Beonin 219

218 backspace — basepage.h

B

backspace — Character constant

Mark Willi : :
BS (actal 0107 This eharactor . Sraracer \b” for the ASCILspace characte
constant. r may be used as a character constant or in a string

Example

The following example pri i
message. 1 ple pnints a string, then backspaces over it and prints another

maing)

printf("BLINK! \b\b\b\b\b\bhel lo, wortd\n");

See Also
ASCII, character constant

basepage.h — Header file

Define TOS base
page struct:
#include < basepaie.h > e

basepage.h isa h
follon a header file that defines the TOS base page structure. Its text is as

Hifndef BASEPAGE M
#define BASEPAGE H
typedef struct (

ton H
long z‘;?:tp?, /: L9u transient program sres */
Lo p_tba:e: /* High transient programn ares */
i -t ?, /* Text segment bage */
oS s_db::'- /* Text segment iength */
Lons o ?, /* Dats length base */
p _dlen; /* Data length length */
[}
lg:g g’s?:z?; /: Bss segment base */
| ; /* Bss se
:ggg p_fxx0{31; /* Fll az::n;n:erﬁ‘h Y
p_env; /* E oreme
{ nvir nt stri
c::f p_fxx1[201; /* FIlL block tuor';w Polnter */
p_cmdlin(1281; /* Command line */

) BASEPAGE;

extern BASEPAGE _start(];
#define BP (& start({-1])
oAl _start{-1])

See Also
header file, TOS

Beonin — bios function 2 (esbind.h)

Receive a character

#include <osbind.h>

#include <bios.h>

long Beonin(handle) int handle;

Beonin receives a character from a peripheral device. handle is an integer that in-
dicates which device is being read, as follows:

prn: (the line printer)
aux: (the auxiliary serial port)
con: (the console)

the MIDI port
the intelligent keyboard (output only)

the raw screen (output only)

When Bconin reads from con, it returns the key's raw scan code in the low byte
of the high word and either an ASCII character or zero in the low byte of the low
word, depending upon whether the key typed generates an ASCII character or not;
when it is reading from aux:, it returns the character in the low byte of the low
word.

For a table of keyboard scan codes, see the entry for keyboard. Note, too, that this
function is unaffected by redirection of either con: or aux:.

U WO

Example
This example emulates a simple dumb terminal. It demonstrates the functions

Bconin, Beonout, Beonstat, Beostat, and PtermO.

#include <osbind.h>
#include <bios.h>

main()

{
register tong ¢;

for (;;) «
if (Bconstat{BC_CON)) (
¢ = Beonin(BC_CON);

if ((int)c == 0) (
c »>= 16;
if (c == KC_UNDO)
break;

elge
8eonout(BC_CON, ‘\a’);

220 Bconout — Bconstat

) else (
while (Bcostat(BC_AUX) == 0)

, Beonout(BC_AUX, (int)e);
b

if (Bconstat(8C_AUX)) (
¢ = Beonin(BC_AUX);
) Bconout(BC_CON, (int)c);
) .
Pterm0();
>

See Also
aux:, Bconout, Beonstat, Beostat, bios, con:, keyboard, TOS

Beonout — bios function 3 (osbind.h)
Send a character to a peripheral device
#Iinclude <osbind.h>
#include <bios.h>
void Beonout(handle, character) int handle, character;

Beonout sends characte
< N rs to an output devi i i indi
to which device to send characters, aspfollows:ce' handle io an integer that indicates

pru: (the line printer)

aux: (the auxiliary serial port)

con: (the console)

the MIDI port

the intelligent keyboard (output only)
the raw screen (output only)

TR W=D

ch i i
aracter is the character being output, which is encoded in the lower eight bits of

ger. turns nothin This fun tion is unaffected by T dnecm)ll
the integer BC()D()ut retu mg 18 C C €

It . .

belf-wgdlg‘;: scet féo ?ve, characters are displayed on the screen as with device num-

g:*aphfcs o or; rol characters are not interpreted. This allows the display of
aracters from the Atari character set, in the range of one throughp31y °

Example

For an example of this function, see the entry for Bconin

See Also |

Bceonin, Beonstat, Beostat, bios, TOS :

Beonstat — bios function 1 (osbind.h)
Return the input status of a peripheral device

X,

Bcostat 221

#include <osbind.h>

#include <bios.h>

long Bceonstat(device) int device;

Beonstat reads the input status of the specified peripheral device. device is an in-
teger that encodes the the desired device, as follows:

prmn: (the line printer)

aux: (the auxiliary serial port)

con: (the console)

the MIDI port

the intelligent keyboard (output only)

the raw screen (output only)
east one character is ready to be handled, and zero if no
function is unaffected by redirection.

TR W N O

Beonstat returns -1 if at 1
characters are ready. This

Example

For an example of this function, see the entry for Beonin.

See Also
Bconin, Beconout, Beostat, bios, TOS

Bcostat — bios function 8 (osbind.h)

Read the output status of a peripheral device

#1lpclude <osbind.h>

#include <bios.h>

long Beostat(handle) int handle;

Beostat reads the output status of a peripheral device. handle is a number that
indicates the device to be checked, as follows:

prn: (the line printer)

aux: (the auxiliary serial port)

con: (the console)

the MIDI port

the intelligent keyhoard (output only)
the raw screen (output only)

U N O

Beostat returns -1 if the device is ready, 0 if it is not. This function is unaffected

by redirection.
Example

For an example of this function, see the entry for Beonin.

See Also
Beonin, Bconout, Beonstat, blos, TOS

e T e T T e

T

¥

E

S T
WP Bt v v

it
IR

TR
o T

222 BIOS — bios
bios.h — bit 223

BIOS — iti
Definition Notes
No bios function checks for incorrect device numbers. Passing an invalid device

. number to a routine may crash the system.

bios and xblos traps can be nested to a level of three deep. This occurs either

when an interrupt-level routine calls a blos or xbios function while a bios or
or when a bios or xbios function itself traps to the

B . .
Coln(:gt;soe;naacmnym for basic input/output system. In most machines, the BIOS
consiats of 1 tgyou;l)) ot: routines S:arned in the read-only memory (ROM) These

ntain basic instructions for accessing the various aspects' of the

hardware.
See Also xbios function is executing,
bios, STDIO i bios or xbios. A dangerous situation may occur if a bios or xhios routine in a
. 2 routine that is executed by an interrupt handler or can be invoked asynchronously;
bios — TOS function : in these situations, the level of nesting can quickly exceed the limit of three.
gz;ll an input/output routine in the TOS BIOS 3 All bios functions are unbuffered. Combining them with buffered routines, such
nclude <ogbind.h> : as those in the STDIO, gemdos, or GEM AES libraries, will lead at best to unpre-
dictable results.

extern long bios(n, 1, /2 ... fn);

bi i

w;isai)loxgi‘ilqu to call an input/output function directly in the Atari BIOS. It

v ig,useld m}il; a stack fx:ame and executing trap no. 13. Unless the -VNOTIiAP
when compiling a program, the instruction jsr bloa_ is replaced by a

bios.h — Header file
Declare bios constants and structures

#include <bios.h>
t includes all constants and structures used by the GEM- ': 4:

trap no. 13 instruction. 1
n is the number of the functi ‘ blos.h is a header file tha
with the routine. In mostcc'on' and /1 through fh are the parameters to be used DOS bios functions. For a list of these functions, see the entry for bios.
hesder file osbind.h d ircumstances, it is unnecessary to call bios, for the ;
stants used by thes.e] efix}es a number.of functions for it. All structures ;md con- ! See Also e
he fo unctions are contained in the header file bios.h. bios, header file, TOS, xbios.h ’ ; §
e following function: : . 5
column gives its funct?orc;al:mbr:l))zrmudeal with the peripheral devices. The first Bioskeys — xbios function 24 {osbind.h) o
description: » the second its name, and the third a brief ' Reset the keyboard to its default v yﬁs.
2 . #include <osbind.h> ’ T
3 gconin receive a character #include <xblos.h> A
conout output a character e hd
1 Bconstat return input stat fd 1 vold Bioskeys() gk
ut statu i :
8 Bcostat return output statls;soof g‘:\fiie Bioskeys resets the keyboard to its default settings, and returns nothing. It un- 4
lg g":{)ﬂf;jp return map of logical drives i does whatever changes were made with the function Keytbl. J1ie
0 GZtmppb return pointer to BIOS parameter block Example ;
. 11 Getshift copy memory parameter block ’
L Geto get/set status for shift/alt/control keys #include <osbind.h> e
M Re lfCh check if medium has been changed mainG) € B2
5 wabs read/write a disk drive 8ioskeys(); ! »,?
H %atexc set an exception vector) i
ckeal return system timer's calibration See Also '
See Also Keytbl, TOS, xblios :
osbind.h, TOS . . . 1 BK
i bit — Definition §
. it

bit is an abbreviation for binary digit. It is the basic unit of data processing. A bit
can have a value of either zero or one. Bits can be concatenated to form bytes.

A bit can be used either as a placeholder to construct a number with an absolute %

224 bit map — Blitmode

bombs 225

value, or as a flag whose value has a particular meaning under specially defined cir-
cumstances. In the former use, a string of bits builds an integer. In the latter use,
a string of bits forms a map, in which each bit has a meaning other than its
numeric value,

See Also
bit map, byte, integer, nybble

bit map — Definition

A bit map is a string of bits in which each bit has a symbolic, rather than
numeric, value. For example, the Drvmap function returns a 16-bit map of the
active drives on the Atari ST. The bits indicate which of 16 possible disk drives is
available, with bit 0 (i.e., 1< <0) corresponding to drive A, bit 1 to drive B, etc.

See Also

bit, byte

The C Programming Language, page 136

Notes

C permits the manipulation of bits within a byte through the use of bit field
routines. These generate code rather than calls to routines. Bit fields are generally
less efficient than masking because they always generate masking and shifting.

Blitmode — xbios function 64 (osbind.h)
Get/set blitter configuration
int Blitmode(flag) int flag;

Blitmode gets or sets the configuration of the blitter chip. The bits of flag encode
the new setting for the blitter chip, as follows:

0 zero, set blit mode to software; one, set to hardware
1-14 reserved, may be anything
15 reserved, must be zero

If flag is set to -1, the blitter mode is not reset and Blitmode returns an int
whose bits encode the current configuration of the blitter, ag follows:
0 zero, in software; one, in hardware

1 zero, no blit chip installed; one, blit chip installed
2-14 reserved, may be anything
15 always zero

Example

This example returns the current blitter mode. |

#include <osbind.h>
main()
¢ B H
fnt setting = Blitmode(-1);
/: check if blitter chip ts present */
1f (setting & 0x02)
¢ ent.\n");
titter chip is pres
7:‘2::5:?‘!; mode is hardware or software */
Ox01))
i “et;:r:t:(“:he blit mode is in hardware. \n");
stse printf("The biit mode 18 in softwsre.\n");
)
eloe printf("No blitter chip is present. \n');
3
See Also
TOS, xbios
Notes

. . ST,
The reserved bits will be used in future models of the Atari S

i blitter
ttempt to set the blitter mode on a machine th%ﬁlﬁo::n:g;:aigrgeom; er
. ‘youtl? mode will always be set to zero (in software). This o O s, the
Chlp,hin; that have the Atari blitter ROMs. On machines wi
rf?l?lccﬁon returns 0x40 (the xblos function number).

bombs — Technical information

68000 processor exceptions .
When a program goes seriously wrong on the Atari ST,
tions:

1. It stores a descripti

i “cherry bombs

2. It displays one or more °C
i of the operating system may see
:\?nmsber of borr)nbs seen is equal to the number of the

follows:

TOS takeés the following ac-

on of the program’s state in a buffer in low memory.

" on the screen; persons w‘gth older vehr-
little “mushroom clouds’ mstead.. The
processor exception, as

Bus error

Address error
Tlegal instruction
Zero divide

CHK instructjoq
TRAPV instruction
Privilege violation
Trace

Line A emulator

D s BN

o @ ® =1

—

226 boot — break

buffer 227

11 Line F emulator

12 Reserved

13 Reserved

14 Reserved (000, 008), format error (010)

3. TOS attempts to terminate the program and continue processing.

You use the debugger db to displa thé rogram state i
TOS. Use the following commanc{)s: Y progr saved In low memory by

db -k enter db

r display contents of registers
of print type of fault
H| quit

g:ia prints. the processor registers at the time of the fault and identifies the fault.
nale :xceptlons that occur on the 68000 processor are listed in the header file sig-

See Also
db, signal.h, TOS

boot — Definition

}l))yot;}th.ishan abbreviati]on (;'or lI:oolstmpping procedure. This refers to the procedure
by which a computer loads the operatin stem, organi
initializes peripheral devices. P & + organizes and tests memory, and

Some operating systems use the term warm bo
I ot to refer to a second-stage
boot:‘;tmppmg procedu_re. An operating system may execute a warm boot to restoge
Si)::;;r:; (zg the foperat.mg system that may have been overlaid by user code during
. ation of a program, or to reinitialize the syste i i
ontine boot srosedte system without going through the

See Also

exit

Notes
TOS does not warm boot on program termination,

break — C keyword

Exit from loop or switch statement

break is a C statement that causes an i i i
from a while, Tor. or do e immediate exit from a swit<,:h sequence, or
I

Example
For an example of this instruction, see the entry for VDL

See Also

C keywords, C language
The C Programming Language, page 56

buffer — Definition

A buffer is a portion of memory reserved for a particular purpose. In the context
of C, a buffer most often is an area set aside to hold data read from or to be written
to a file stream. Often, although not always, this involves setting aside a portion of
the arena with malloc or its related functions.

