if &
file is writable.

access.h — Header file

Define manifest constants used by access()

176

acos

#include <access.h>

access.hisah
oo eader file that defines the manifest constants used with the function

See Also

access, header file

acos — Mathematics function (libm)

Calculate inverse cosine
#include <math.h>
double acos(arg) double arg;

acos calculates inverse cosi
s hoyes v Pffme. arg should be in the range of [-1., 1.]. The result

Example

This example deuumstmtes the mathe"laucﬂ tUIICﬁonﬂ acos, ‘.‘n| .tan, atan’,

#include <math.h>

dodisplay(value, name)
double value; char *name;

if Cerrno)
perror(name);
else
f
errno ,pl(‘];ntf("xwg Xa\n", value, neme);
>

#define display(x) dodisplay((double)(x), #x)

main() (
extern char *gets();
double x; '
char string(64);

for(;:) C
printf("Enter rumber: ");
if(gets(string) == 0))
break;

x = atof(string);

display(x);

display(cos(x));

display(sin(x));

display(tan(x));

display(scos(cos(x))); '

address — AES 177

display(asin(sin(x)));
display(atan(ten(x)));
display(stanZ(sln(x),cos(x)));
di splay(hypot(ﬂn(x),cos(X))):
dlsplay(cabc(sin(x).ccs(x)));

)

)
See Also

erruo, errno.h, mathematics library, perror

Diagnostics

Out-of-range arguments set errno to EDOM and return 0.

address — Definition

An address is the location where an item of data is stored in memory.

On the 18086, a physical address is a 20-bit number. The i8086 builds an address
by left-shifting a 16-bit segment address by four bits, and then adding it to a 16-bit
offset address. The segment address points to a particular chunk of memory. The
i8086 uses four segment registers, each of which governs a different portion of a

program, as follows:

CS address of the code segment

DS address of the data segment

ES address of the “‘extra” segment

§S address of the stack segment

- SMALL-model programs use only the offset address; hence, their pointers are only

16 bits long, equivalent to an int. LARGE-model programs use both segment and
offset addresses. Their addresses are 20 bits long, which must be stored in a 32-bit
pointer, equivalent to a long.

On the 68000, an address is simply a
teger. The upper eight bits are ignor
microprocessors in this family, such as the
tion; memory is organized as a «flat address space”, with no restrictions set on
gize of code or data.

On machines with memory-mapped 1/0, guch as the 68000, some addresses may be
used to control or communicate with peripheral devices. Thus, using an incorrect
address as an argument to poke may accidentally disable a peripheral device.

See Also
data formats, peekb, peekl, peekw, pointer, pokeb, pokel, pokew

24-bit integer that is stored as a 32-bit in-
ed; this is not true with the more advanced

68020. The 68000 uses no segmenta-
the

AES — Technical information

178

AES

AES stands for application environment services. It draws and manipulates pre-
defined graphics elements, such as icons, pull-down menus, and windows. It is the
highest level of GEM, and the one that you will work with most often.

The AES consists of the following elements: a kernel, a screen manager, buffers,
and a set of libraries. Each is briefly described below.

The kernel performs rudimentary 1/O and provides limited multi-tasking
capability. It manipulates concurrently executing routines, or “processes”, in the
following manner. When a process has executed to the point where it makes a re-
quest from the kernel, it’s placed on a “not ready” list, where it sleeps. When an
“event” occurs that the program is awaiting (that is, when the user manipulates
the mouse or types on the keyboard, when the system’s timer signals that a certain
amount of time has elapsed, or when a message is received from another process),
the kernel moves the process from the *“not ready” list to the end of the “ready”
list, and returns a description of the event to the process.

Note that each “event generator” (i.e, mouse, keyboard, and timer) has its own
buffer, which ensures that no event is “dropped on the floor”, or lost, while
another is being processed.

The screen manager tracks the mouse pointer on the screen, and manages win-
dows and menus. It signals when a mouse button is pressed with the mouse
pointer fixed on a significant area of the screen (e.g.,, the work area in a window),
returns a message when the user manipulates a window, and drops the appropriate
menu when the mouse pointer crosses into the menu bar at the top of the screen.

Finally, AES contains & number of functions that create and manipulate screen

elements. These functions are accessed through the library libaes, and their bin-
dings are defined in the file acsbind.h.

The following names each AES routine and describes what it does.

applexit tell the AES that the program is exiting
appl_find get another application’s handle

applinit initialize a new application

appl_read read a message from another process
appL.tplay replay recorded AES events

appl_trecord record AES events

appl_write send a message to another process
evnt_button await a mouse-button event

evnt_dclick set/get double-clicking speed

evat_keybd await a keyboard event

evnt_mesag await-a message |
evnt_mouse wait for mouse to enter a rectangle .
evnt_multi await more than one event

evnt_timer wait a given amount of time

AES 179

form_alert
form._center
form.dial
form_do
form._error

fsel_input

graf_growbox
graf_handle

f mbox
grr:f_mkstate
graf_mouse
graf_rubbox
graf shrinkbox
graf_slidebox
graf_watchbox

menuw.bar
menu_icheck
menu_ienable
menu_register
menu_text
menu_tnormal

objc_add
objc.change
objc_delete
objc.draw
objc_edit
obje_find
objc_offset
objc_order
objc_set

re_copy
rc.equal
rc_intersect
rc.union

rsrc_free
rsre_gaddr
rsrc_load
rsre_obfix
rsrc_saddr

scrp_read
scrp_write

perform an alert dialogue
center dialogue box on screen
reserve/release dialogue box
use dialogue box

display preset error box

display/run file selector box

draw expanding box outline

return VDI handle

draw moving box

return current mouse states

change mouse pointer’s shape .
draw box that expands with mouse pointer
draw a shrinking outline

find center of box's “slider” .

check if mouse pointer is within box

display/erase menu bar)
display/remove checks by menu items
enable/disable menu items

name desk accessory on desk menu
change text of menu item .
show menu title in normal/reverse video

add an object to object tree

change an object’s state

delete object from object tree

draw an object

edit text within an object .

find if mouse is over an object

return location of object on th_e screen
change order of object within its tree
compute object’s location

copy a rectangle

compare two rectangles
calculate overlap of rectangles
combine rectangles

free memory allocated to resource
get address of data structure

load resource file into RAM
convert character coordinates
store index to data structure

find name of scrap directory
set name of scrap directory

aesbind.h — alignment 181

180 AES
shel_envrn search for environmental variable
shel_find find a file name
shel_read return name of parent program
shel_write tell desktop which application to run next
wind_ecale calculate window size
wind_close close a window
wind..create create a window
wind_delete delete window
wind_find find a window under mouse pointer
wind_get get information about a window
wind_open open a window
wind_set set values for window
wind_update inhibit/allow AES updates to windows

Each routine has its own entry within the Lexicon; its bindings are given, with a
fuller description and, often, an example.

Programming the AES
The basic skeleton of an AES or VDI application is as follows:

/* application-specific initialization */
appl_init();

/* used with VDI only */
v_opnvuk(work_in, &vdi_handle, work_out);

for ;1) (
/* event loop body */

)

/* application-specific cleanup */

v_clsvuk(vdi_handle); /* used with VDI only */

appl_exit();

exit(status);
Evex:y process must be declared to the AES through the function appl_init. This
routine assigns a handle to the process, with which it is recognized and
n;pm;_)ulated by the kernel. It also notifies the AES that this program is a GEM ap-
plication.

The function appl_exit frees up AES structures allocated to the process, and en-
sures.that the process terminates gracefully. The cleanup phase of an application is
very important. Programs that depend upon the desktop to close windows or per-
form other housekeeping tasks limit their usefulness unnecessarily.

If the program is intended to be a desk accessory, replace the call to appLinit with

the following: .
menu_register(appl_inft(), " Menu name"); l

T!xis tells the AES that the program is a desk accessory, and registers its name

with the menu of desk accessories (the one that always appears leftmost on the

menu bar). See desk accessory for more information on how to build and com-

{

pile an accessory.