Many operating systems automatically place data from a peripheral device into a
buffer. Buffers normally can be cleared with fflush, by pressing the carriage
return key on routines that perform input, or by sending a newline character on
routines that perform output. The function close, which closes a file, will flush all
buffers agssociated with that file. exit calls close.

Combining unbuffered and buffered I/O functions on the same file or device within
one program will produce results that are at best unpredictable.

On the Atari ST, all STDIO routines use buffering by default. stdin and stdout
are buffered, but stderr is not. Buffering can be turned off with the function set-
buf. All Atari BIOS functions that perform 1/O are not buffered.

Example .
The following example demonstrates what does and does not happen when you use
fflush with the output buffer.

#include <stdio.h>
main()

(8
extern char *malloc(); /* declare malloc & what it returns */

char *buffer;

/* use malloc() to create a 120-char buffer */

if ((buffer = malltoc(120)) == NULL)

¢
/* it matloc() fails, ball out */
fprintf(stderr, "malloc failed\n");
exit(1);

)

printf("Type your name: ");

fflush{stdout); /* flush stdout buffer */
gets(buffer); /* copy string into malloc’d buffer */
printf("Your name is Xs\n", buffer);

228 byte — byte ordering

See Also

arena, array, Cconrs, Cconws, close, exit, fflush, malloc, setbuf, STDIO
The C Programming Language, page 173

byte — Definition

A byte is a group of eight bits, which often is used to encode a character or a small
integer quantity. Note that for C, the term “byte” has no meaning. C defines data
types as being multiples of the data type char, and what a char is depends on the
hardware. Although a char is often defined as being eight bits long, the same as a
byte, this definition is not universal.

See Also
bit, char, data formats, nybble
byte ordering — Technical information

Byte ordering is the order in which a given machine stores successive bytes of a
multibyte data item. Note that different machines order bytes differently.

The following example displays a few simple examples of byte ordering:

main()
<
union
{
char b{4);
int £{2);
tong 1;
PH

u.U = 0x12345678L;

printf("Xx Xx Xx Xx\n",
u.b{0), u.b{1}, u.b(2], u.b(3));
printf("Xx Xx\n*, u. {0}, u.i{133;
printf("Xtx\n", u.t);
)

When run on the 68000 or the Z8000, the program gives the following results:

12 34 56 78
1234 5678
12345678

As you can see, the order of bytes and words from low to high memory is the same
as is represented on the screen.

When run on a PDP-11, however, the program gives these results:
i

34 12 78 56 f
1234 5678
12345678

byte ordering 229

averts the order of words in memory.

As you can see, the PDP-111
the i8086 you see these results:

Finally, when the program is run on

78 56 34 12
5678 1234
12345678

The i8086 inverts both words and long words.

See Also
C language, canon.h, data formats

230 C keywords— C language

C

C keywords — Overview

A lfeyword is a word that is reserved within C, and may not be used to name
;anabk;s, functions, or macros. Mark Williams C recognizes the following
eywords:

alien extern signed
auto float sizeof
break for static
case goto struct
char if gwitch
const int typedef
continue fong unfon
default readonly unsigned
do register void
double return volatile
else short while
enum

In conformity with the proposed ANSI standard, the keyword entry is no longer
recognized. The keywords const and volatile are now recognized, but not im-
plemented. Mark Williams C recognizes the keywords readonly and alien, but
thege are not implemented on the 68000. ’

See Also
C language

C language — Overview

The following summarizes how Mark Williams C implements the C language.

Identifiers:
Characters allowed: A-Z, a-z, ., 0-9
Case sensitive.
Number of significant characters in a variable name:
at compile time: 128
at link time: 16
C appends ‘_’ to end of external identifiers

’

C language 231

Reserved identifiers (keywords):

allen extern) signed
auto float sizeof
break for statie
case goto struct
char if switch
continue int typedef
const long union
default readonly unsigned
do register void
double return volatile
else short while
enum

In conformity with the proposed ANSI standard, the keyword entry is no longer
recognized. The keywords const and volatile are now recognized, but not im-
plemented. The compiler will produce a warning message if the keyword volatile
is used with the peephole optimizer. Mark Williams C reserves the keywords
readonly and alien, but these are not implemented on the 68000.

Data formats (in bits):

char

unsigned char 8
double 64
float 32
int 18
unsigned int 16
long 32
unsigned long 32
pointer 32
short 16
unsigned short 18

float format:
DECVAX floating point format:
1 sign bit
8-bit exponent
24-bit normalized fraction with hidden bit
DECVAX double format:
Same as float, but with 68 bits of fraction
Reserved values:
+- infinity, -0
All floating-point operations are done as doubles

e ERRLATI

e e bt

SRR SRS LI i T S ST RO

e Ui

CAET e TER Y T

P

232 Clanguage

C language 233

Limits:
Maximum bitfield size: 16 bits
Maximum number of cases in a switch: no formal limit
Maximum block nesting depth: no formal limit
Maximum parentheses nesting depth: no formal limit
Maximum structure size: no formal limit
Maximum auto array size: 32 kilobytes
Maximum static array size: no formal limit

Preprocessor instructions:
#assert #if
#define #ifdef

#else #ifndef
#elif #include
#endif #line
#file #undef

Structure name-spaces:

Supports both Berkeley, and Kernighan and Ritchie conventions
for structure in union.

Register variables:
Five available for ints or longs
Three available for pointers

Function linkage:

Return values for ints, longs, or pointers in d0

Return values for doubles in d0 and d1

Pointers to returned structures in a0, copied to destination by caller

Parameters pushed on stack in reverse order, chars and shorts pushed
as words, longs and pointers pushed as longs, structures
copied onto stack

Caller must clear parameters off stack

Stack frame linkage is done through a8

Register usage:
d0, d1: Scratch data and function return values
d2: Scratch data
d3, d4, d5, d6, d7: Register variables for longs and ints
a0, al, a2: Scratch addresses and function structure return
a3, a4, ab: Register pointers for any type or structure
a6: Call frame linkage pointer
a7: Stack pointer]

Special features and optimizations:

o By default, the compiler makes the following substitutions:

jsr gemdos_ trep $1
Jsr micrortx trap 35
jer bios_ trap $13
Jsr xbios_ trap $14

stem calls and makes the code reentrant (al-

s g e overh e Ewt be). Turn off this feature with the option

though the system itself may nof
-VNOTRAP.

e Branch optimization is performed: this uses
the required range.

o Unreached code is eliminated.
e Duplicate instruction sequences are removed.

the smallest branch instruction for

e Jumps to jumps are eliminated.

o Multiplication and division by constant
the results are the same. . .

can be resolved at compile time are identified an:

powers of two are changed to shifts when

d resolved.
® Sequences that

o Peephole optimization remembers register contents.

o Cross-jumps are eliminated. This changes code like this:

move 8, b
bre LABELY
LABELO: move ¢, b
bra LABEL2
LABEL):move b, d
brs LABEL3
LABEL2:move f, d
brs LABEL3

move 8, b
move b, d
bra LABEL3
LABELO:move ¢, b
move f, d
bra LABEL3

See Also 5
byte ordering, calling conventions,
kztywords, Lexicon, memory allocation

data formats, data types, declarations,

oy <"‘"-“

et T MRS AT P
el i e AL A B sk AY. 1 Stk Bt

Tt A €

R

PO T

o AN At A Sl

234 cabs — calling conventions

cabs — Mathematics function (libm)

Complex absolute value function
#include <math.h>
double cabs(z) struct { doubler, i; } z;

cabs computes the absolute value, or modulus, of its complex argument z. The ab-
solute value of a complex number is the length of the hypotenuse of a right triangle
whose sides are given by the real part r and the imaginary part i. The result is the
square root of the sum of the squares of the parts.

Example

For an example of this function, see the entry for acos.

See Also
hypot, mathematics library

calling conventions — Technical information

This entry discusses the Mark Williams C function calling conventions. This infor-
mation is helpful to users who wish to interface C programs with assembly lan-
guage routines or with object code generated by other language processors.
Programs that depend upon specific details of these calling conventions may not be
portable to other processors or other C compilers.

In general, Mark Williams C pushes arguments from right to left. Mark Williams
C pushes function arguments as follows:

char as a word

short as a word

int as a word

long as a long word

float as a pair of jong words

double as a pair of long words
pointer as a long word

“Word” in this instance means a 68000 (16-bit) word.

An underbar ‘_’ is appended to the beginning of the function's name. Assembly-

language programmers must append ‘_’ to the beginning of the name of each C-
callable function.

An add, lea, or addq instruction after the call removes the arguments from the
stack.

The C prologue exscutes a link to allocate space for automatics and saved registers.
Because C functions may use registers a3 through a5 and d3 through d7 for
register variables, the C prologue saves used registers. and the C epilogue restores
them. The C epilogue executes an unlk before returning.

calling conventions 235

i i ferenced as offsets from
variables in the calle'd function are re Tsets from
f}?ﬁ?ﬁiﬁﬁspﬂgc‘ﬁm@imr. The stack-pointer register points below the

able with the lowest address.
Functions return values as follows:

char in dO.W
int in dO.W
in d0.L
}'(1)::;‘1: in d0 and d1 (returned as double)
double in d0 and d1
pointer in d0.L ‘
truct or union actually return a pointer to the struct or

Functions that return Bhe code generated for the function call will move the result

union in register a0. T
to its destination. S
C does not require that the number of arguments }‘)asfexil tle a rsf‘\txjr;‘tmré . \jtines ame
as the number of arguments specified in tlt\e functul):oz eT?‘e two' Rt /0
i r of arguments are not uncom . . A
:ox‘;gg::lii ;,‘}‘\lemsltﬁndard li%urary (printf and scan are, in fact, routines tha

variable number of arguments.
Consider the following program as an example:

tong f(a, b, €}
char 8;
int b;
tong ¢;
4
return ({8 * b) + <)}

)

main() {
char 8 = 1;
int b= 2;
tong ¢ = 3;
f{a,b,C);

)]

When compiled with the -8 option, it produces the following code:

236 calling conventions

.shri
.globl f_

f:
tink 86, SO
move 10(86), d0
muls 8(s6), dO
ext.t o0
sdd. 12(n6), d0
unlk b
rts
.globl main_

main_:
tink 86, $-8
moveq $1, d0
move.b d0, -2(86)
moveq $2, &0
move do, -4(28)
moveq $3, &0
move. | 90, -8(s6)
move. { -8(ab), -(a7)
move -4(86), -(a7)
move.b -2(86), dO
ext 40
move a0, -(a7)
jsr f_
addq $8, a7
unlk Yy
rts

The symbols main and { have become main_ and L. The automatic variables in
main are addressed at negative offsets from a6: char a is located at -2(a8), int b
at -4(a6), and long ¢ at -8(a6). A byte of unused storage follows a so that b occurs
on an even address. main pushes ¢, then b, then sign extends a and pushes the
resulting word. The arguments in f are addressed at positive offgets from a6: char
a is located at 8(a8), int b at 10(a6), and long c at 12(a8). char c is treated as an
fnt. The result expression is computed into d0.L. When f returns, main pops the
arguments with an addq instruction.

In f after execution of the link, the stack appears as follows:

calling conventions 237

+~ A6 = frame pointer for £

high return

low return

parameteta

The following function returns & structure:
struct date {
int month, dey, yesr;.
} today;

struct date
mkda(m, d, Y?

{
struct date tmp;
tmp.month=m;
tmp.day wd;
trp.year *=y;
return(tmp);
M
main()
today = mkda(3, 20, 85);
3

et 8
When this program is translated into assembly language by compiling it with the

option, the result is as follows:

.comn today_, 6
.shri
_globl mkds

JUUIE SUNQUSPRCCOS W v

P
Rt X e O B e S

e L e e e i

e R et

238 calloc

mkda_:
link a6, $-6
move B(s6), -6(a8)
move 10(86), -4(ab)
move 12(86), -2(8b)
lea -6(8b6), ot
lea 8(a6), a0
moves. | a0, a2
move (at)+, (82)+
move.l (a1)+, (82)+

untk 86
rts
.globl main_

main_:
link a6, $0
moveg $85, d0
move d0, -(a7)
moveq $20, d0
move d0, -(a7)
moveq $3, d0
move d0, -(a7)
jsr mkda_
addq $6, a7
lea 6(a0), at
moves. Stoday _+6, 80
move -(al), -(a0)
move.l -(s1), -(80)
untk 86
rts

See Also

C language, memory allocation

calloc — General function (libc)

Allocate dynamic memory
char *calloc(count, size) unsigned count, size;

calloc is one of a set of routines that helps manage a program’s arena. calloc

calls q:alloc to obtain a block large enough to contsin count items of size bytes

each; it t'hen initializes the block to zeroes and returns a pointer to it. When this

glemfory is no longer needed, you can returned it to the free pool by using the funec-
on free.

Example

This example attempts to calloc a small portion of memory; it then reallocates it to
demonstrate realloc.

¢
i

0 et i P

canon.h — carriage return 239

#include <stdio.h>

main()

<
register char *ptr, *ptr2;
extern char *calloc(), *realloc();
unsigned count, size;

count = &;
size » gizeof(char *);

if ((ptr = calloc(count, size)) 1= RULL)
printf("%u blocks of size Xu calloced\n®,
count, size);
else
printf(*Insuff. memory for Xu biocks of size Xu\n",

count, size);

if ((ptr2 = reatloc(ptr, (count®size) + 1)) 1= RULL)
printf("1 block of size Xu real loced\n®,
(count*size)+1);
)
See Also

arena, free, lcalloc, lmalloc, Irealloc, malloc, notmem, realloc
Diagnostics

calloc returns NULL if insufficient memory is available.

Notes

The related function lcalloc takes unsigned long arguments, and therefore can
allocate memory blocks that are larger than 64 kilobytes.

canon.h — Header file

Canonical conversion for the 68000
#include <canon.h>

canoa.h defines canonical conversion routines used for the 68000, to ensure that
byte ordering is correct.

See Also

byte ordering

carriage return — Character constant

Mark Williams C recognizes the literal character “\r' for the ASCII carriage return
character CR (octal 015). This character “tosses the carriage”, i.e., it returns the
cursor to the beginning of the line. The newline character ‘\n’ drops the cursor
down to the next line. With the routines in libe and libm, ‘\n’ is a synonym for
‘\n' plus ‘\r’. TOS routines, such as Cconws, need both characters explicitly.

ORIt SIIN

SRS S g

[U S

240 case — cast
See Also
ASCII, character constant
Notes
Note that files that contain the carriage return character must be opened in binary
mode. The default mode for opening a file recognizes only alphanumeric charac-
ters, plus <space>, the tab character, and “\n’. See the entry for fopen for more
; information on how to open a file in binary mode.
% case — C keyword
Introduce entry in switch statement
i case is a prefix that is used to introduce the individual entries in a switch

statement. For example,

while ((int = getchar()) != EOF)
switch (foo) (
case ‘q’:
cese 'Q':
exit(0);
case * '3
e
default:
break;
) s
case introduces the three possibilities recognized by the switch statement: a space,
‘q’, and ‘Q". The statements that follow a case statement behave as if they were
enclosed within braces. Note that if a case statement is not specifically concluded
with exit, break, return, or a similar statement, the switch statement will con-
tinue to search its list for variables that satisfy its condition.

See Also
break, C keywords, C language, switch
The C Programming Language, page 55

cast — Definition
" The cast operation is when you “coerce” a variable from one data type to another.

There are two reasons to cast a variable. The first is to convert a variable's data
into a form acceptable to a given function. For example, the function hypot takes
two doubles; if the variables leg_x and leg_y are Ints, then you would pass them
to hypot as follows:

hypot((double)leg_x, (doubleileg_y);

If you do not do this, hypot will still grab a double’s worth of memory: the two
bytes of your int, plus two bytes of whatever happens to be sitting in memory.

The other reason to cast a variable is when you cast one type of pointer to another.
For example,

cat — Cauxin 241

Frca S by

char *foo;
int *bar;
bar = (int *)foo;

Although foo and bar are of the same length, you wou.ld cast foo in this instance
to stop the C compiler from complaining about a type mismatch.

See Also
data formats, data types

cat — Command
Concatenate files
cat [file...]
cat copies each file to the standard output. A file speciﬁgd by ‘-’ indicates the stan-
dard input. If no file is specified, cat reads the standard input.

<ctrl-S> stops the printing of text, and <ctrl-Q> resumes printing.
See Also

commands, msh

Cauxin — gemdos function 3 (osbind.h)
Read a character from the serial port
#include <osbind.h>
long Cauxin()
Cauxin reads a character from the serial port aux:, and returns the character
read. It is affected by redirection.

Example

The following example creates & dumb terminal emulator that operates through the
serial port. It demonstrates the macros Cauxin, Cauxlis, Cauxos, _Cauxout,
Cconis, Ceonout, and Crawcin. You can exit from the program by typing <ctrl-
Z>. Run the example either from the GEM desktop, or with the tos command.

i
{
|
:
i

242 Cauxis

#inctude <osbind.h>

main() (
char c;
for (;;) (
tf (Cauxis())
Ceonout(c = Cauxin());
if (Cconis()) (i
if ((c = Crawcin()) == 26) (
bresk;
) else (
if (Cauxos()) /* 1f re *
Cauxout(c); /* send z::r 1/
else /* Otherwige */
; Cconout(/\07*); /* ring bell */
)
)
>
See Also
crtsg.0, gemdos, tos, TOS
Notes

T .

regiedcet:l?ngf:gli 2 as being aux:, the serial port. The microshell msh normall

pediracts han o another device; because Cauxin and its related functions cm};

b fedi direcé;rgog:otghmrgél;:tdusea Cauxin, Cauxis, Cauxos, or Cauxout must
r e esktop, o wi

mand, which re-redirects handle 2 to t}‘:e aru::n(\ie:i'::(ler the shell with the tos com-

e 18 8

An alternativ to use Bconin and rel ves instead of the Cauxin ‘8""1)’
its ati

Cau: (18 gEIndOS fu"'Ctlon 18 (OSb“ld~h)

Check if characters are waiti i
#include <osbind.h> g at serial port
long Cauxis()

Cauxis checks to see if
. characters are waitin i
returns -1 if there are characters waiting, and Ogiftt(i‘]elﬁ ;::c:u?tt the seriel port. It
Example '
For an example of how to use this macro, see the entry for Cauxin
See Also ‘
gemdos, tos, TOS i

Cauxos —cc 243

A

ad S

Notes
This function must be compiled with the -VGEM option, and run either from the

GEM desktop or with the tos command.

Cauxos — gemdos function 19 (osbind.h)

Check if serial port is ready to receive characters

#include <osbind.h>

long Cauxos()

Cauxos checks the output status of the serial port. Cauxos returns -1 if the serial
port is ready to gend a character, and 0 if it is not.

Example

For an example of how to use this macro, see the entry for Cauxin.

See Also

gemdos, tos, TOS

Notes

Programs that use this function must be compiled with the -VGEM option, and
run either from the GEM desktop or with the tos command.

Cauxout — gemdos function 4 (osbind.h)

Write a char to the serial port
#include <osbind.h>
void Cauxout(c) int ¢3

Cauxout writes the character ¢ to the serial port, and returns nothing.

Example
For an example of how to use this macro, see the entry for Cauxin.

See Also

gemdos, tos, TOS

Notes

Programs that use this function must be compiled with the -VGEM option, and
run either from the GEM desktop or with the tos command. :

ce — Command

Compiler controller
cc [optionsl file ...

cc is the program that controls compilation. It guides files of source and object
code through each phase of compilation and linking. cc has many options to assist
in the compilation of C programs; in essence, however, all you need to do to
. produce an executable file from your C program is type cc followed by the name of
the file or files that hold your program. It checks whether the file names you give

244 cc

it are reasonal_ﬂe,.selects the right phase for each file, and performs other tasks that
ease the compilation of your programs.

File names

cc assumes th'at each file name that ends in .c or .h is a C program and passes it
to the C compiler for compilation.

cc assumes that each file argument that ends in .8 is in Mark Williams assembly
language and processes it with the assembler as.

cc also passes all files with the suffixes .0 or .a unchanged to the linker Id.

How cc works

cc normally works as follows: First, it compiles or assembles the source files
naming t}_le resulting object files by replacing the .c or .8 suffixes with the suffix 0.
Thgn, it links the object files with the C runtime startup routine and the standard
C h.brary, and leaves the result in file file.prg. If only one object file is created
fiunng compilation, it is deleted after linking; however, if more than one object file
is created, or if an object file of the same name existed before you began to compile
then the object file or files are not deleted. ’

Setting the environment

cc looks for the compiler and its other tools in directories that the user names.
The names of these directories together compose ce’s environment, and each name
comprises an environmental variable. An environmental variable is set through the
micro-shell msh, by using the command setenv. The user must set the following
environmental variables for cc to work correctly:

LIBPATH This names the directories that hold the phases of the compiler, the
libraries, and ghe C run-time start-up routines. If you have more
than one version of a file, cc will use the first one that it finds
along the LIBPATH.

INCDIR This names the “default” directory within which the C preproces-
sor cpp.prg will look for files that are called with a #include
statement. This default directory is searched along with the direc-
tory of the source file and the directories specified with -1 options.

PATH '?his sets where cc finds the executable files it uses to compile and
link your program.

TMPDIR This names the directory into which temporary files should be writ-
ten. The default if this variable is not set is the directory in which
the source files are kept. Note that this variable need be set only if
space is & problem on any of your storage devices. |

These environxpental variables should be set in your profile file. See the entry for
msh for more information about profile.

cc 245

Options
The following lists all]
through to the linker 1d unchanged, and correctly i

and -u.

Note that a number
compiling a C progra

of cc's command-line options. cc passes some gptjons
nterprets to it the options -0

of the options are esoteric and normally are not used when
m. The following are the most commonly used options:

-A invoke editor when errors occur

-C compile only; do not link

-f include floating-point printf
-lname pass library libname.a to linker

-0 name call output file name

v print details of compiler’s actions
-VASM generate assembly-language output

A MicroEMACS option. If an error occurs during compilation, cc au?omatncal}y
invokes the MicroEMACS screen editor. The error or errors are displayed in
one window and the source code file in the other, th}.x the cursor set to the
line number indicated by the first error message. Typing <etrl-X> > moves
to the next error, <ctrl-X>< moves to the previous error. "I‘o recon)plle,
close the edited file with <ctrl-Z>. Compilation \fnll continue el‘ther until %he
program compiles without error, or until you exit from the editor by typing

<ctrl-U> followed by <ctrl-X> <ctrl-C>.

-c Compile option. Suppress linking and the removal of the object files.

-Dnamel =value] : o)
D[eﬁne name to the preprocessor, as if set by a #define directive. If value is
present, it is used to initialize the definition.

-E Expand option. Run the C preprocessor ¢pp and write its output onto the
standard output.

-f Floating point option. Include library routines that ‘perform ﬂpatmg-pomt
arithmetic. Because the floating-point routines require approximately five
kilobytes of memory, the standard C library does not {nclude .them;‘the -f op-
tion tells the compiler to include them. If a program 1s complled without the
-f option but attempts to print a floating point number during execution by
using the e, f, or g format specifications to printf, the message

You must compile with -f option for floating point
will be printed and the program will exit.
-Xdirectory

Include option. Specify the directory the preprocessor should search'for files
given in #include directives, using the following criteria: If the #include

statement reads

L FLLE Nri o

R

.

Tiay

A 5 ot mwas e s e
e o L i iy o T T A . 2t

e i e i ek 5T e e 7 i 8 TR, i 2

2468 cc

#include "file.h®

cc searches for file.h first in the source directo i i
: i ry, then in the directo
named in the -Idirecfory option, and finally i " irec,
N , y in the tem’s def: -
tories. If the #Include statement reads ystem's default diree

#include <file.h>

cc searches for file.h first in the directo i] i

e i ry named in the -Idirectory option,
and then in the'a system’s default directories. Multiple -Idirectory oplior?s are
executed in their order of appearance.

-K Keep option. Do not erase the i i
\ . intermediate files generated during compila-
tion. Temporary files will be written into the current directory. § compim
-1 name
library option. Pass the name of a libra i
!) . ry to the linker. -
into libname.a and searches LIBPATH. Fr co expands -Iname
-N[p0123sdirt]string
Name option. Rename a speci i
. specified pass to string. The letters p0123sdirt
]ri%fer,'resp;ctxvely, to cpp, cc0, ecl, cc2, cc3, the assembler, the linker, the
-v(r;gheis, t e run-time start-up, .and the temporary files. For example, the
option described below implicitly executes the option -Nrertsg.o to
change the name of the run-time start-up module. '
-NOVstring
No variant option. Turn off a variant i i
. 0 option that is turned on b; f
See the table of variant options, below, for more information. on by default
-0 name
Output option. Rename the executable file from the default file.prg to name.

-Q Quiet option. Suppress all messages.

-8 Suppres;s the_ object-writing and link phases, and invoke the disassembler
cc3. "I'hls' option produces an assembly-language version of a C program for
]exammatlon, for example if a compiler problem is suspected. The agsembly-
tt;]ngu‘r;ge output file name replaces the .c suffix with .s. This is equivalent to
! e -VASM option. The option -VLINES can be used with -S to generate
ine numbers as comments in the assembly-language output.

-U name

Undefine symbol name. Use this option to undefine symbols that the

preprocessor defines implici ji
preproce: plicitly, such as the name of the native system or

-V Verbose option. cec prints n .
. : : onto the standard o .
tion of eact ion it . rd output a step-Ly-step descrip-

cc 247

il

Vstring
Variant option. Variants that are marked on are turned on by default. To

turn them off, use the appropriate form of the option -NOVatring. For ex-
ample, to turn off the option -VSTRICT, use the option -NOVSTRICT.
Most options are turned off by default. To turn them on, enter their names
as given below. For example, to turn on the option -VPEEP, which turns on
the peephole optimizer, simply include it in the cc command line. Options
marked Strict: generate messages that warn of the conditions in question.
cc recognizes the following variants:

-VASM Output assembly-language code. Identical to -S option, above.
It can be used with the -VLINES option, described below, to
generate a line-numbered file of assembly language. Default is
off.