Not all C programs use the AES specifically. Programs that use only UNIX
routines or STDIO need never worry about the AES. All programs that use the
graphics interface, however, must run under the AES; this means that all programs
that use the VDI must begin with applinit and close with appl_exit.

The AES provides sophisticated routines to help draw windows and menus, and
create graphics objects. See the entries for window, menu, and object for more
details.

For information about compiling AES programs, see the entry for TOS.

See Also
aesbind.h, gemdefs.h, libaes, libvdi, menu, object, TOS, window

Notes

The AES binding library uses the object file crystal.o to access the AES services.
A program should never call this function directly; it is automatically linked with
libaes.a. You should never name a function or a global variable crystal if your
program uses the AES.

Note that both the AES and the VDI use trap 2 to access the services.

aesbind.h — Header file

Declare GEM AES routines

aesbind.h is the header file that declares the GEM AES routines contained in the
library Hbaes.n, and lists the parameters for each.

See Also

AES, header file, TOS

alignment — Delinition

Alignment refers to the fact that some microprocessors require the address of a
data entity to be aligned to a numeric boundary in memory so that address modulo
number equals zero. For example, the 68000 and the PDP-11 require that an in-
teger be aligned along an even address, i.e., address%2==0. Generally speaking,
alignment is a problem only if you write programs in assembly language. For C
programs, Mark Williams C ensures that data types are aligned properly under
foreseeable conditions. You should, however, beware of copying structures and of
casting & pointer to char to a pointer to a struct, for these could trigger alignment
problems.

Processors react differently to an alignment problem. On the VAX or the i8086, it
causes a program to run more slowly, whereas on the 68000 it causes a bus error.

182 appl.exit — appl_init

See Also
data types, declarations

appl_exit — AES function (libaes)

Exit from an application
#include <aesbind.h>
int appl_exit()

applexit is an AES routine that notified the AES that the program no longer re-
quires its services. It frees the AES structures and the handle associated with the
process. It does not terminate program execution.

(z;%pL(:xit returns zero if an error occurred, and a number greater than zero if one
id not.
Example

gor examples of how to use this routine, see the entries for evnt_multi and win-
ow.

See Also
AES, appl_init, TOS

appl_find — AES function (libaes)

Get another application’s handle
#include <aesbind.h>
int appl_find(name) char name{9];

applfind is an AES routine that fetches the handle of another application.

;zame is thg name of tl:xe application to find, minus any suffix and all in upper-case

flz]tters.. It is always eight characters long. If the name of the application is less

Ehz;r:a :txght cl}:‘aracters lc]mg, fyo}x: must use space characters to pad name to eight
rs. For example, if the name of the application i

name must point to the string PP 'o example.prg, then

HEXAMPLE ®

appl_find returns the handle if it is found, and -1 if
quires that the application be started with shel_write. an error occurred. This re

See Also
AES, TOS

appl.init — AES function (libaes)

Initiate an application :
#include <aesbind.h> i
int applL_init())

applread — appl_trecord 183

appLinit is an AES routine that declares an application. It registers the applica-
tion with AES, and initializes all resources used by the application. It returns the
application’s handle if all went well, or -1 if an error occurred.

Example

For an example of this routine, see the entries for evnt_multi, menu, object, and
window.

See Also
AES, applLexit, TOS

appl_read — AES function (libaes)

Read a message from another application
#include <aesbind.h>
int appl_read(handle, length, buffer) int handle, length; char *buffers

appl_read is an AES routine that helps to read a message sent by the function ap-
plwrite. The first 16 bytes of such a message are read by either of the functions

evnt_mesag or evnt_multl; appl-read can read the portion of the message that
extends beyond the first 16 bytes, should the message be longer than 16 bytes.
handle is the AES handle of the application that wrote the message, and length is
the number of bytes to read. The third word of the message received by
evnt_mesag or evnt multi gives the number of extra bytes to be read, i.e, the
value to which this variable should be set. buffer is the place into which the mes-
sage is written. It returns zero if an error occurred, or a number greater than zero
if one did not. ’

See Also
AES, appl_write, evnt_mesag, TOS

appl-tplay — AES function (libaes)

Replay AES activity

#include <aesbind.h>

int appl_tplay(buffer, number, speed) char *buffer; int number, speed;
appl_tplay is an AES routine that replays a set of AES events. These events must
be recorded with the function appl_trecord. buffer is the name of the buffer in
which the actions are stored. number is the number of actions that you wish to
replay, and speed is a number from one to 10,000 that indicates how quickly the ac-
tions should be replayed. appl tplay always returns one.

See Also
AES, appl_trecord, TOS

appl_trecord — AES function (libaes)

Record user actions

184 appl write

#1aclude <aesbind.h>
Int appl_trecord(buffer, capacity) char *buffer; int capacity;

applra?(‘iecogd is an AES routine that records a user’s actions with the AES. Each
reco action requires an int and a long’s worth of storage. The int indi
the type of event being recorded, as follows: 8 e indicates

0 timer event

1 mouse button event
2 mouse event

3 keyboard event

The long can hold a variety of information, d . .
recorded, as follows: on, depending on the type of event being

timer milliseconds elapsed
button low word: state (0=up, 1=down)
high word: number of clicks
mousge low word: X coordinate
high word: Y coordinate
keyboard low word: character typed
high word: keyboard state

buffer is the buffer into which the user’s actions are reco ity i

vded. capacity is the num.
ber of events that can be stored. This should equal the amount of sto})‘,age available
to buffer, divided by six (the number of bytes used by each event).

appl_trecord returns the number of events actually recorded. Th
be replayed with the function appl_tplay. Y o ese events oan

See Also
AES, appl_tplay, TOS

appl_write — AES function (libaes)

Send a message to another application
#include <aesbind.h>

int applLwrite(handle, length, buffer) int kandle, length; char *buffer;

applL.write is an AES routine that sends a messa icati
: utin ge to another application. handle
is the handle of the application to which the message is being seﬁt. length is the

length of the message, i : . .
sags s writhen, essage, in bytes. buffer points to the buffer into which your mes-

Standard messages are 16 bytes (eight words) lon i i
] ! g. The first word iden

type of message being written, and the second gives the identifier of theeapt;l)jliiiit.%:
to which the message is being sent. The identifier can be found with the function
f:ppLﬁnd; see its entry for more information on its use. appl_write returns zero
if an error occurred, and a number greater than zero if one did not. The third
word gives tpe number of bytes in the message beyond the standard 16. Thus, if
you are sending a standard 16-byte message, this value should be zero. . '

ar 185

The target application can read the first 16 bytes of a message through the
functions evnt_mesag or evnt_multi. Any additional bytes in the message should
be read with the function applread.

See Also
AES, appl_find, appl_read, TOS

ar — Command

The librarian/archiver
ar option [modifier){position] archive [member ...}

The librarian ar edits and examines libraries. It combines several files into a file
called an archive or library. Archives reduce the size of directories and allow many
files to be handled as a single unit. The principal use of archives is for libraries of
object files. The linker 1d understands the archive format, and can search libraries
of object files to resolve undefined references in a program.

The mandatory option argument consists of one of the following command keys:

d Delete each given member from archive. The ranlib header is updated if
present.

m Move each given member within archive. If no modifier is given, move each
member to the end. The ranlib header is modified if present.

P Print each member. This is useful only with archives of text files.

q Quick append: append each member to the end of archive unconditionally.
The ranlib header is not updated.

r Replace each member of archive. The optional modifier specifies how to per-
form the replacement, as described below. The ranlib header is modified if
present.

t Print a table of contents that lists each member specified. If none is given,
list all in archive. The modifier v tells ar to give you additional information.

x Extract each given member and place it into the current directory. If none

is specified, extract all members. archive is not changed.

The modifier may be one of the following. The modifiers a, b, i, and u may be
used only with the m and r options.

a If member does not exist in archive, insert it after the member named by
the given position.
b If member does not exist in archive, insert it before the member named by

the given position.

186 arena

[l
i

c Suppress the message normally printed when ar creates an archive.

If member does not exist in archive, insert it before the member named by
the given position. This is the same as the b modifier, described above.

k Preserve the modify time of a file. This modifier is useful only with ther,
q, and x options.