-VCOMPAC
Similar to -VSMALL, except that PC-relative addressing is used

only for code reference.

-VCSD Generate debugging information for csd, the Mark Williams C
Source Debugger.

.VFLOAT Include floating point printf routines. Same as - option, above.

-VGEM Use routines designed for GEM environment. This uses run-
time startup routine crtsg.o and links in the libraries libaes.a
and lbvdi.a. Default is off.

-VGEMACC .
Use routines designed for a GEM desk accessory. This uses

runtime startup routine crted.o and links in the libraries
libaes.a and libvdi.a. Default is off.

-VGEMAPP
Use routines designed for a GEM application. This is a

gynonym for -VGEM. Default is ofT.

.WLINES Generate line number information. Can be used with the
option described above to generate assembly language output
that uses line numbers. Default is off.

VMOASM This switch is for an unsupported feature. It is similar to the -S
switch, except that it produces Motorola-style assembly lan-
guage. as, the Mark Williams assembler, does not recognize
this syntax. Also, the output of this feature may not be a valid
source for the Motorola 68000 assembler. Although this is not a
supported feature, please contact Mark Williams Company if you
discover any problems with it.

i e B

PR ST M

248 cc

-VNOOPT Turn off optimization. Default is off, i.e., optimization is on.
-YNOTRAPS
Turn off trap substitution. By default, all gemdos, bios, xbios,
and mlcro_rtx calls are traps. By setting this option, sub-
routine calls will be generated instead of traps. A trap is a
single-word instruction, analogous to an interrupt; it is faster
and takes up less space than an ordinary subroutine call. This

option allows the user to test or use routines that have any of
the aforementioned names. Default is off.

-VPEEP Peephole optimization. Perform additional optimization on ex-
ecutable. This should not be used when device registers are ac-
cessed repeatedly, because the peephole optimizer attempts to
reduce memory accesses when values are known to be in
registers already.

-VPSTR

Put strings into the shared segment, if possible. Used to
generate ROMable code. Default is off,

-VQUIET Suppress all messages. Identical to -Q option. Default is off.

-VSBOOK Strict: note deviations from The C Programming Language.
Default is off.

-VSCCON Strict: note constant conditional. Default is off.

-VSINU Implement struct-in-union rules instead of Berkeley-member

resolution rules. Default is off, i.e., Berkeley rules are the
default.

-VSLCON Strict: int constant promoted to long because value is too big.
Default is on.

-VSMALL Enable PC-relative addressing for global data and function
references. This can only be used when the program has no
global references that are more than 32 kilobytes away from
where they are referenced. The linker will detect if a span is
not reached and report an error. The size of pointers does not
change, and there is no problem mixing modules compiled with
and without -VSMALL. The advantage of using -VSMALL is
that the code generated is smaller and tends to be faster.

-VSMEMB Strict: check use of structure/union members for adherence to
standard rules of C. Default is on.

-VSNREG Strict: register declaration reduced to auto. Default 19 on.
-VBPVAL Strict: pointer value truncated. Default is off, ‘

e v e

ccO —cc3 249

-
%;

aag Ll Sarkhiiania

.VSRTVC Strict: risky types in truth contexts. Default is off.
-VSTAT Give statistics on optimization.

.VSTRICT Turn on all strict checking. Default is on.
_VSUREG Strict: note unused registers. Default is off.
.VSUVAR Strict: note unused variables. Default is on.

Va6 Translate ANSI trigraphs. Default is off.

-Z Pause between passes and prompt for disk change. Used with the compiler
using single-sided disks.

See Also

as, cc0, ccl, éc2, cc3, commands, cpp, Id

cc0 — Definition

ccO is the Mark Williams C parser. It parses C programs u;;ing tthe method of
recursive descent and translates the program into & logical-tree format.

See Also

cc, ccl, cc2, cc3, cpp

ccl — Definition

i illi , . This phase generates code from t.he

the Mark Williams C code generator. This pha t e ‘

::;tzslscre:ted by the parser, cc0. The code generation 18 table driven, with entries
for each operator and addressing mode.

See Also

cc, cc0, cc2, cc3, cpp

c¢c2 — Definition

cc2 is the optimizer/object generator p}{)asit ofo(l;/[arlidwgli‘?vr;;ga% slé %ZS:‘ZS?J;?,
ites the object code. Mar
code generated by ccl, and writes the > s G s s
imizati i timizes jump sequences: it e
optimization algorithms. One op e The. other
timizes span-dependent jumps, and removes jump] ¢
Eﬁﬁihgs scxgns ths generated code repeatedly to eliminate unnecessary instructions.

See Also

cc, cc0, ccl, cc3, cpp

cc3 — Definition

Cconin — Cconis

cc3 is the output phase of Mark Williams C that writes a file of assembly language
rather than a relocatable object module. This phase is optional; it allows you to ex-
amine the code generated by the compiler. To produce an assembly-language out-
put of a C program, use the -8 option on the cc command line. For example,

cc -5 foo.c
tells cc to produce a file of assembly language called foo.s, instead of an object
module,
See Also

ce, ccf, cel, cc2, cpp

Cconin — gemdos function 1 (osbind.h)

Read a character from the standard input
#include <osbind.h>
long Cconin()

Cconin reads a character from the standard input and echoes it to the standard
output. It returns the character read.
Example

This example gets characters from the keyboard and displays them on the screen
until a <ctrl-Z> is typed.

#include <osbind.h>

main() (
int ¢ = 0;

while (¢ t= Ox1A)
Ceonout((int)(c = Ceconin()));
)

See Also
gemdos, TOS

Notes
<etrl-C> aborts a program if typed in response to Cconin.

Cconis — gemdos function 11 (osbind.h)

Find if a character is waiting at standard input
#include <osbind.h>
int Cconis()

Cconis checks to see if characters are waiting at the standard inpjit. It returns -1
if a character is waiting, and zero if no character is waiting.

Cconos 2651

Example ‘ ' .
This example displays a moving asterisk until any non-shift key is typed. Cconlis is

also demonstrated in the example for Cauxin.

#include <osbind.h>

main() (
int x=0;
int dir=0;
Cconma (*\O33H\033£"); /* Home, cursor disabled */
while (Cconis() == 0) { /* Untit & key is typed */
{£(dir == 0) (J* if left to right */
Ccorms("\010 **);
{f(+4x > 78)
dirs+;

/* 1f right to left */

) else (
Ccornms("\010\010\033K*"); /* Beck up, clear to end */
if (--x <= 0)
dir=0;
3
i = Cconin(); /* Eot the charscter */
Cconws("\033e*); /* Turn cursor on. */
M
See Also

gemdos, screen control, TOS

Cconos — gemdos function 16 (osbind.h)

Check if console is ready to receive characters
#include <osbind.h>
long Cconos()

Cconos checks to see if the console is ready to receive characters. It returns -1 if
the console is ready, and 0 if it is not.

Example . _
This program exits with a status of 1 if the console cannot be written to; otherwise,

it displays a message and exits with a status of 0.

¥include <osbind.h>
main() (
if (Cconos() == 0) {
exit(i);
3
Cconms("The console is ready...\n\r");
exit(0);

U

252 Cconout — Cconrs

See Also

gemdos, screen control, TOS

Notes
As of this writing, Cconos always returns -1, and does no checking.

Cconout — gemdos function 2 (osbind.h)
Write a character onto standard output
#include <osbind.h>
void Cconout(c) intc;

Cconout writes character ¢ onto the standard output. It returns nothing.

For information on the screen handling escape sequences used by this routine, see
the entry for screen control.
Example

For an example of this function, see the entry for Cauxin.

See Also

gemdos, screen control, TOS

Notes
<ctrl-C> aborts a program if used with Cconout.

Cconrs — gemdos function 10 (osbind.h)
Read and edit a string from the standard input
#include <osbind.h>
void Cconrs(string) char *string;

Cconrs reads and edits string, which it receives from the standard in

: s put. The first
byte of string holds the length of the data portion of the buffer; the second byte
holds t}}e actual number of characters read; and the remainder holds the characters
read, with a NUL character appended to the end.

Example

This example reads an edited string from stdin and writes i i

] e t and its length to
lstdg(?}x‘t. bgmol is the size of the data portion of the buffer, and buﬂ'[l]?st; the
ength read.

#include <osbind.h>
main() (
unsigned char buff(1301;

buff(0) = 128;
Cconrs(buff);
printf("string 'Xs’ is Xd bytes long\n", Rbuff(2}, buff(1]);

Cconws —cd 263

-

See Also
gemdos, TOS

Notes
<ctri-C> aborts a program if typed in response to a Cconrs.

Cconws — gemdos function 9 (osbind.h)
Write a string onto standard output
#include <osbind.h>
void Cconws(string) char *string;
Cconws writes string onto the standard output. It stops writing when it reads the
NUL. Cconws returns nothing.

Example
This example writes a NUL-terminated string to stdout. Note the \r' used with
the ‘\n’.
#include <osbind.h>
main() (
Ceonws{"This is a NUL-terminated string.\r\n");
>
See Also
gemdos, screen control, TOS
Notes

Note that <ctrl-S>, <ctrl-Q>, and <ectrl-C> act, respectively, as XON, XOFF,
and abort while Cconws is acting. ’

ed — Command
Change directory
cd directory
The micro-shell msh keeps track of the directory in which the user is currently
working. If a command is not specified by a complete path name beginning with
the name of the storage device on which it is kept, msh prefixes it with the name
of the current working directory. ed changes the current working directory to
directory. If no directory is specified, the directory named in the $SHOME environ-
mental variable becomes the current working directory.

For example, consider a disk on drive B that has two directories: foo and bar. By
definition, the root directory is B:\, and foo and bar each are sub-directories of
B:\. To change to the sub-directory foo, you would type:

cd foo
To move from foo to bar, type the full path name of bar:

cd b:\bar

254

ceil

Note that the symbol ‘.’ stands for a directory’s parent directory; in this example,
both foo and bar have B:\ as their parent directory. So, to move back from bar to
foo, you could type:

ed ..\foo
This first moves you from bar to bar’s parent directory, B:\; then from the parent
directory into foo. By definition, a root directory has no parent.
See Also

commands, msh, pwd

ceil — Mathematics function (libm)

Set numeric ceiling
#include <math.h>
double ceil(z) double z;

Fe“ returns a double-precision floating point number whose value is the smallest
integer greater than or equal to z.

Example

The following example demonstrates how to use ceil:

#include <math.h>
dodisplay(value, name)
double value; char *name;
S
if (errno)
perror{name);
else
printf("%10g Xs\n", value, name);
errno = 0;

)

#d?fine displey(x) dodisplay((double)(x), #x)
main() (

extern char *gets();

double x;

char stringl[64};

for(;;:) (
printf("Enter number: *);
if(gets(string) == 0)
bresk;
x = atof(string);

display(x);
display(ceil(x));
disptay(floor(x)); i
display(fabs(x));

display(sqrt(x));

char — character constant 256

See Also
abs, fabs, floor, frexp

char — C keyword
Data type

char is a C data type. It is th
consists of eight bits (one byte)

e smallest addressable unit of data, and it usually
of storage. sizeof(char) returns one by definition,

with all other data types defined as multiples thereof. All Mark Williams compilers
sign-extend char when it is cast to a larger data type.

Note that under Mark Williams C, a char by default is signed; this conforms with
the description of a character on page 183 of The C Programming Language.

See Also
byte, C keywords, C language, data formats, declarations, unsigned

character constant — Overview

A character constant is a constant of the form +X’, where X is any printable
character enclosed between two apostrophes. The value of the constant is the
machine value of the character it represents, whatever it might happen to be on
your system. For example, on the IBM PC and compatible machines, the character
constant '’ is equivalent to the ASCII value of the letter ‘A’, or 0x41. This gives
you a portable way to manipulate the machine values of characters.

Selected non-printable characters can also be represented as character constants by
using the following escape sequences:

\O NUL

\NNN octal number

\a bell

\b backspace

\f formfeed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\xNN hexadecimal number

\OxNN hexadecimal number
See Also

ASCII, backspace, carriage return, horizontal tab, newline, vertical tab
The C Programming Language, page 35

256

chdir — chmod

Notes

The draft ANSI standard describes the form “\xNNN’ as a one-character constant.
Note, too, that use of this form may not be portable to all compilers. Because it
departs from the Kernighan and Ritchie standard for C, it will generate a warning
message if the compiler option -VSBOOK is used.

chdir — UNIX system call (libc)

Change working directory
chdir(directory)
char * directory;

The function chdir changes the working directory to the directory pointed to by
directory. This change is in effect until the program exits or calls chdir again.

By convention, the working directory has the name *.".

Diagnostics

chdir returns zero if successful. It returns -1 if an error occurred, e.g., that direc-
tory does not exist, is not a directory, or is not searchable.