8 Modify an archive's ranlib header, or create it if it does not exist. This is
used only with the v, m, and d options.

u Update archive only if member is newer than the version in the archive.

v Generate verbose messages.

All archives are written into a specialized file format. Each archive starts with a
“magic number” called ARMAG, which identifies the file as an archive. The mem-
bers of the archive follow the magic number; each is preceded by an ar_hdr struc-
ture, as follows:

#define DIRSIZ 14

#define ARMAG 0177535 /* magic rumber */

struct ar_hdr (
char ar_nsme(DIRS1Z]; /* member name */
time_t ar_date; /* time inserted */
short ar_gid; /* group owner %/
short ar_uid; /* user owner */
short ar_mode; /* file mode */
size t ar_size; /* file size */

bH

The structure at the head of each member is followed the data of the file, which oc-
cupy the number of bytes specified by the variable ar_size.

See Also

commands, ld, nm, ranlib

Notes

It is recommended that each object-file library you create with ar have a name that
begins with the string lib. This will allow you to call that library with the -1 option
to the cc command.

Note that ar now adjusts the time file in the ranlib header so that out-of-date
ranlib headers are now dated in 1970, and up-to-date ranlib headers are dated a
decade into the future. This should eliminate improper outdated ranlib error
messages from the linker.

arena — Definition

An arena is the area of memory that is available for a program to allocate dynami-
cally at run time. It consists of an area of memory that is divided into allocated
and unallocated blocks. The unallocated blocks together form the “free memory
pool™.

argc —argv 187

Portions of the arena can be allocated using the functions malloc, calloc, Imalloe,
lcalloc, Irealloe, or realloc; returned to the free memory pool with free; or
checked to see if they are allocated or not with notmem.

See Also

calloc, free, lcalloc, Imalloc, Irealloc, malloc, notmem, realloc

arge — Definition

Argument passed to main

int argc;

arge is an abbreviation for argument count. It is the traditional name for the first
argument to a C program’s main routine. By convention, it holds the number of
arguments that are passed to main in the argument vector argv. r:Iote that be-
cause argvi0] is always the name of the command, the value of argc is always one
greater than the number of command-line arguments that the user enters.

Example
For an example of how to use argc, see the entry for argv.

See Also

argv, main
The C Programming Language, page 110

argv — Definition

Argument passed to main

char *argvl];

argv is an abbreviation for argument vector. It is the traditional name for a
pointer to an array of string pointers passed to a C program’s ma_in function; by
convention, it is the second argument passed to main. By convention, argv[0] al-
ways points to the name of the command itself.

Example
This example demonstrates both arge and argv(], to recreate the cornmand echo.
For another example of arge, see the entry for basepage.

main(arge, argy)
int argc; char *argvii;
<

int i;

for.(i = 1; | < argc;)
{
printf("Xs", argvlil);
if (++i < arge)
putchar(’ ');

B pyerthgunt gt

T s &

iy 28 REY 5 R et
it v U N A ¢ ;E‘,’éw
Y5

wi

&

188 array

putchar(’\n’);
return 0;
>

See Also

arge, crts0.0, ertsd.o, crtsg.o, main, Pexec
The C Programming Language, page 110

array — Definition

An array is a concatenation of data elements, all of which are of the same type or
structure. All the elements of an array are stored consecutively in memory, and

each element within the array can be addressed by the array name plus a sub-
script.

For example, the array int foo[3] has three elements, each of which is an int.
The three int are stored consecutively in memory, and each can be addressed by
the array name foo plus a subscript that indicates its place within the array, as
follows: foo[0], foo[1], and foo[2). Note that the numbering of elements within an
array always begins with ‘0"

Arrays, like other data elements, may be automatic (auto), static, or external (ex-
tern).

Arrays can be multi-dimensional; that is to say, each element in an array can itself
be an array. To declare a multi-dimensional array, use more than one set of square
brackets. For example, the multi-dimensional array foo[3][10] is a two-dimen-
sional array that has three elements, each of which is an array of ten elements.

Note that the second sub-script is always necessary in a multi-dimensional array,
whereas the first is not. For example, foo[][10] is acceptable, whereas foo[10][]is
not; the first form is an indefinite number of ten-element arrays, which is correct

C, whereas the second form is ten copies of an indefinite number of elements,
which is illegal.

Page 83 of The C Programming Language forbids the initialization of automatic ar-
rays. Mark Williams C lifts this restriction. You can initialize automatic arrays
and structures, provided that you know the size of the array, or of any array con-
tained within a structure. An automatic array is initialized in the same manner as
aggregate, but initialization is performed on entry to the routine at run time, in-
stead of at compile time. Note that because this feature is not part of the standard
C language, its use will limit the portability of your program.

Example

The following program initializes an automatic array, and prints its cpntents.

TR

as 189

main()

fnt fool31 = (1,2, 3%

printf("lere’s foo's contents: %Xd Xd Xd\n*,
foo(01, fooll), fool21);

M)

See Also ot
declarations, flexible array, struc

The C Programming Language, pages 25, 83, 210

as — Command
Assembler for Amri]S;’_I;
as [-glx] [-o outfile] file ... -
as is the Mark Williams assembl.er&olt ;:onstiasseo:‘) b(;:cet prmr:é, c;lrlneﬁia:st:) ‘Zh;e
bly language into relocal
;ur;ndiciiiei; ft}?: EE)mc]on}xlpiler. Relocatable object modules produced by the assembler

and the compiler are of the same format.

iti tines in assembly language.

i ltipass assembler for writing small subrou ree

gzc:u:e [irt“ils x?ot intended to be used for full-scale assembly-language programming
it lacks some features seen with more elaborate assemblers.

Usage

is i i to assemble programs
bler as is invoked automatically by cc
\I:Inptlt-:m:ns}:;f’ft{;eo?s.s:mHg:vever, you can invoke as directly from the shell msh, by

using the following command:

“as [-gix] [-o outfilel file ...

i i i tions:
The following describes the available op
he first pass the type un-

) i bols that are undefined at the end of the type
® gelgf\:tlil :yxtxgrr?a?, as though they had been declared with a .globl directive.
-1 Generate a listing on the standard output.
-0 Whrite the assembled executable into outfile. The default is L.out.

-v Give verbose error messages. - N
- o o)
i -giobal symbols that begin with the c.hm:acter rom ,
x l?;?eazllle‘:;t)’nt}%eoobjez module. This speeds the linking of files by removing
compiler-generated labels from the symbol table.

Lexical conventions . o } -
Assembler tokens consist of identifiers (also known as gymbols” or “names”), con

stants, and operators.

190 as

An identifier is a string of alphanumeric characters, including the period .’ and the
underscore ', The first character must not be numeric. Only the first 16 charac-.
ters of the name are significant; the rest are thrown away. Upper case and lower
case are different. The machine instructions, assembly directives, and symbols that
are used frequently are in lower case,

Numeric constants are defined by the assembler by using the same syntax asg the C
compiler: a sequence of digits that begins with a zero ‘0’ is an octal constant; a se-
quence of digits with a leading ‘0x’ is a hexadecimal constant (‘A’ through ‘F’ have
the decimal values 10 through 15); and any strings of digits that do not begin with
‘0" are interpreted as decimal constants.

A character constant consists of an apostrophe followed by an ASCH character.

The constant’s value is the ASCII code for the character, right-justified in the
machine word.

A blank space can be represented either as 0x20 (its ASCII value in hexadecimal),

or as an apostrophe followed by a space ('), which on paper looks like just an
apostrophe alone,

The following gives the multi-character escape sequences that can be used in a
character constant to represent special characters:

\b Backspace 0010)
\f Formfeed (0014)
\n Newline (0012)
\r Carriage return (0015)
\t Tab (001D)
\v Vertical tab (0013)
\nnn Octal value (Onnn)

Spaces and tab characters can be used freely between tokens, but not within iden-
tifiers. A space or a tab character must separate adjacent tokens not otherwise
separated, e.g., an instruction opcode and its first operand.