See Also
chmod, directory

chmod — UNIX system call (libc)

Change file protection modes
#include <stat.h>
chmod(file, mode)

char * file; int mode;

chmod sets the mode of file to mode. mode is constructed from the following
values, which are defined in the header file stat.h:

S_IJRON 0x01 Read-only
S_IJHID 0x02 Hidden from search
S_IJSYS 0x04 System, hidden from search
S_IJVOL 0x08 Volume label in first 11 bytes
S_IJDIR 0x10 Directory
S_IJWAC 0x20 Written to and closed
chmod returns -1 if an error occurs.
See Also
chdir, directory
Notes

At present, chmod is included for compatibility with the UNIX systerﬁ libraries. It
performs no work, and always returns zero.

chmod — clearerr 2567

chmod — Command
Change the modes of a file
chmod +modes file
chmod -modes file

The command chmod changes the modes of a file. file is the file whose modes are
being changed. modes may be one or more of the following:

8 System file (hidden from normal directory searches)

h Hidden file (" ") &oopiin.

m Backed-up (shows up as ‘m’ in Is -I)

w Write allowed (shows up as ‘w’ in Is -I)
Preceding modes with ‘+' adds the modes to a fils, whereas preceding it with '’
deletes them. For example, the command

chmod +h exsmple
adds the “hidden” mode to the file example. The file will be hidden from normal
system searches.
Typing the command

lg -1 exsmple
will show the letter ‘h' among the file's modes. See lIs for more information about
how that command presents a file’s modes.

See Also

commands

chown — UNIX system call (libc)
Change ownership of a file
chown(file, uid, gid)
char * file ;
short uid, gid ;

chown changes the owner of file to user id uid and group id gid.

To change only the user id without changing the group id, stat should be used to
determine the value of gid to pass to chown.

chown is included for compatibility with the UNIX operating system. It performs
no work, and is always zero.

See Also
UNIX routines

clearerr — STDIO macro (stdio.h)

Present stream status

iy

258 CLEK_TCK — close

N

#include <stdio.h>
clearerr(fp) FILE */p;

clearerr resets the error flag of the argument fp. If an error condition is detected
by the related macro ferror, clearerr can be called to clear it.

Example

For an example of this function, see the entry for ferror.

See Also
ferror, STDIO

CLEK_TCK — Manifest constant

CLK_TCK is a manifest constant that is set in the header file time.h. The draft
ANSI standard defines it as being equivalent to the rate at which the system clock
ticks. On the Atari ST, this is equivalent to 5 milliseconds.

See Also

manifest constants, time, time.h

clock — Time function (libc)

Get number of clock ticks since system boot

#include <time.h>

clock_t clock()

clock returns the number of times the clock has ticked since the system was last
turned on. The number of ticks per second is defined by the manifest constant
CLK_TCK, which is declared in the header file time.h. Note that this value varies
from computer to computer. On the Atar ST, the clock ticks every five
milliseconds.

clock returns a value of the type clock_t; this type is defined in time.h as being
equivalent to an unsigned long. Note that this value will overflow clock_t and be
reset to zero approximately 148 days after the machine is turned on.

Example
For an example of this function, see the entry for Pexeec.

See Also
CLK_TCK, time (overview), time.h

close — UNIX system call (libc)

Close a file :
int close(fd) int fd; !

close closes the file identified by the file descriptor fd, which \‘Nas returned by
creat, dup, or open. close frees the associated file descriptor.

Cate

Bt AR

cmp — Cnecin 259

Because each program can have only a limited number of files open at any given
time, programs that process many files should close files whenever possible. Mark
Williams C closes all open files automatically when a program exits.

Example
For an example of this function, see the entry for open.

See Also

creat, open, STDIO, UNIX routines

Diagnostics

close returns -1 if an error occurs, such as its being handed a bad file descriptor;
otherwise, it returns zero.

emp — Command

Compare bytes of two files
cemp [-18] filel file2 [skipl skip2]

cmp is a command that is included with Mark Williams C. It compares filel and
file2 character by character, for equality. If filel is ‘', cmp reads the standard in-
put.

Normally, emp notes the first difference and prints the line and character position,
relative to any skips. If it encounters EOF on one file but not on the other, it
prints the message “EOF on filen”. The following are the options that can be used

with cmp:

.1 Note each differing byte by printing the positions and octal values of the bytes
of each file.

.8 Print nothing, but return the exit status.

If the skip counts are present, cmp reads skipl bytes on filel and skip2 bytes on

file2 before it begins to compare the two files.

See Also

commands, diff, msh

Diagnostics
The exit status is zero for identical files, one for non-identical files, and two for er-
rors, e.g., bad command usage or inaccessible file.

Cnecin — gemdos function 8 (osbind.h)

Perform modified raw input from standard input
#include <osbind.h>
long Cnecin()

Cnecin reads a character from the standard input and returns it. The character is
not echoed to the standard output.

et

260 commands

Example

This example reads characters from the standard i i i
. rd input device, changes their case,
and writes them out to the standard output device until a <ectrl-D> character is

typed.

#include <osbind.h>
#include <ctype.h>

main() (
unsigned char c;

while((c=Cnecin()) 1= Ox04) (

if(isupper(c)) /* Toggle case of char */
¢ = tolower(c);
else
c = toupper(c);
Crowio(c);
tf(c == 0x00) /* 1f & <RETURN> */
, Crawio(0x0A); /* Append 8 Line feed */
)
See Also

gemdos, screen control, TOS

Notes
This routine has been

the characters <ctrl-C>, <ctrl-S>

be correct.

commands — Qverview

documented elsewhere as recognizing the special meanings of
, and <etrl-Q>; this however, appears not to

Mark Williams C includes a number of commands. They are listed below, with the

command given on the

ar
as
ag68toas
cat
cc
cd
chmod
cmp
cp
cpp
cursconf
date
db

o df
diff

left and a description on the right.

the archiver/librarian

the assembler

convert Motorola to Mark Williams assembler
concatenate files

the compiler driver

change directory

change “mode” of a file

compare two files

copy a file

the C preprocessor

change cursor style and position
print/set the system date and time
symbolic debugger

measure free space on digk
compare two files

F

commands 261

drtomw
drvprs
echo
egrep
equal
exit

file
gem
getcol
getpal
getphys
getrez
help
bidemouse
htom

if
inherit
is_set
kbrate
kick

Ic

1d

Is

ltom
make
me

mf
mkdir

msh
mshversion
msleep
mtoh
mtol

mv
mwtomw
nm

not

od

pr

pwd

rdy
rescomp
resdecom
resource
m

convert from DRI to Mark Williams

check if drive is present

repeat/expand an argument

find embedded strings

test if two values are equal

leave msh

determine file type

run a GEM-DOS program

get a color palette entry

get color palette

get base of physical screen memory

get screen resolution

print help files on screen

hide mouse pointer

redraw screen, moving from high to medium resolution

executs a command conditionally

pass variable to child shell

test if an environmental variable is set

get/set the keyboard's repeat rate

force TOS to reread the floppy disk cache

print directory contents in columns i
the linker |
list directory contents :
redraw screen, moving from low to medium resolution

programming discipline

MicroEMACS screen editor

measgure free space in RAM

create a directory

mousehidden print number of times mouse pointer has been hidden

the Mark Williams micro-shell

print current version of msh

suspend processing for n milliseconds

redraw screen, moving from medium to high resolution
redraw screen, moving from medium to low resolution
rename a file

convert old Mark Williams object files to 3.0 format
print gymbol tables

invert the logical value of its argument

print an octal dump of a file

format ASCII files for printing

print the current directory

create, save, and load a rebootable RAM disk

the Mark Williams resource compiler

the Mark Williams resource disassembler

the Mark Williams resource editor

remove a file

262 compound number

compound number — Definition

rmdir remove a directory

rsconf set attributes of serial (auxiliary) port

set set a shell variable

seteol set a palette color

setenv set an environmental variable

setpal set the color palette

setphys set, the physical base of the screen’s memory
getprt set attributes of parallel port

setrez set screen resolution

show , display saved screen image

showmouse show the mouse pointer

size print size of a file

sleep suspend processing for n seconds

snap take a “snapshot” of the current screen image
sort sort ASCII files

strip strip symbol tables from objects

tail print the end of a file

time print current time; time execution of a program
tos run unredirected GEM-DOS program
touch change a file’s date

uniq list/destroy duplicate lines

unset discard a shell variable

unsetenv discard an environmental variable

version print/assign version number

we count words/lines in ASCII files

while set & conditional loop

Note that many of the commands are huilt into msh itself, whereas the others are
executable programs in their own right. For a list of the commands that are built
into msh, type the command

set in .bin

Note that commands not built into msh must be stored in one of the directories
named in the environmental variable PATH, so that they can be found automati-
cally by msh. Note, too, that commands not built into msh can be run indepen-
dently from the GEM desktop; in most instances, this will require that the suffix be
changed from .prg to .ttp, so the command in question can receive arguments.

For more information on any of these commands, see its entry within the Lexicon.

See Also

Lexicon, msh
i

A compound number is a number that consists of two numbers of different types.
In the context of (, this applies usually to floating point numbers, which are con-

TR

con — continue 263

Slediteinring Her i el

structed of a sign bit; an exponent; and a fraction, or base upon which the ex-
ponent operates.

See Also
data formats, double, float, fraction

con — Operating system device

Logical device for the console

. : . . . low
TOS gives names to its logical devices. Mark Wllhams_C uses these names to all
its S’f"lDIO library routines to access these devices via TOS. con: is the logical
device that describes the console.

Example

The following example demonstrates how to open the console device.

#include <stdio.h>
main{){
FILE *fp, *fopen();
i+ ((fp = fopen('con:®, "w")) t» NULL)
fprintf(fp, “con: enabled.\n");
else printf(“con: cannot open.\n"};

by
See Also
aux:, prn:, STDIO

Notes
con: may be spelled con: or CON:.

const — C keyword

Qualify an identifier as not modifiable

The type qualifier const marks an object as being .unmodiﬁable._ An object
declared as being const cannot be used on the left side of an ags:gnment '(an
lvalue), or have its value modified in any way. Because of these restrictions, an im-
plementation may place objects declared to be const into a read-only region of

storage.

See Also

C keywords, volatile

Notes .
Mark Williams C does recognize this keyword, but its semantics are not im-
plemented in release 3.0. Thus, storage declared with the const qualifier will not
be treated as unmodifiable by the compiler, and no warnings will be generated.

continue — C keyword

Force next iteration of a loop

266

<pp

#n filename, so that the parser cc0 will be able to connect its error messages and

_ debugger output with the original line numbers in your source files.

Options

The following summarizes cpp’s options:

-DVARIABLE
Define VARIABLE for the preprocessor at compilation time. For example,
the command

cc -DLIMIT=20 foo.c

tells the preprocessor to define the variable LIMIT to be 20. The compiled
program acts as though the directive #define LIMIT 20 were included
before its first line.

-E Strip all comments and line numbers from the source code. This option is
used to preprocess assembly-language files or other sources, and should not
be used with the other compiler phases.

-1 directory .

C allows two types of #Include directives in a C program, i.e., #include
"file.h” and #include <fileh>. The -1 option tells cpp to search a
specific directory for the files you have named in your #include directives,
in addition to the directories that it searches by default. By default, cpp
looks for these files in the directory named by the INCDIR environmental
variable and the directory of the source file. For information on how to set
this variable, see the Lexicon’s entries for it and for setenv. Note that you
can have more than one -I option on your e¢c command line.

-0 file
Write output into file. If this option is missing, cpp writes its output onto
stdout, which may be redirected.

-UVARIABLE
Undefine VARIABLE, as if an #undef directive were included in the
source program. This is used to undefine the variables that cpp defines by
default, i.e.,, GEMDOS and M68000.

Directives

cpp processes the following directives:
#assert #ifdef
#define #ifndef
#elif #include
#else #line
#endif #undef
#if

IR TR TR

RODPRRT

Rassiod oo

Cprnos — Cprnout 267

Fach of the directives has its own entry in the I{exioon. Note that no directive can
be indented on the line; if it is not set flush with left margin on the screen, cpp

will ignore it.

See Also

cc
The C Programming Language, page 86

Cprnos — gemdos function 17 (osbind.h)

Check if prihter is ready to receive characters

#include <osbind.h>

long Cproos()

Cprnos attempts to execute a “handshake” routine to see if t:hg Printer is ready to
receive characters. It returns -1 if the printer is ready, and 0 if it is not.

Example

The following example demonstrates Cprnos.

#include <osbind.h>

main{) {
if(Cprnos() t= 0)
Ccorms("Printer Ready.\n\r¥);
else
Cconws("Printer not resdy.\n\r");
)

See Also
gemdos, TOS

Cprnout — gemdos function 5 (osbind.h)

Send a character to the printer port
#include <osbind.h>
void Cprout(c) int ¢;

Cproout sends the character ¢ to the printer port, and returns nothing.
Example

This example writes a line to the printer.

#include <osbind.h>
main() ¢
unsigned char *c="This is printed on the printer.\r\n";
while (*c 1= '\0’)
Cprnout(*c++);

268 Crawcin — Crawio

See Also
gemdos, TOS

Crawcin — gemdos function 7 (osbind.h)
Read a raw character from standard input
#include <osbind.h>
long Crawcin()

Crawcin reads a raw character from the sta i

3 ndard input, and returns it to th
calhp;(] program. The character is not echoed to the standard output, and th:
:;];:)e:;!d meanings of the characters <ctrl-C>, <etrl-8>, and <ctrl-Q> are ig-

Example
This example reads characters from th i i

e standard input device, and writes charac-
ters out to the standard output device until a <ctrl-Z> is typed. Crawcin isael;la:o
demonstrated in the example for Cauxin.