Masks
a8 accepts a register mask syntax for the movem instruction, The syntax is as
follows:

movem $<rmask>, - (<an>)

movem $<fmask>, <adr>

movem <sdr>, $<fmask>

movem (<an>)+ $<fmask>
The abbreviations between angle brackets ‘<’ ‘>’ mean the following:

|

<an> The registers a0 through a7, :
<adr> The effective address (not register direct), l.e., the location of the ad-

dress.

as 191

i hose bits show wh?ch
is can be either a wox:d w t ow Whio

<k e nt:;‘s:;vz }:;:Ig{th bit 0 indicating register a7 mx::‘;rige;n‘ (t Y g

?:zz::sdo; ora list of the registers to save, enclosed e

d mask) This, too, is either a }vox'-d v'vhose l');zrsdo mvouch

(foywar tg] eave or restore, with bit 0 indicating re'glsters d0 throngh
‘r;.agl itgr?ndicaﬁng register a7; or a list of these regi

i

braces. ically produces
sed assembler automatically prodt
. : i f mask is used, the m destination, minus
Note that if the [list) variety o ing modes (bits backward for Todified.
:hconsistt::tts vt?t} “r‘:gfiom‘,er t:lla}ivtidrfll?sg gnord value is used, the bits are not modifi
@ con

<fmask>

Thus:
-85, - (sp)
A $(d2-d7,a2-85), - (sp
::::l (sp)+,$(d2-d7,82-852
produces the same code as:
movem. 1 $0x3F3C,-(sp)

movem. L (sp)+,$0x3CFC ' o thus
Note, too, that ranges that include both register sets are allowed;

moven. | $(d0-85),4(85)
will gave d0 through a5. The instruction
movem. | $(a5-d0),4(85)

does the same thing. Likewise, A
- -(2p)
vem. $(d2,d3-d5,a3,85-a7), R
sult:;n code that saves d2, d3 through d5, a3, and ab through a
ret
tion

e instruc-

movem. | £(d0), - (8p)
saves d0.
i f the line. The
gg:r:::ﬁgtire introduced by a slash (*/’) and continue to the end o

assembler ignores all comments.

sections i of sections, each
ngmmbler permits the division of programs mtodsr:s\;n;gzl;e o o o
— asserg. (roughly) to a functional area of the a e bt h ram
pection e ""g! own location counter during assembly. 4 e asgfonowmgras: secti
sems(:ﬁ)(;av?d;d into three groups that contain code and data,
are

192 as

as 193

shared: shri shared instruction
shrd shared data

private: prvi private instruction
prvd private data

uninitialized: basi uninitialized instruction
bssd uninitialized data
strn strings

All Mark Williams assemblers use the same set of sections; this increases the por-
tability of programs among operating systems. In most instances, the programmer
need not worry about what sll of the program sections are, and can simply write
code under the keywords .prvi or .shri, and write data under the keywords .prvd
or .shrd. At the end of assembly, the sections of a program are concatenated so

that within the assembly listing the program looks like a contiguous block of code
and data.

The current location

The special symbol ¢’ (period) is a counter that represents the current location.
The current location can be changed by an assignment; for example:

. = +START

The assignment must not cause the value to decreasz and it must not change the
program section, i.e., the right-hand operand must be defined in the same section
as is the current section.

Expressions

An expression is a sequence of symbols that represent a value and a program sec-
tion. Expressions are made up of identifiers, constants, operators, and brackets.
All binary operators have equal precedence and are executed in a strict left-to-right
order, unless altered by brackets. Note that square brackets, ‘{* and ‘}’, are used

to group the elements of expression, because parentheses are used for addressing
indexed registers.

Types

Every expression has a type, which is determined by that expression’s operands.
The simplest operands are symbols, which yield the following types:

undefined A symbol is defined if it is a constant or a label, or when it is as-
signed a defined value; otherwise, it is undefined. A symbol
may become undefined if it is assigned the value of an undefined
expression. It is an error to assemble an undefined expression
in pass 2. With option -g, pass 1 allows assembly of undefined
expressions, but phase errors may be produced if undefined ex-

pressions are used in certain contexts, such as in a .blkw or
.blkb.

i i stant or
An absolute symbol is one defined ultimately from a con
absolute from the difference of two relocatable values of the same type.

register The machine registers.

i ls (in a program
All other user gymbols are either defined label)
Relocatable secﬁ%n) or externals. These are relocated at link time. Every
user program section and external symbol defines a unique type
class.

i that identifies it internally;
Each keyword in the assembler has a hidden value . X
h:fveveryv;ll hidden values are converted to absolute c_onstants in express;otr‘x‘s.
Thus at;y keyword can be used in an expression to obtain the basic value of the

keyword.

the type of an expression does not inchgde such gttnbutes as length, so
gl(;tea;::x:xbler tv}‘fnp“ not remember whether a parpcular vanablebwgsthdefl;rs\se:lmzﬁ;
word or a byte. Addresses and constants have different types, ued deb sembler
does not treat a constant as an immediate value }m‘ ~ss it is p;ec egmyt oo
sign ‘¢". If a constant is used where an address is expected, the c<()1|‘18ﬁ n vl be
treated like an address (and vice versa). The programmer must distngu
tween variables and addresses or immediate values.

Operators ' _
The following table shows various characters interpreted as operators in expres-

sions.

+ Addition

- Subtraction

. Multiplication

- Unary negation

- Unary coraplement

~ Type transfer (cast) '
i Segment construction

Type propagation . . .
When operands are combined within expressions, the resultxlll;,; typ? is a function ?t:
both the operator and the types of the operands. The **’, *~ and unary ‘-

operators can manipulate only absolute operands and always yield an absolute
result. .

' igni iti ds to yield an absolute
The ‘+* operator signifies the addition of two absolute operan]
resilt, an% the adgintion of an absolute to a relocatable operand to yield a result
with the same type as the relocatable operand.

i - including relocatable,
The binary - operator allows two operands o(the same type, inc
to be sug{mcteg to yield an absolute result; it also allows an absolute to be sx:)?
tracted from a relocatable, to yield a result with the same type as the relocatable

operand.

194 as

The binary ‘“*’ operator yields a result with the value of its left operand and the
type of its right operand. It may be used to create expressions (usually intended to
be used in an assignment statement) with any desired type.

Statements

A program consists of a sequence of statements separated by newlines or by semi-
colons. There are four kinds of statements: null statements, assignment
statements, keyword statements, and machine instructions.

Any statement may be preceded by any number of labels. There are two kinds of
labels: name and temporary.

A name label consists of an identifier followed by a colon (). The program section
and value of the label are set to that of the current location counter. It is an error
for the value of a label to change during an assembly. This most often happens
when an undefined symbol is used to control a location counter adjustment.

A temporary label consists of a digit (‘0’ through ‘9") followed by a colon (‘). Such
a label defines temporary symbols of the form xf and xb, where x is the digit of the
label. References of the form xf refer to the first temporary label x: forward from
the reference; those of the form xb refer to the first temporary label x: back from
the reference. Such labels conserve symbol table space in the assembler.

A null statement is an empty line, or a line that contain only labels or a comment.
Null statements can occur anywhere. They are ignored by the assembler, except
that any labels are given the current value of the location counter.

Note that the programmer is responsible for proper alignment of data. See the
entry on alignment for more information.

Assignment statements

An assignment statement consists of an identifier that is followed by an equal sign
‘=" and an expression. The value and type of the identifier are set to those of the
expression. Any symbol that is defined by an assignment statement may be
redefined, either by another assignment statement or by a label. An assignment
statement is equivalent to the equ keyword statement found in many assemblers.
Assembler directives

Assemblgr directives give instructions to the assembler. Each directive keyword
begins with a period, and some are followed by operands.

Changing the current program section

These directives change the current program section to the named section.

|

as 196

.bssd shrd
.bssi shri
prvd .strn
.prvi

The rrent tion un 8 t to ﬂle hi hest previous val\le of the location
cu loca counter 18 se g P

counter for the gelected section.