#include <osbind.h>
main() (
unsigned char c;

while((c = Crawcin()) t= Ox1A) (
Crawio(c);
ff(c == Ox00)
, : Crawio(Ox0A);
>
See Also

gemdos, TOS

Crawio — gemdos function 6 (osbind.h)
Pe.rform raw I/O with the standard input
#include <osbind.h>
long Crawio(c) int ¢;

Crawio performs raw I/O with the stand i

. ard input. If the argument
0xFF, then a char.ac.ter is read from the standard input and retung:d Ifcfioeezur:i
equal OxFF, then it is written onto the standard output. .

Example
This example reads characters from the standard i i
ard input de i
the standard output device until a <ctrl-Z> is typedl.) vice, and writes them on

pE:

RPN RS

gt

creat — crts0.0 269 k! “g’*’,\ﬁ
oLy 'Q
#include <osbind.h> ey,
main() (i“f
unsigned cher c; ! ;
while ((c = Crawio(OxFF)) 1= Ox1A) € 1 r‘»“g
Crawio(c); 3 "E{‘
if (c == Ox00) I hcf
Crawio(0x0A); « ey “3!
> : &i
Y ¥ &
See Also g
gemdos, TOS 3
creat — UNIX system call (libc) A
y ¥
Create/truncate a file - %1’.’
{nt creat(file, mode) char *file; Int mode;)

. N ¥ te)
creat creates a new file or truncates an existing file. It returns a file descriptor h 73] %“{
that identifies file for subsequent system calls, If file already exists, its contents are Y
erased. creat ignores its mode argument. This argument exists for compatibility ’ ﬁﬂz‘
with implementations of creat under UNIX and related operating gystems. 7 ?‘*]
Example PiE
For an example of how to use this routine, see the entry for open.] {{ :

¢ vy

See Also i i
fopen, fdopen, STDIO, UNIX routines PFELI
. . A
Diagnostics : A¥
If the call is successful, creat returns a file descriptor. It returns -1 if it could not St
or nonexistent ,';”@3

create the file, typically because of insufficient system resources,
path.
;g 3)‘..3,;1

erts0.0 — Runtime startup

Defauit C runtime startup
i3
crts0.0 is the runtime startup routine for C programs compiled into Mark Williams . 3;
object format. : ‘ \.#
crts0 provides an efficient, portable environment for C programs. When used with };{,
the micro-shell msh, it can provide arbitrarily long argument lists, easily configured Li‘{'
environmental parameters, and redirection of up to six input/output channels. k-
I

The runtime startup module, crts0.0, is the first code executed when your GRS
s its first action, it parses the environment string list passed by Tpdeh

program is run. A ’
TOS into a vector of string pointers. This vector is saved in the the variable exter- B
nal char **environ, for the use of the library routine getenvQ, and passed as the e

parameter char *envpl], for the information of the function main(). ;ﬁ

270

crtsd.o — crtsg.o

If the environment vector contsins a parameter named ARGV, then the run time
start-up assumes that the program was executed by msh, or by another program
that handles arguments, and that the remainder of the environment vector is an
argument vector that should be passed as the parameter char *argvi] to the func-
tion main().

If the parameter ARGV has a value, such as ARGV =CCAPT??, then the value
should consist of characters from the set [CAPF?]. The characters describe the
origin of the system file handles as Console, Auxiliary port, Printer port, File, or
unknown. The runtime startup stores the value of ARGV, if it exists, into the ex-
ternal variable char *_lovector for the use of the routines that emulate the
functions of the COHERENT operating system.

If no ARGV parameter is found in the environment, then the run time start-up
program assumes that the program was executed by a simple GEMDOS Pexec().
The buffer cmdtall is parsed to form the argument vector for main(). ARGV[0]
is supplied by the external variable char _cmdname(], which should be supplied
by your program, or it will be set to 7 by the library. The value of the variable
_iovector will be set to the default CCAP??227772771777702 72777705

See Also
argv, runtime startup, system

crtsd.o — Runtime startup

C runtime startup, GEM environment

crtsd.o is the runtime startup routine for a C programs that is designed to be used
as a GEM desktop accessory.

crtsd.o can be specified on the cc command line in one of two ways. First, the
-VGEMACC option will include it, well as the libraries libaes.a and libvdi.a.
Second, crtsd.o can be used independently of the libraries by using the name op-
tion Nrertsd.o.

See Also

argv, cc, crts0.0, crtsg.o, runtime startup

crtsg.o — Runtime startup

C runtime startup, GEM environment

crtsg.o is the runtime startup routine for C programs that use the GEM VDI and
AES routines.

crtsg.o is a simple but fast runtime startup routine. Note the following differences
from the default runtime startup crts0.o: ;

1. ARGV, ARGC, and ENVP are all set to zero.

3

ctime — ctype 271

(S e S e e

2. getenv is not enabled; this means programs that use crtsg.o will cannot
read environmental parameters.

3. stderr will send error messages to the auxiliary port rather than to the
console.

crtsg.o can be invoked on the cc command line in one of two ways. First, the
-VG%M option will include it, well as the libraries Hbaes.a_and libvdi.a. SecoPd,
crtsg.0 can be used independently of the libraries by using the name option

Nrertsg.o.

See Also
argv, cc, crts0.0, crtsd.o, runtime startup

ctime — Time function (libc)

Convert system time to an ASCI string

#include <time.h>

char *ctime(timep) time_t *timep;

ctime converts the system’s internal time to a form that can be rea('i by humans.
It takes a pointer to the internal time type time_t, which is defined in the header
file time.h, and returns a fixed-length string in the form:

Thu Mar 14 11:12:14 1987\n
Note that time_t is defined as being equivalent to a long. Mark Williams C defines
the internal system time as being equivalent to the number of seconds that have
passed since January 1, 1970 00h00m00s GMT.

ctime is implemented as a call to locaitime followed by a call to asctime.

Example

For another example of this function, see the entry for asctime.

Ninclude <time.h>

main()

4
time_t t;
time(&t);
printf(ctime(&t));

)

See Also

time (overview), time_t, time.h
Notes

ctime returns a pointer to a statically allocated data area that is overwritten by

successive calls.

ctype — Overview

#include <ctype.h>

2
UL IO PO P, .. . ;

272

ctype

The etype macros and functions test a character’s type, and can transform some
characters into others. They are:

isalnum test if alphanumeric character
isalpha test if alphabetic character
isascii test if ASCII character

fscntrl test if a control character
isdigit test if a numeric digit
islower test if lower-case character
isprint test if printable character
ispunct test if punctuation mark
isspace test if a tab, space, or return
Isupper test if upper-case character
-tolower change to lower-case character
_toupper change to upper-case character

These are defined in the header file ctype.h, and each is described further in its
own Lexicon entry.

Example

The following example demonstrates the macros isalnum, Isalpha, isaseil,
iscntrl, Isdigit, islower, isprint, ispunct, and isspace, and the function toup-
per. It prints information about the type of characters it contains, and converts its
name to upper-case characters.

#include <ctype.h>
¥include <stdio.h>

main()

FILE *fp;
char fneme{20];
int ch,i;
int alnum = 0;
int alpha = 0;

int control = 0;

int printable = 0;
int punctuation = 0;
int space = 0;

printf("Enter name of text file to exsmine: “);
fflush(stdout);
gets(fname);

for(i=0; fname(i] 1= '\0’; i++)

frieme[i]1= islower(frname(i}) ? toupper(framelii)
: fname(i];

e’

S e S ey

ctype.h — cursconf 273

{f ((tp = fopen(fname, weH)) b= HULL)

¢ while ((ch = fgetc(fp)) 1= EOF)

[
{f(isascii(ch))

Tf(isalnum(ch)) alnumts]
{f(isalpha(ch)) alphs++;
if(isentri(ch)) controls+;
ff(1sprint{ch)) printabless;

i £(ispunct(ch)) punctuationss;
if(isspace(ch)) spece++;

) eloe ;rintf(“Xs is not ASCIi.\n", freme);

exit(1);
>
)
intf(*%s has the following:\n", fname);]
z:igtft"%d alphanumeric characters\n", stnum);
printf("xd alphsbetic charsctersi\n”, sipha);
printf("d controt characters\n®, control); .
printf("xd printable characters\n®, printsble);
printf("xd punctuation marks\n", puwctuoﬂon?,
printf(*Xd white space characters\n", space);
exit(0);
else .
> printf("Cennot open %t \n*, fnsme);
>

See Also
ctype.h, Lexicon

ctype.h — Header file

Header file for data tests
#include <ctype.h>

ctype.h is a header file that holds the texts of the macr
view entry ctype.

See Also

ctype, header file

os described in the over-

cursconf — Command

Set the cursor’s configuration
cursconf task [rate}

cursconf is a command that uses the xbi
gor’s configuration. It can take one or two a

as follows:

os function Cursconf to alter the cur-
rguments. task indicates what to do,

274 Cursconf

hide the cursor

show the cursor

get the cursor to blink

set the cursor not to blink
get the cursor to blink at rate
return the current blink rate

NN -D

If task is set to 4, then you should give cursconf the argument rate, which sets
the rate at which the cursor blinks. rate should be set to proportions of the normal
rate parameter, which is one half of the normal cycle time (60 Hz for the color
monitor, 70 Hz for the monochrome monitor, and 50 Hz for monitors set in PAL
mode). For example, setting rate to 35 will cause the cursor to blink twice a second
on a monochrome monitor.

All arguments to cursconf can be C-style constants.
See Also

commands, TOS

Cursconf — xbios function 21 (osbind.h)

Get or set the cursor’s configuration

#include <osbind.h>

#include <xbios.h>

int Cursconf(function, rate) int function, rate;

Cursconf gets or sets the cursor's configuration. function is an integer that tells
TOS to do one of the following:

hide the cursor

show the cursor

set the cursor to blink

set the cursor not to blink
set the cursor to blink at rate
return the current blink rate

N W=D

rate, as noted above, sets the rate at which the cursor blinks. It is used to set the
rate only if function is set to 4; otherwise it is ignored. rate should be set to
proportions of the normal rate parameter, which is one-half the normal cycle time
(60 Hz for the color monitor, 70 Hz for the monochrome monitor, and 50 Hz for
monitors set in PAL mode). For example, setting rate to 35 will cause the cursor to
blink twice a second on a monochrome monitor.

Note that Cursconf returns the current cursor blink rate when function is set to b;
otherwise, it returns a meaningless value. i

3
3
3
2
t

TR

Cursconf 2756

e turn on
ffi‘:':x}imple creates a utility for the micro-shell msh that can turn off or

do not compile it with
's blink mode, Because this example uses argv, i
311: c‘l',lg%xl“; ::)ltxi\on.m For an example of using Cursconf in a GEM program, see

entry for \auto.

#include <osbind.h>
#define JUNK 50

matn(argc, orgy)
int argc;
chear *argvil;

7* Place-holding value that has no meaning */

1f ((arge-1) == 0) (
Cursconf(3, JUKK);
exit(0);
) L]
else If (((arge-1) == 1) Bb (strempCargv(1], "blink
Cursconf(2, JUNK);

y == 0)) (

exit(0);
)
etee € ink)\n");
printf("Usage: cursor {btink) H
exit(1);
3
}
See Also

screen control, TOS, xblos

g

7

A

;,‘ }?)

276 daemon — data types

date 277

D

daemon — Definition

A daemon, in the context of C proj ing, i i i

) gramming, is a process that is designed to per-
f?rm a particular tagk or control a particular device without requiring the inbersen-
tion of a human operator.,
See Also

process

data formats — Technical information

Mark Williams Compa.ny has written C compilers for a number of different com-
puters. Each has a unique architecture and defines data formats in its own way.

The following table gives the sizes, in chars, of th
) 2 A 2 e data
by various microprocessors. ata (ypes as they are defined

18086 i8086

Type SMALL LARGE 28001 28002 68000 PDP11 VAX
char 1 1 1 1 1

double 8 8 8 8 8 Ell EXS
float 4 4 4 4 4 4 4
int 2 2 2 2 2 2 4
lopg 4 4 4 4 4 4 4
pointer 2 4 4 2 4 2 4
short 2 2 2 2 2 2 2

Mark Williams C places some alignment restrictions on data, which conform to all
restrictions set by the microprocessor. Byte ordering is set by the microprocessor;
see the Lexicon entry on byte ordering for more information. ,

See Also

b .
aly;;i:gz;nng, C language, data types, declarations, double, float, fnemory

data types — Technical information

The following describes the data types recogni illi
€ gnized by Mark Williams C. The left-
hand column below gives compound type specifiers mentioned in The C Prozrr:m-

ming Language; the right-hand col i iti i i
g Language; g column gives additional speclﬁer\ls recognized by

short int unsigned short int
long int unsigned short
unsigned int unsigned long int
long float unsigned long
unsigned char

Note that the terms unsigned short int and unsigned short are synonymous, as
are the terms unsigoed long int and unsigned long. The type unsigned char
is an addition to the language. If used in arithmetic expressions, it is automatically

cast to unsigned int.