‘ i otation
el atrmgm. directive, the first non-whitespace cl'mx:acter, typlcall');ea c(}l:; otation

- kl,saﬁer the’keyword is taken as 8 delimiter. Sumﬁl e o 19

;nar the string are assembled into successive bytes un this de e her

a?al?n encountered. To incdude a quotation in & string,

character for the delimiter.

i ine to be encoun
is an error for & pewhne
Eltelimit.er. The multi-character escape sequ
in the subsection Constants may be use
newlines and other special characters.

i final
tered before reaching the
ences that are described above
d in the string to represent

the

blkb expression ocks that are filled with zeros. The size of

This directive assembles bl
block is expression bytes.

. i th
-bikd cxpr%s;il: 'cllirective assembles blocks that are filled with zeros. The size of the
block is expression longs.

-blkew expressiot filled with zeros. The size of the

This directive assembles blocks that are
block is expression words.

. T i assembled
byte exprlflsesr:mtltxé g;;:ressions in the list are tmncgted to byte ms::g %;(z:o issemb
into z,;uccessive bytes. Expressions in the list are sepa ‘
r ingerting NUL, if neces-

recti i t by
: ootives .even and .odd force alignmen J e
oven ;hri' d:o setv ‘:}819 location counter to the next even or odd location, resp

tively.
' ' e . If the
globl !de;{lg:: rt[l,lé%fir:erlet-liﬁers separated b{ﬂcortr;‘mas ar; gga:;ﬁeiie%lo‘?;lomer ob}:
! in the current assembly, they ma er o
?er:t drflf;gfl(lle:'] if tehey are undefined, they must be resolved by the linke

before execution.

i gsion]) A the
long exprI'esst;:Ji: &ifgggge. the expressions in the hgt are truncated toi(l)::ignatr}l] 1 the
rr;sultjng data are assembled into successive longs. Express

are separated by commas.

’ e e et e ea B TR

196 as

.page This causes the assembly listing to ski i
) ; p to the top of a new page by inser-
?hng a form-feed character into the file. The title is printedpa%ethz to;eof
e page.

title string
Here, string appears on the top of eve . e
is directi ry page in the assembly] .
This directive also causes the listing to skip & a new page. v listing

.odd The directives -even and .odd force alignment by inserting NUL, if neces-
;ar)i, to set the location counter to the next even or odd location, respec-
vely. '

.globl identifier [, identifier]

word expression [, expression)
E:t; e.tpresszonsbilndthis list are truncated to word size and the resulting
are assembled into successive words. Expressi i i
eraratad by o xpregsions in the list are

Conventions

C compiler conventions, namin i j i
\ g conventions, function calling conventions, th
management of arguments, and return values are i i il i the
1 \ all describ
Lexicon entry for calling conventions. od in detail in the

68000 register names

The assembler for the Motorola 68000 mi
; 5 croprocessor uses a subset of the machine
op;od;s and register names provided by the manufacturer’s assembler. All unsup-
go ed names are longer synonyms for names that are supported. Assembler direc-
ves, statement syntax, and expression syntax are different.

Ihe i()]l()wmg xeglstel names are ledeline(l Ill lell h of (}l)el&l.l()ll 18
p . geneml, gt

Spemﬁed b}‘ Opcode. The -1 suffixes are used Ollly d addleBSlﬂ to d -

n mn exed g ifferen

16-bit 32-bit

usp sp
cer pc

sr d0.1

do dil

A d2.1

d2 d3.l

d3 d4.l

d4 ds.l

d5 d6.l '
dé 471 !
d7 a0.l

a0 all

al a2l

as 197

Address descriptors

a2 a3l
a3 a4.l
a4 ab.l
ab a6l
a8 a7l
a7 sp.l

The following syntax is used for general source and destination address descriptors.
The syntax is a subset of that used by Motorola assemblers, except that the charac-
ter ‘¢’ is used to specify immediate data, and that the suffix :8 appended to an ab-
solute address forces absolute short addressing. Note that short address modes are
not supported by the TOS system executable format.

In the examples, the symbols a, d, and r refer to address, data, and any register,
respectively, and the symbol ‘e’ refers to any expression.

dn Data register direct

an Address register direct

(a) Address register indirect

(a)+ Address register postincrement
-(a) Address register predecrement
e(a) Address register displacement

e(a,r) Address register short index
e(a,r.]) Address register long index

e:s Absolute short address
e Absolute long address
e(pc) Program counter digplacement

e(pc,r) Program counter short index

e(pe,r.]) Program counter long index

$e Immediate data

i Label
ea represents the effective address of any data address. an indicates any register
from a0 to a7; dn, any register from d0 to d7.
The addressing modes are classified into four categories that are used in the in-
struction listings to distinguish allowed addresses:
e Data addresses are all addresses except address registers.
e Memory addresses are all addresses except data and address registers.

® Control addresses are all memory addresses, except address register
predecrement and address register postincrement.

e Alterable addresses are all addresses except program counter displacement,
program counter index, and immediate.

198 as

Failure to observe category restrictions will generate address errors.
Machine instructions

The following machine instructions are defined. For the most part, they form a
subset of the instructions provided by Motorola assemblers that eliminates long
synonyms such as bsr.l or add.w. The conditions hs (higher or same) and lo
(lower) are provided as synonyms for cc (carry clear) and cs (carry set).

In the examples an, dn, and rn refer to address, data, and registers, ea refers to
general effective addresses, | refers to direct addresses, e refers to a general expres-
sion, and n refers to an absolute expression. :

Many syntactically correct instructions may prove to have semantic errors because
of restrictions of effective addresses to data, alterable, memory, or control
categories. Contrary to appearances, no 68000 instruction operates on all addres-
sing modes; some modes are always forbidden. These restrictions are noted at the
end of each instruction description in the 68000 user’s manual. In the following lis-
ting, instructions have been classified according to their allowed addressing modes.
Each classification is named by the lexicographically first instruction in the class.

ABCD Type: These instructions accept only two kinds of operands: data register

direct and address register predecrement. The BCD instructions operate on byte
size operands only.

abed dn,dn

abed -(an),-(an)

abed C100
addx D140
addx.b D100
addx.1 D180
sbed 8100
subx 9140
subx.b 9100
subx.] 9180

ADD Type: These instructions take a data-register source to a memory-alterable

destination or any source to a data-register destination. If the operation size is
byte, then address-register direct sources are forbidden.

add dn,ea

add ea,dn

add D040
add.b D000
add.l D080
sub 9040
sub.b 90600
sub.l 9080

as 199

ADDA Type: These

instruction cannot com

_adda
adda.l
cmp
cmp.b
cmp.l
cmpa
cmpa.l
movea
movea.l
suba
suba.l

ADDI Type: These instructions requ

egan
ea,8n
ea,dn
es,dn
ea,dn
ea,an
ea,an
ea,an
ea,an
ea,an
ea,an

DOCO
D1CO
B040
B0O0O
B080
B0CO
B1CO
3040
2040
80Co
91CO

instructions accept any source effective asddreei“se.8 The emp
bine byte operations with address-register sources.

ire a data-alterable destination-effective ad-

dress. The nbed instruction, set according to condition, and the tas instructions

are implicitly byte sized.
addi $n,ea
addi.b $n,ea
addil $n,ea
clr ea
clrb ea
clr.l ea
cmpi $n,ea
cmpib $nea
cmpi.l $n,ea
eor dn,ea
eorb dn,ea
eor.l dn)ea
nbed ea
neg ea
neg.b ea
negl ea
negx ea
negx.b ea
negx.] ea
not ea
not.b es
not.} ea
scc ea
8C8 ea
seq es
sf ea
sge ea

0640
0600
0680
4240
4200
4280
0C40
0C00
0C80
B140
B100
B180
4800
4440
4400
4480
4040
4000
4080
4640
4600
4680
54C0
55C0
57CO
651C0
5CCO

200 as

sgt
shi
shs
sle
slo
sls
slt
smi
sne

spl

subi
subi.b
subi.l

tst.h
tat.l

82888888¢8¢8s

[e]
-

ea
ea
ea
ea

gree
288

SECO 4
52C0 :
54C0

5FCO

55C0

63C0

5DCO

5BCO

56C0

5ACO

50C0

0440

0400 :
0480 ‘

58C0 .
59C0

4ACO

4A40

4A00

4A80

ADDQ Type: These instructions take an immediate-source operand in the range 1
to 8 and an alterable effective-address destination operand. If the operation size is
byte, then address-register direct destinations are forbidden,

addq
addq.b
addq.l
subq
subq.b
subq.]

AND Type: These il.lstructions take two forms: data register direct source to
memory-alterable destinations, and data source effective address to a data register

direct destination.

and
and

and
and.b
and.]
or
or.b
or.l

ANDI Type: These instructions combine an immediate source operand with either

$n,ea
$n,ea
$n,ea
$n,ea
$n,ea
$n,ea

dn,ea
ea, dn

a data-alterable effective

5040
5000
5080
65140
5100
5180

C040
Co000
C080
8040
8000 :
8080 !

address destination operand or the status register. The

as 201

i hether the
whole status register or only the low byte is selected, depending on W e

operation size is word or byte.

andi
andi

andi
andi.b
andi.l
eori
eorib
eoril
ori
ori.b
ori.l

L Type: The shift instru({tions com
gasta register, data register shift count o
a memory-alterable effective address. T

$n,0a
$n,sr

0240
0200
0280
0A40
0A00
0A80
0040
0000
0080

. : . ¢
in three flavors: immediate shift count o

t?(;:ta register, and shift by one of a word at

he memory shift opcode is formed from the

opcodes given by setting bits 6-7, and by moving bits 3-4 to positions 9-10.

asl
asl
asl

asl
asl.b
asl.]
asr
ast.b
asr.]
1sl
Isl.b
1811
lsr
Isr.b
Isr.l
rol
rolb
rol.l
ror
ror.b
ror.l
roxl
roxlb
roxl1
roxr
roxr.b

$n,dn
dn,dn
ea

E140
E100
E180
E040
E000
E080
E148
E108
E188
E048
E008
E088
E158
E118
E108
E058
E018
E098
E150
E110
E1980
E050
E010

202 as

roxr.] E090

BCHG Type: The bit instructions take an immediate i

or data ster source
ioperfu'nd and a data-alterable destination effective address. The o;:glation size is
mplicitly long for data register destinations and implicitly byte for other des-

tinations.
bchg $n,ea
bChg dn’ea
bchg 0140
belr 0180
bset 01C0
btst 0100

CH}(Type:_Thf_zse instructions take a data-source effective address and a data-
regllster destination. Soqrce and destination are implicitly word-sized for chk,
muls, and mulu. Source is word sized, and destination is long for divs and divu.

chk “ea,dn 4180
divs ea,dn 81C0
divu ea,dn 80C0O
muls ea,dn C1Co
mulu ea,dn CoCo
JMP Type: These instructions require control-effective addresses.
jmp ea 4ECO
jsr ea 4E80
lea ea,an 41C0
pea ea 4840

gl%VE Type: M(_)ve instructions take any source effective address to data-alterable
estination eﬂ'ectxve’addresses, but byte moves from address registers are forbid-
ltien. When the: destination is the condition-code or status register, the source must
tie !; data effective address a.nd the instruction size is implicitly byte or word respec-
g']e y. Wh_en the status register is the source the destination must be a data-alter-
able eﬂ'e.ctwe address. When the user stack pointer is an operand, the other
operand is an address register and the instruction size is implicitly long.’

move ea,ea 3000
move.b ea,ea 1000
move.} ea,ea 2000
move ea,ccr 44C0
move ea,sr 46C0
move sr,ea 40Co 4
move an,usp 4E60 :
move usp,an 4E68

as 203

MOVEM Type: These instructions take two forms' an immediate-register mask
source with a control or predecrement destination, or a control or .postincren'mnt
source with an immediate-register mask destination. The bit erdering in register
masks is the programmer’s responsibility.

movem $n,ea 4880

movem ea$n 4C80
movem.]l $n,ea 48C0
movem.l ea$n 4CCO

MOVEP Type: The move-peripheral instruction uses data register and address
register indirect with displacement operands.

movep e(an),dn 0108
movep dn,e(an) 0188
movep.] e(an),dn 0148
movep.l dn,e(an) 01C8

Miscellaneous Instructions: the remaining instructions hgve operand syntax
which is self explanatory. Mnemonics with “.s" are short displacements, within
+127 or -128 bytes (not words).

hee i 8400
bcee.s i 8400
bes i 6500
bes.s 1 6500
beq 1 6700
beq.s 1 6700
bge 1 6C00
bge.s 1 6C00
bgt 1 6E00
bgt.s 1 6E00
bhi 1 6200
bhi.s i 6200
bhs 1 6400
bhs.s 1 6400
ble 1 6F00
ble.s 1 6F00
blo 1 6500
blo.s 1 6500
bls 1 6300
bls.s 1 6300
bit 1 6D00
bit.s 1 6D00
bmi 1 6800
bmi.s 1 6B00
bne 1 6600

204 as

as68toas 2056

bne.s

bpls

1 6600
1 6A00
1 6A00
1 6000
1 6000
1 6100
1 6100
1 6800
1 6800
1 6900
1 6900
(an) +,(an)+ B148
(an)+,(an)+ B108
(an)+,(an)+ B188

dn,1 54C8
dn,l 55C8
dn,l 57C8
dn,l 51C8
dn,l 5CC8
dn,l 5EC8
dn,l 52C8
dn,] 54C8
dn,l 5FC8
dn,l 55C8
dn,l 53C8
dn,1 5DC8
dn,] 5BC8
dn,l 56C8
dn,] 5AC8
dn,] 50C8
dn,1 50C8
dn,] 58C8
dn,l 59C8
m,rn C100
dn 4880
dn 48C0
an,$n 4E50
$n,dn 7000
4ET1
4E70
4E73
4E77
4E75
$n 4E72
dn 4840
$n 4E40

trapv 4E76
unlk an 4E58
See Also

as68toas, calling conventions, cc, cpp, commands, drtomw, 1d

Diagnostics

a8 reports errors on the
line number, the input fi
propriate. See the section on Errors,
pretation of error codes. If you use the
descriptive error messages.

standard error device. It gives a one-letter error code, the
le (if more than one specified), and a symbol where ap-
presented earlier in this manual, for inter-
-v (verbose) option, as issues longer, more

as68toas — Command

Convert Motorola assembler to Mark Williams assembler

as68toas [infile.asm] [-o outfile.s]

as68tons converts files of 68000 assembly language from the Motorola dialect into
the Mark Williams dialect. It accepts Motorola-style instructions from the standard
input device and translates them into Mark Williams-style instructions, which it
prints on the standard output device. If it cannot handle a given instruction, it
prints an error message on the standard error device.

The option -0 lets you name an output file into which as68toas writes the trans-
lated agsembly language program. If you give as68toas a file name without the -o
option, as68toas reads that file for its input. Thus, to convert the file
example.asm, which is written in Motorola-style assembly langusage, into a file of
Mark Williams-style assembly language called example.s, simply type either:

as68toas -0 exsmple.s exsmple.asm

or

8s68toas exsmple.asm -0 exsmple.s
If -0 is not followed by a file name, as68toas reports an error. If more than one
infile or outfile is named, only the last one is used. Files of Mark Williams-style as-
sembly language must have the suffix .9. Otherwise, they will not be accepted by
the assembler as.

If you wish to see in detail the differ
guage and that used by Mark Williams,
type instructions from your keyboard. as
on your screen.

See Also

as, commands, drtomw, TOS

ences between Motorola-style assembly lan-
just type the command as68toas, and then
88toas will print the modified instruction

206 ASCII

ASCII — Definition

ASCIl is an acronym for the American Standard Code for Information Interchange.
It is a table of seven-bit binary numbers that encode the letters of the alphabet,
numerals, punctuation, and the most commonly used control sequences for printers

and terminals. ASCII codes are used on all microcomputers sold in the United
States.

The following table gives the ASCII characters in octal, decimal, and hexadecimal
numbers, their definitions, and expands abbreviations where necessary.