See Also

C language, char, data formats, double, float, int, long, pointer, short, un-
signed

date — Command

Print/set the date and time
date [-1] [{{cclyymmddlhhmm{.5s]]

date prints the time of day and the current date, including the time zone. if an ar-
gument is given, the system’s current time and date is changed, as follows:

cc century (AD; default, “19™)
¥y year (00-99)

mm month (01-12)

dd day (01-31)

hh hour (00-23)

mm minute (00-59)

88 seconds (00-569)

Note that the century and seconds fields are optional. For example, typing

date 850512141233
gets the date to May 12, 1986, and the time to 2:12:33 P.M. Note that at least hh
and mm must be specified—the rest are optional. The command

date -1
displays the current date and time in the form acceptable to date as input. The
command

date ‘date -i°
resets the keyboard clock and GEM-DOS times with the output of the system clock.
Embedding this command in your msh profile will ensure that files are always
date-stamped correctly.
The library time conversion routines used by date look for the environmental vari-
able TIMEZONE, which specifies local time zone and daylight saving time informa-
tion in the format described in ctime.

P

e TR

Y

>SNy

278

dayspermonth — db

See Also
commands, ctime, msh, time, TIMEZONE

dayspermonth — Time function (libc)

Return number of days in a given month
#include <time.h>
int dayspermonth(month, year) int month, yeary

dayspermonth returns the number of days in a given month of a given year AD.
month is the number of the month in question, from one to 12. year is the year
A.D. in which month appears. Note that there is no year 0.

See Also

fsleapyear, time (overview), time.h

db — Command

Assembler-level symbolic debugger
db [-afkort] [mapfile] [datafile]

db is an assembly language-level debugger. It allows you to run object files and ex-
ecutable programs under trace control, run programs with embedded breakpoints,
and dump and patch files in a variety of forms. You can use it to debug assembly-
language programs that have been assembled by as, the Mark Williams assembler,
as well as those that have been compiled with the Mark Williams C compiler.

What is db?

db is a symbolic debugger, which means that it works with the symbol tables that
the compiler builds into the object files it generates. Because db is designed to
work on the level of assembly language, the user needs a working knowledge of
68000 assembly language and microprocessor architecture.

Invoking db

To invoke db, type its name, plus the options you want (if any) and the name of
the files with which you will be working. mapfile is an object file that supplies a
symbol table. datafile is the executable program to be debugged. If possible, db ac-
cesses datafile with write permission.

The following options to the db command specify the format of program:

-a Accept commands from the aux port. This feature allows you to plug a ter-
minal into the Atari’s aux port and give commands to db from it. The
program’s output is displayed on the Atari’s monitor. This allows you to

easily debug programs that use AES or VDI calls. !
-f Map program as a straight array of bytes (file). ‘

db 279

g GEM option: turn on the mouse pointer for programs that use the GEM in-
terface.
-k The kernel option. This allows a user to debug all of the Atari ST's

memory. The default symbolfile in tos.sym defines the documented
locations in low memory. The symbolfile is used to provide symbolically in-
terpreted output. All of the ST's memory, from address 0 in RAM to the
end of the ROM, is available for display or patching. Note that this option
allows the user to perform a post-mortem on programs that crash: use the
command :r to display the registers and the command :f to display the fault
jdentifier in the process dump area. These commands are described in
detail below.

-0 program is an object file. If mapfile is given, it is another object file that
provides the symbol table.

-r Read file only, even though you can write into it. This is used to give a file
additional protection.

-t Force stdin, stdout, and stderr to the console (keyboard and screen),
regardless of redirection on the command line or in the shell.

Commands and addresses

db executes commands that you give it from the standard input. A command usu-
ally consists of an address, which tells db where in the program to execute the
command; and then the command name and its options, if any.

An address is represented by an expression, which can be built out of one or more
of the following elements:

° The *.!, which represents the current addrees. When an address is entered,
the current address is set to that location. The current address can be ad-
vanced by typing <RETURN>.

® The name of a register. db recognizes the register names d0 through 47,
a0 through a7, pe, and sp. Typing the name of a register displays its con-
tents.

° The names of global symbols and symbolic addresses can be used in place

of the addresses where they occur. This is useful when setting a break-
point at the beginning of a subroutine.

° An integer constant, which can be used in the same manner a3 a global
symbol. The default is decimal; a leading 0 indicates octal and Ox indicates
hexadecimal.

° The following binary operators can be used:

+ addition
- subtraction

¢ multiplication

TP

e e WE

FONON

280 db
/ integer division
All arithmetic is done in longs.
° The following unary operators can be used:
~ complementation
- negation
. indirection

All operators are supported with their normal level of precedence. Paren-
theses ()’ can be used for binding.

Display commands

The following commands merely display information about .
e program. The symbol *.

represents the address, which defaults to the current display address if omitted

count defaults to one. -

address[,c_ount] ?[format]
I?lsplay the format count times, starting at address. The format string con-
sists of one or more of the following characters:

~

reset display address to *.’

increment display address
decrement display address

byte

char; control and non-chars escaped
like ‘¢’ except “\0’ not displayed
decimal

float

double

machine instruction, disassembled
long

output ‘\n’

octal

symbolic address

string terminated by ‘\0’, with escapes
string terminated by ‘\(0’, no escapes
unsigned

A gENOITON —~ o no T 4+

word

hexadecimal E
time ' :
The format chara'cters d, 0, and x, which specify a numeric base, can be followed
by b, l,'or w, which specify a datum size, to describe a single datum for display. A
formgt item may.also be preceded by a count that specifies how miany times -the
item is to'be.z fipphed. Note that format defaults to the previously set format for the
segment (initially i for instructions). Except where otherwise noted, db increments
the display address by the size of the datum displayed after each for;nat item

n
4

i !

e A

sh

db 281

SRR

R

Execution commands

In the following commands,
stopped, unless otherwise speci
arbitrary string of db command

address defaults to the address where execution
fied; count and expr default to 1. commands is an
s, terminated by a newline. A newline may be in-

" dluded by preceding it with a backslash ‘\".

[address] =
Print address in current display base. address defaults to ‘. The com-

mand = assigns values to locations in the traced process. The size of the
assigned value is determined from the last display format used. You can
set and display the registers of the traced process, just like any other ad-

dress in the traced process. Thus,

dort

d0=0 ,
displays the value of register d0 as a long, and then sets (long) d0 to zero.
To display the character in the low byte of d0, use:

do+37¢
To set the low byte of d0 to ASCII <esc>, use
d0+3=033
[address[,count]]-value[,ualue[,value]...]

Patch the contents starting at address to the given value. address defaults
to *’. Up to ten values can be listed.

? Print verbose version of last error message.

[address] :a
Print address symbolically. address defauits to ‘.

[address]:b[commands}
Set breakpoint at address; save commands to be executed when breakpoint
is encountered. commands defaults to sa\ni+.7i\nx.

:br fcommands]
Set breakpoint at return from current routine. The defaults are the same
as for :b, above.

[address] :c
Continue execution from address.

[address] :d[r]{s]
Delete breakpoint at address. If optional r or 8 is specified, delete return or

single-step breakpoint. address defaults to *.".

g S
C R "0 ey -

Tl

-

-

282

db

[address]:e[commandline]
Begin traced execution of the object file at address {(default, entry point).
The commandline is parsed and passed to the traced process. argv(0]
must be typed directly after :e if supplied. For example, :e3 foo bar baz
sets argv[0] to 3, argv(1] to foo, argv(2] to bar, and argv(3] to baz.
Quotation marks, apostrophes, and redirection are parsed as by msh, but
special characters ‘?*[]’ and shell punctuation ‘0{} |}’ are not.

of Print type of fault which stopped the traced process.

[expr]:lfilename]
The log option. If expr is non-zero, open filename as a log file; if expr is
zero, close the currently open log file. db echoes all its responses into the
open log file.

[expr] :m
Set default numeri¢ display base to expr: 8, 10, and 18 indicate, respec-
tively, octal, decimal, and hexadecimal.

p Display breakpoints.

[expr] :q
If expr is nonzero, quit the current level of command input (see :x). expr
defaults to 1. End of file is equivalent to :q.

T Display registers.
[address], [count]:s[c][commands]

Single-step execution starting at address, for count steps, executing com-
mands at each step. commands defaults to .71.

After a single-step command, <RETURN> is equivalent to .,1:s{c]. If the
optional ¢ is present, db turns off single-stepping at a subroutine call and
turns it back on upon return.

[depth] :t
Print a call traceback to depth levels. If depth is O (default), unwind the
whole stack.

[expr] :x
If expr is nonzero, read and execute commands from the standard input up
to end of file or :q. expr defaults to 1.

Example of the commands

The following example shows how each db command can be used to examine an
executable file. It uses the following C program, called count.c, 'which counts the
number of ASCII characters in a file: '

.

e s

4
2

db 283

sy

#include <ctype.h>
#include <stdio.h>

main{argc, argv)
int argc;
char *argv{)!
<
FILE *fp;
int result, ch;

§¢ ((fp = fopen{argv{il, "r")) 1= NULL) (
while ((ch = fgetc(fp)) I= EOF) (
ffisescii(ch)) resultss;
else fatal(argv(1], “Hot ASCII");

3}
printf(*Xs: Xd characters\n”, argv{1], result);

)
else fatal(argvi1]l, "Cannot open");
)

fatal (filensme, meansge)
char *filensme, *message;
{
printf(“Xs: Xs\n", filensme, messsge);
>

For purposes of this example, count.prg will be used to count the characters in a
text file called tester. Its contents are as follows:

Somnet 30

when to the sessfons of sweet silent thought

1 summon up remembrance of things psst,

1 sigh the lack of many a thing I sought,

And with the old woes new wail my dear time’s waste:
Then can 1 drown an eye, unused to flow,

for precious friends hid in desth’s dateless night,
And weep afresh love’s tong since cenceled woe,
And moan the expense of many & vanished sight:
Then can | grieve at grievances foregone,

And hesvily from woe to woe tell o’er

The sad sccount of fore-bemoaned moan,

Which I new pay as if not paid before,

But if the while I think on thee, dear friend,

All losses are restored, and sorrows end.

To begin, compile count.c by typing the following command:

cc -V count.c

When the program has been compiled, invoke db with the following command:

db count.prg

284

db

Addressing commands

As noted above, db offers several different ways to set the address, or the position

within the program that you are examining. One way is b i i
. y is by entering a variable
name. Type printf. db replies: ¢

printf_ tink 86, $0x0

An(l).ther way to set the address is by entering an absolute address. Type 0600. db
replies:

main_+0x70 jsr printf_.1L
The symbol *.’ (dot) echoes the current address. Type a dot; db will reply:
main_+0x70 jse printf_.1 '

which is, as expected, identical to the previous reply.

The equal sigp ‘=" displays the absolute address of any variable that precedes it.
To see how this works, type printf=, db replies:
0x1c6
which is the address of printf.
Instructions can be shown, beginning at a named address. The format must be in-

troduced with a question mark ‘?’. For example, .,7f shows the current line in the

instruction space, as indicated by the format string “?i”. When this command is
typed, db replies:

main_+0x70 jsr printf .1

Noxl\:', show the next five instructions from the current point by typing .,521. db
replies:

main_+0x70 jsr printf_.1
main_+0x76 les. 1 OxA(87), o7
main_+0x7A bra main_+0x92
moin_+0x7C move, | SUxZZFB, -(a?)
main_+0x82 movea.l OxA(s6), 20

Once a fon:mat is set, it remains the default until the format is reset with another
fqrmat_stnng. For example, the command printf,20 prints 20 instructions, begin-
ning with printf; the format ?1 remains in effect. Type this command. db replies:

db 2856

printf_ Link a6, $0x0
printf_+0xé pes. !l 0xB(86)
printf_+0x8 move. L $_stdout_, -(a7)

printf_+OxE jsr sprintf_+0x3C.t
printf_+0x14 addq.w $0x8, a7
printf_+0x16 untk 8b
printf_+0x18 rts

fprintf_ tink 86, $0x0
fprintf_+0x4 pea.l OxC(86)
fprintf_+0x8 move. { 0xB(8b), -(aT)
fprintf_+0xC jsr sprintf_+0x3C.1
fprintf_+0x12 eddq.w $0x8, a7

tprintf_+0x14 unlk 86
fprintf_+0x16 rts
sprintf_ Link o6, $OXFFES

sprintf_+0xé pea.l OXFFES(S)
sprintf_+0x8 move . % $0x8000, -(a7)
sprintf_+OxC move. { Ox8(88), -(al)
sprintf_+0x10 Jsr _stropen_. 1
sprintf_+Ox16 lea.l OxA(a7), a7

Typing ,20 prints the next 20 instructions, beginning from where the previous com-
mand left off. When you type this, db replies:

sprintf_+Ox1A pes.l OxC(86)
sprintf_+0x1€ pes.l OxFFES(ad)
sprintf_+0x22 jsr sprintf_+Ox3C.1
sprintf_+0x28 sddq.w $0x8, o7

sprintf_+0x2A pea.l OxFFES(86)
sprintf_+0x2€ clr.v -(a7)
sprintf_+0x30 Jsr fputc .t
sprintf_+0x36 sddq.W $0x6, a7
sprintf_+0x38 unlk b
sprintf_+0x3A rts

sprintf_+0x3C link ab, $OxFF96

sprintf_+0x40 movem.l d7/84/a5, (a7)
sprintf_+0x44 move.l 0xC(8b), OXFFFC(86)
sprintf_+0x4A movea.l OxFFFC(8b), a0
sprintf_+0x4E move.l (a0), 9O
sprintf_+0x50 movea.l d0, ah
sprintf_+0x52 addq.l $0x4, OXFFFC(8b)
sprintf_+0x56 move.b (8b)+, &0
sprintf_+0x58 ext.w d0

sprintf_+0x5A move.w do, d7

Finally, the command :a displays an address symbolically. The default is the cur-
rent address. Type this command; db replies:

sprintf_+0x5A
which is the same address as that of the last instruction in the previous example; in
other words, the address advanced as the command was processed.