000 0 0x00 NUL <ctrl-@> NUL character
001 1 0x01 SOH <ctrl-A> Start of header
002 2 0x02 STX <ctrl-B> Start of text
003 3 0x03 ETX <ctrl-C> End of text
004 4 0x04 EOT <ctrl-D> End of transmission
005 5 0x05 ENQ <ctrl-E> Enquiry
006 6 0x06 ACK <ctrl-F> Positive acknowledgement
007 7 0x07 BEL <ectrl-G> Bell
010 8 0x08 BS <ctrl-H> Backspace
01 9 0x09 HT <ctrl-I> Horizontal tab
012 10 0x0A LF <ctrl-J> Line feed
013 11 0x0B vT <ctrl-K> Vertical tab
014 12 0x0C FF <ctrl-LL> Form feed
015 13 0x0D CR <ctrl-M> Carriage return
016 14 0x0E SO <ctrl-N> Shift out
017 15 0x0F SI <etrl-O> Shift in
020 16 0x10 DLE <ctrl-P> Data link escape
021 17 Ox11 DC1 <ctrl-Q> Device control 1 (XON)
022 18 0x12 DC2 <ectri-R> Device control 2 (tape on)
023 19 0x13 DC3 <ectrl-S> Device control 3 (XOFF)
024 20 0x14 DC4 <ctrl-T> Device control 4 (tape off)
025 21 0x16 NAK <ctrl-U> Negative acknowledgement
026 22 0x16 SYN <ctrl-V> Synchronize
027 23 0x17 ETB <ctrl-W> End of transmission block
030 24 0x18 CAN <ectrl-X> Cancel
031 25 0x19 EM <ctrl-Y> End of medium
032 26 Ox1A SUB <ctrl-Z> Substitute
033 27 0x1B ESC <ctrl-{> Escape
034 28 0x1C FS <ctrl-\> Form separator
035 29 0x1D GS <ctrl-]> Group separator
036 30 0x1E RS <ctrl-"> Record separator i
037 31 0x1F us <ctrl-_> Unit separator !
040 32 0x20 Sp Space !
041 33 0x21 ! Exclamation point
042 34 0x22 ° Quotation mark

043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
071
0100
0101
0102
0103
0104
0105
0106
0107
0110
0111
0112
0113
0114
0116
0116
0117
0120

0x23
0x24
0x26
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32
0x33

0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F
0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
Ox4A
0x4B
0x4C
0x4D
0x4E
0x4F
0x50

e TR R

+

© 00 =3 Oy R B GO O O

mozzrxu~mommcnw>@“V‘A

ASCII 207

Pound sign (sharp)
Dollar sign
Percent sign
Ampersand
Apostrophe
Left parenthesis
Right parenthesis
Asterisk

Plus sign

Comma .
Hyphen (minus sign)
Period

Virgule (slash)

Colon
Semicolon
Less-than symbol (left angle bracket)
al si
Ié?zat;-gan gymbol (right engle bracket)
Question mark
At sign

asctime 209

208 ASCIH
0121 81 0x51 Q
0122 82 0x52 R
0123 83 0xb53 S
0124 84 0x54 T
0125 85 0x55 U
0126 86 0x56 v
0127 87 0x67 w
0130 88 0x58 X
0131 89 0x59 Y
8132 90 0x5A Z
0;333 gé 8:23 { Left bracket (left aquare bracket)
0135 93 0x5D) Bgckslash
iss 99 9x5D 1 gfght bracket (right square bracket)
0137 95 Oxb5F " U:g‘;:goer’;
0140 96 0x60 ¢ Grave
0141 97 0x61 a
0142 98 0x62 b
0143 99 0x63 ¢
0144 100 0x64 d
0145 101 0x65 e
0146 102 0x66 f
0147 103 0x67 g
0150 104 0x68 h
0151 105 0x69 i
0162 106 0x6A j
0163 107 0x6B k
0154 108 0x6C 1
0155 109 0x6D m
0156 110 0x6E n
0157 111 0x6F o
0160 112 0x70 p
0161 113 0x71 q
0162 114 0x72 r
0163 115 0x73 8
0164 116 0x74 t
0165 117 0x76 u
0166 118 0x76 v
0167 119 0x77 w
0170 120 0x78 x
0171 121 0x79 y
ggg 122 0x7A z '
nis }gg 0x7B { Left brace (left curly bracket)
0176 125 gx;g | Rt b
% X } R}ght brace (right curly bracket)
0x7E ~ Tilde

0177 127 ox7F DEL Delete

See Also
string

asctime — Time function (libe)

Convert time structure to ASCII string

#include <time.h>
char *asctime(tmp) tm *tmp;

asctime takes the data found in tmp,
the type tm, which is a structure defin
must first be initialized by either gmtl
asctime. For a further discussion of tm,

and turns it into an ASCII string. tmp is of
ed in the header file time.h. This structure
me or localtime before it can be used by

gee the entry for time.

Example

The following example
localtime, and time,
TIMEZONE. For a discussion o

demonstrates the functions asctime, ctime, gmtime,
and shows the effect of the environmental variable
f the variable time_t, see the entry for time.

#include <time.h>
main()

¢
time_t timenumber;

tm *timestruct;
/* read system time, print using ctime */

time(&timenurber);
printf("Xs*, ctime(Ltimenumber));

/* use gmtime to fitl tm, print with asctime */
timestruct = gmtime(&timenumber);
printf("Xs", ssctime({timestruct));

/* use localtime to fill tm, print with asctime */
timestruct = localtime(&timenumber);
printf("Xs", asctime(timestruct));

]
The following gives an “optimized” form of the above program. It shows more
clearly how return values can be passed as arguments, and how nesting can in-

crease the work done by each line of code.

#include <time.h>
main()

S
time t t;
time(&t);

printf("Xs", ctime(dt));
printf("%s", asctime(gmtime(dt)));
printf("Xs", asctime(localtime(&t)));

210

asin — assert

See Also
time (overview)
Notes

asctime returns a poi i i
asctime returr pointer to a statically allocated data area that is overwritten by

asin — Mathematics function (libm)

Calculate inverse sine
#include <math.h>
double asin(arg) double arg;

asin calculates the inverse sin of arg, which i
result will be in the range (.PL/2, PI/2]. most be in the renge (1, 1) The

Example

For an example of this function, see the entry for acos.
See Also

mathematics library

Diagnostics

Out-of-range arguments set errno to EDOM and return 0.

assert — Debugging macro

Check assertion at run time
#include <assert.h>
assert{expression)

o e o e aamart shoutd s used to detect sivations
X u i i

Elilxb;a;:a?f(fsg?k(iin;z\;e;s;grgsgs‘en. Note that the -DP?D‘;S?EU% iitgilc:nzlrtratgozz

Example

For an example of this function, see the entry for index.

See Also .

#assert, assert.h, cc

Diagnostics

;szeﬁapcx::ttshz;:ss;—:;c;rgitégn?tfalled when condition is not true. Because assert
i A ntf, it expands into an illegal C stat i iti
includes quotation marks. It also cannot be used in ang::(pressioﬁmient it condition

#assert — atan 211

Notes
assert is a macro whose body is an if expression; therefore, it cannot by definition

return a value. Using assert in a value context, such a8

foo = assert{a < b);/* WRONG */

will generate an error message when you attempt to compile your program.

#assert — Preprocessor instruction

Check assertion at compile time

#assert expression

The Mark Williams C preprocessor ¢pp,
The C Programming Language, recognize!

#assert expression
cpp evaluates the expression. If itis false (zero),

in addition to the directives mentioned in
s the #assert directive. It has the form:

cpp prints the diagnostic message

#assert failure
and compilation ceases. The condition being tested must be an expression that
#1f command. You should use #as-

uses constants of the form acceptable to cpp's
gert to ensure that variables in complex preprocessor code are correct throughout

the program.
Example
If the line

#assert SIZE < B0

is included in a program,
if it is 80 or more.

See Also

the assertion \;vill succeed if SIZE is less than 80, and fail

cpp
The C Programming Language, page 86

assert.h — Header file

Define assert()
#include <assert.h>

assert.h is the header file that defines the macro assert.

See Also

assgert, header file

atan — Mathematics function (libm)

Calculate inverse tangent
#include <math.h>
double atan(arg) double arg;

R

3 5}\'; .

atoi — atol 213

212 atan2 — atof

! atan calculates the inverse tan .

: : result wi : gent of arg, which may be any real n Notes

‘ will be in the range (-P1/2, P1/2]. d umber. The atof does mot chéck to see if the value represented by string fits into an IEEE
double. It returns zero if you hand it a string that it cannot interpret.

Example

F , ,
or an example of this function, see the entry for acos. atoi — General function (libc)

S
e ee Also Convert ASCII strings to integers
rno, mathematics library int atol(string) char * string;

! atan2 — Mathematics function (libm) atol converts string into the binary representation .
: Calculate inverse tangent tain a leading sign and any number of decimal digits. atol |gnorels
' double atan2(num, d and tabg; it stops scanning when it encounters any non-numeral

» den) double num, den; . leading sign, and returns the resulting int.

tation of an integer. string may con-
Jeading Llanks

other than the

typed at the terminal, turns it

atan2 ca]culates the inverse tangent of the (lll()uellt of i a:guments num/den
g ts / . trl-C>
e <CLr .

num and den may be any real numb . A
ers. The result will be in the range [-PI, P1]. 3 The following demonstrates
into an integer, then prints t

The si .
e sine of the result will have the same sign as num, and the cosine will have the

atol. It takes a string
hat integer on the screen. To exit, typ

same sign as den. i
Example ' '
main()
For an exampl s . g extern char *gets();
Soopl ple of this function, see the entry for acos. : extern int atoi();
- ee ALSo 3 char stringl64);
‘ for(;;) (
, errno, mathematics library printf("Enter numeric string: ™);
.) < if(gets(string))
atof — General function (libc) printf("Xd\n®, stol(string));
Convert ASCII strings to floating point sloe break;
) ;

double atof(string) char * string;

atof converts string into the bi :
: ; . .
point number. string must be thza%éffiizi::i:g:ﬁ o douhle:preclSlon el e ol
z:;,ag ctc)nta{n a leading sign, any number of decimal ((i)ingi(t’: aaggam;g-pomlt . niohatol fn,print et
e terminated with an exponent, which i ' oo o o
T \ . congists of th ‘e’ or *
by an optional leading sign and any number of decimal di;t;ettlei‘greexglr-ng; followed oy

123e-2
i3 a string that can be converted by atof,

s not check to see if the number represented by string fits into an int. It

atol doe
string that it cannot interpret.

returns zero if you hand it a

atol — General function (libc)
Convert ASCII strings to long integers

atof ignores leadin ;
S g blanks a . . .
recognized character. nd tabs; it stops scanning when it encounters any un- long atol(string) char *string;
Example v ’
For ani!am le of thi . atol converts the argument string to a binary representation of a long. string may
xample of this function, see the entry for acos. contain a leading sign (but no trailing sign) and any number of decimal digits. atol
See Also ignores leading blanks and tabs it stops scanning when it encounters any non-
‘ numeral other than the leading sign, and returns the resulting long.

atol, atol, float, long, printf, scanf : L
: Example

214 auto —\auto

main()
extern char *gets();
extern long stol();
char string(64);

for(;;)
printf("Enter rumeric string: *);
if(gets(string)) C
printf("Xtd\n", atol(string)); .
elge 3
break; X
) "
)
See Also ’
atof, atol, float, long, printf, scanf
Notes
No overflow checks are performed. atol returns 0 if it recelves a string it cannot :
interpret. 3

auto — C keyword

Note an automatic variable

auto is an abbreviation for an automatic variable. This is a variable that applies
only to the function that invokes it, and vanishes when the functions exits. The B
word auto is a C keyword, and may not be used to name any function, macro, or
variable,

See Also

C keywords, C language, extern, stack, static, storage class
The C Programming Language, page 28

\auto — Definition

\auto is a directory that is scanned by TOS when it boots. TOS looks for this
directory on the boot device. If it i3 present, TOS executes all of the files stored
there that have the suffix .prg, in the order in which they appear. This can be

used to perform routine tasks, such as setting the system time or installing a RAM
disk.

Note that when TOS executes the programs in \auto, the AES and VDI have not
yet been initialized, so no GEM applications can be run. The current directory of
the programs run from \auto is the root of the boot disk. If Line A functions are
used, they must provide their own contrl, intln, and Intout arrays. You can
place msh.prg into \auto and enter it automatically when you boot your system;
however, subsequent attempts to run any GEM application through msh generates
effects that are unpredictable and usually unwelcome.

\auto 215

Example

The following exaimg h
laced in \auto. It demo
;l)’:;rmrea\, Rsconf, Setprt, stime, and time,

the header files basepage.h and xbios.h.

lo shows a few things that you can do in a progrta;nﬁ}:;ta(:)s
tes the functions Cursconf, lorec, Kbrate, é
e the global variable _stksize, an

#include <linea.h>
#include <osbind.h>
#include <time.h>

#include <basepage.h>
#include <xbios.h>
long _stksize = 256;

/* de need very Little stack for this */

main()

{cs
H 0¢): inttiatize la_data for graph .o
: ::::;a:::::q(:hese pointers allous Lines graphics in \suto*.prg
*/
¢ static int intin(128]1, {ntout (1281, ptsin(128), ptsout (128);
stetic int *contri(é};
Lineal();
INTIN = Intin;

INTOUT = intout;
PISIN = ptsin;

PTSOUT = ptsout;
CONTRL = contrl;

M

. time from the keyboard clock
* [nit: stime(): set initial aystem.”m” o e e -0 time

+ yime() reads the keyboerd clock,
*/

time_t t;
time(&t);
stime(&t);

>

-
t buffers

* + lorec(): resize the input/outpy .
- ;x:eusing the buffer sizes may or may not be mr:jcssa:)‘ed
* [t depends on how fast the buffers are fitled and emp
*/
(- .

i truct forec *ip; -
;:gﬁze:h:r auxin{10261, suxout {10241, méd\;;gZL)Téakl;c'i[102)
static struct forec tmp = (o0, 1024, 0, 0, , H

ip = lorec(10_AUX); tmp. fo_buff = auxin; *ip = tmp;
ip *= 1; (np.To buff = suxout; *ip = tn’vq:),'i oo
ip= Torec(10_MWiD); tmp.fo_buff = mti)gr;.i ;.1= m:)x.),
ip= lorec(10_K8D); tmp. fo_buff = kbd; p ;

216 aux

aux 217

/'
* Inft: Rsconf(): configure rs232 port
* Set the default baud rate and control protocol for the serial port
*/

Reconf(RS_B9E0O, RS_XONXOFF, -1, -1, -1, -1);

/* Inft: Setprt(): set printer configuration */

Setprt(PR_SERIAL [PR_EPSOH |PR_HONO|PR_MATRIX);
/.
* Init: Cursconf(): set cursor configuration
* This slows the blink down to half the normal speed
*/

Cursconf(CC_SET, (int)Cursconf(CC_GEY, 0)*2);

/'

* Init: Kbrate(): set keyboard repeat configuration

* Again, simply slow It down s bit

*/

(
register int start, delay;
start = Kbrate(-1, -1);
detay = start & Oxff;
start >>= 8.

start &= Oxff;

start *m 2.

delay *= &;
Kbrate(start, delay);

/.

* Inft: terminate and stay resident, so the buffers we assigned do not

“ get clobbered by the next program that runs

-

/
Ptermres(BP-)p_hitpe-8P~>p_lowtpa, 0);

) .

See Also

TOS

aux — Operating system device
Logical device for serial port

TOS gives names to its logical devices. Mark Williams C uses these names to ac-
cess these devices via TOS. aux: is the logical device for the the serial port
suxiliary device.

Example

The following example opens the auxiliary port and sends it theistring hello,
world.

Lude <stdioc.h> .)
#ine FILE *fp, *fopen(); waryy 1o ROLLY €
§ ((fp = fopen({ aux:", "W »
! ppr(ntf("nux: ensbled\n™);

fprintf(fp, whello, world.\n");
c)_-lse printf("sux: cemnot open.\n");
b
See Also
con:, prm:, Rsconf, STDIO

Notes '
awc: may be spelled awx: or AUX:.