To reset and display the address at the point where the instruction fatal is, type
fatal:a. db replies:

286 db

db 287

fatal _
Execution commands

db allows you to execu i

: te portions of .

oint i : your program; this i i

pSet bf-' or points where execution stops. Breakpoints are s:tdo‘?.; tt)}); setting break-
eakpoints at main, printf, and fatal as follows: wi e command :h.

main:b

printf:b
fatal:b

The command :p displays the current breakpoints:

00000110 (main_) i+.?i\n:x\n
000001C6 (printf_) i+.7i\n:x\n
0C0001A6 (fatsl) {+.7i\n:x\n

No b gin ex cutl 8. y

w, €, exe on with the command :e As llot»ed above, :e can take ar
H gu P e th rray argyv -

gumeuts the ar ments correspond to the lemenls in e a a M £ this ex:

ample, use ”le followin mm
ple, g €O and
to pass as an arg‘ument the name of the text fils

e tester

db replies:

mein. Uink a6, SOXFFFB

The pro,
nit pirfg‘?"r: :a:&lelx:g]ct:\fa:f (&g ttl;:: ﬁggtl:)reakpomt’ set on maln. The command
means to unwind the whole stack. Type: ck to n levels; the default is zero, which

it
db replies:

o

x035E10 main_(0x0002, 0x0003, OxS561A, Ox0003, OxS5F6)

Note that the addre
into memory, 58 of main_ has changed because the program is now loaded

The command :c conti
! : nues executi
you type it, db will reply: on of the program to the next breakpoint. When

printf_ Link 38, $0x0
Perform another stack traceback by typing :t. db replies:

Ox0350F6 printf_(0x0003 0x52¢c8, 0x0003, 0x206l, 0x0272)
-
.
Ox035E10 main (0x0002, 0x0003, Ox561A, 0x0003 OxS5F6)

Type : i i
ype :c to continue execution to the next breakpoint. db replies: ‘

tester: 626 characters
Child process terminated (0)

The first line shows the output of of the program; in this case, a message that the
file tester has 626 characters. The message about the child process indicates that
the program has finished execution and exited; the number in parentheses is the

value that exit returned to the calling program (in this case, db).

Now, type :p to print a list of the breakpoints. db makes no reply because no
breakpoints remain set; all have been erased a8 the program executed.

Finally, quit the debugging session by typing :q.

Example of debugging
This example shows how to use db to track down a simple bug.

following program, called bug.c:
l‘includc <stdio.h>

it uses the

main()
output (NULL, stdout); /* send mumber to stdout */
)
output (number, fp)
int number;
FILE *fp;
<
fprintf(fp, "The urber 18 %d.\n%, nurber);
>

the routine output, which writes it into the

This program passes 8 number to
illustrates a common error in C programming.

named file or device. The program
To begin, compile bug.c by using the following command:

cc -V bug.c
You should see no error messages during compilation. When compilation is

finished, try running the program. Instead of writing its message on the standard
output device, the program ghould generate a bus error (as indicated by the ap-

pearance of two “bombs" on the screen).

Now, invoke db with the following command:

db bug.pr9
One way to approach this problem is to set a breakpoint on
the program. The following sets the breakpoint:

main:b
The :e commands performs traced execution at the program’s entry p
you type e, db replies as follows:

main_ Link a6, 30x0

The :8 commands performs single-ste
the program through five steps:

main and step through

oint. When

p execution. The following commands follows

288 Dcreate

5:8
db replies as follows:

main_+0x4 move.{ $_stdout_, -(a7)
main_+0xA ctr.l -(a?)

main_+0xC jsr output_.1

output Link 86, $Ox0

output_+0x4 move. W 0x8(86), -(a7)
The command :t allows you to perform a stack traceback. db replies as follows:

0x0343F6 output_+0x4(0x0000, 0x0000, 0x0003, Ox3AC6)
0x034406 main_+0x12(0x0001, 0x0003, Ox3Ct4, 0x0003, 0x38F0)

The number in parentheses indicate what is being passed on the stack to the
routine. Each four-digit number represents a machine word (two bytes). The first
line indicates the source of the trouble: the routine output is being passed four
words, when it is defined as receiving three: an int and a pointer. The problem, of
course, is that main passed output two pointers, NULL and stdout; on the 68000,
unlike on some other processors, NULL and zero are not identical. (For more in-
formation on this topic, see the Lexicon entries for pointer, NULL, and data for
mats.) :

Another, simpler approach to this problem is to enter db and then immediately set
a breakpoint with :b, perform a traced execution with :e followed by a stack
traceback with the :t command. db replies as follows:

0x03435C fpute_+0x32(0x0054, Ox0000, 0x0003)

O0x034304 sprintf_+0x74(0x0000, 0x0003, 0x0003, 0x43F0)

Ox0343E4 fprintf_+0x12(0x0000, 0x0003, Ox0003, Ox3A4A, 0x0000)

0x0343F6 output_+0x18(0x0000, 0x0000, 0x0003, Ox3AC6)

0x034406 mafn_+Gx12(0x0001, 0x0003, Ox3C14, O0x0003, Ox3BF0)
Again, the display shows how output was passed an improper argument, which
made it pass an improper argument to fprintf.

See Also
commands, od
Notes

Because version 3.0 changes the object format, the edition of Id shipped with ver-
sion 3.0 does not work with objects compiled with Mark Williams C version 2.1.7 or
earlier. To convert such objects to a format that 1d recognizes, use the command
mwitomw,

db now supports symbol tables larger than 64 kilobytes.

Dcreate — gemdos function 57 (osbind.h)

Create a directory
#include <osbind.h>
long Dcreate(path) char *path;

Ddelete 289

it returns zero if the directory was created success-

i ! i 1d
i bdirectory's path name, which shou
e e vatom eg:}t'ive value when an error oc-

Dcreate creates a directoxgl;
fully, one if it was not. pati p
be Z NUL-terminated string. Dcreate returns a n

curs.

Example .
The following example uses Dereate to create a directory.

#include <osbind.h>
extern int errno; 4
moin(Qrgc, argv) int srgc; cher **argv; {
int status;
" (arogc;:s)(’suuge: Dereate pathnsme\r\n™);
pterm(1);
)
if ((status = Dcreate(argv(l])) 1=0) (.
errno = -status;
perror("Dcreste failure*);
pterm(1);

():conus("uirectory)
Ccorms(argvil]);
Cconus(” created. \r\n");
Pterm0();

)
See Also
gemdos, TOS

Ddelete — gemdos function 58 (osbind.h)

Delete a directory
#include <osbind.h>
long Ddelete(path) char *path;

i 3 i deletion was successful, non-zero
te deletes a directory; it returns zero lf the 1 S
3(:l?t:ed§et§on failed. path ;;oints to the subdirectory's path name, which must be a

NUL-terminated string.

Example .
The following example deletes a directory

3

i ss

e

hoN

N_T?

Fote s

290 declarations

#include <stdio. h>
#include <osbind.h>

#define EACCESS (-36) /* Access violation error code */

extern int errno;

min(ar?c, argv) int arge; char **argv; (
int status;

ff (arge < 2) ¢
Ccomus("Usage: Ddelete pathname\r\n");
Pterm(1);

)

ff ((status = Odeleteargvii})) 1= 0) ¢
if (status == EACCESS) (
fprintf(stderr, "\rDirectory Xs contsins files\n®
argvi}); '
) else (
errno = -gtatus;
perror(“ddelete failure");

>
Pterm(1);
3}
printf(*0irectory Xs deleted.\n", argv{l1]);
Pterm0();)
)
See Also

gemdos, TOS

declarations — Overview

Mark Williams C recognizes the following as legal declarations for data types:

char

double

enum

float

int

long

long float
long int

short

short int
struct

union
unsigned char
unsgigned int
unsigned long
unsigned long int
unsigned short

default — #define 291

unsigned short int
void

The following pairs of terms are synonymous; the more commonly used term is
given on the right:

long float double
long int long
short int short

unsigned long int unsigned long
unsigned short int unsigned short

See Also
C language, data formats, data types, Lexicon

default — C keyword

Default label in switch statement

default is a prefix used in switch statement. If none of the case labels match the
parameter in the switch statement, then the default label is used. Note that a
switch is not required to have a default case, but it is good programming practice
to use one.

See Also

C keywords, C language, case, switch
The C Programming Language, page 55

#define — Preprocessor instruction

Define a variable as manifest constant
#define constant value

#deflne tells the C preprocessor cpp to define variable as a manifest constant.
For example, the instruction

#define MAXARGS 9

tells cpp to replace every instance of the string MAXARGS with the numeral 9
throughout the program.

The judicious use of #define instructions allows you to write code that is more
easily understood, maintained, and enhanced. With them, you can modify a major
parameter throughout a program by changing one line of code. They also allow you
to use a variable name that suggests the function of the parameter it represents;
for example, the name MAXARGS clearly refers to the maximum number of ar-
guments, whereas the numeral 9 could refer to nearly anything.

See Also
cpp, manifest constant

292

desk accessory

Notes
The ‘#’ of this instruction must appear in the first, or leftmost, column on a line or
it will be ignored.

The present release of Mark Williams C implements the ANSI standard for the C
preprocessor. Note that according to the ANSI standard, a macro expansion always
occupies no more than one line, no matter how many lines the definition or the ac-
tual parameters to the macro span. If you have defined macros that span more
than one line, you must either redefine them to occupy one line, or somehow
embed the newline character within the macro itself; otherwise, the macro will not
expand correctly.

desk accessory — Technical information

A desk accessory is a program that is loaded by TOS into the GEM desktop when
it is booted. The desktop gives each accessory its own icon, keeps it resident in
memory, and gives you direct access to it. When you build a meny, the routine
menu_bar will automatically include the name of the accessory when it builds the
list displayed under the desk entry.

To compile a desk accessory with Mark Williams C, use the option -VGEMACC.
This will automatically link in the special run-time start-up routine crtsd.o, and
otherwise perform all that is needed to create a desk accessory. Note that all desk
accessories must have the suffix .ace. Therefore, to compile the program foo.c into
a desk accessory, use the following form of the cc command:

cc -VGEMACC -o foo.scc foo.c

To install a desk accessory, move the compiled program into your system’s root
directory. If you have a hard disk, it should be in directory c:\; otherwise, it should
be in the root directory of the disk with which you boot TOS. Do not place it into
the directory \auto; this will cause all manner of unpleasant things to happen.
The program will be loaded into the desktop automatically when you reboot your
system.

Because of their specinlized nature, desk accessories restrict the number and
variety of programming tools you can use with them. Note the following:

° Do not use any stdio routines.

° Do not use the malloc routines found in libe.a.

° Do not use exit, Pterm, Pterm0, or Ptermres,

° Do not return from main. ,

Also, you should keep the following in mind as you write your accessory:

° If you use rsc_load, remember to use rere_free before you give up control,
if possible.

desk accessory 2983

L] Do not use evnt._timer calls: use evnt_multi instead.

Example
The following example, called desk.c, demonstrates how to write a desk accessory.
It is based on a public-domain program written by Jan Gray in 1986. To compile it,

use the following command:

cc -0 desk.scc -VGEMACC desk.c
It displays a digital clock or a calendar in a window in the upper-right hand corner
of the desktop.
#include <gemdefs.h>

#include <osbind.h>
#include <time.h>

typedef struct { Int x, vy, W, h;) Rectangle;
Ndefine elements(r) r.x, r.y, r.u, r.h
#define pointers(r) &r.x, &r.y, &r.w, &r.h

char clock_s{) = “hh:mm TZT";
char calend_s{] = “ddd mmn dd yyyy";

/* Faked timezone environment for desk sccessory *
char *getenv() { return "EST:300:EDT:1.1.4";)

main()
register int clock_id; /* Clock merw identifier */
register int calend id; /* Calendar merw identifier */
register int clock_w; /* Clock window hendle */
register int calend w; /* Calendar window handie */
register int w; /* Temporary window handle */
Rectangle clock_r; /* Clock window rectangle */
Rectangle calend r; /* Calendar window rectangle */
Rectangle r; /* Temporary rectengle */
int mbi8); /* Message buffer */
fnt ret; /* Dummy return buffer */

/* Register menu title */

ret = appl_init();

clock_id = menu_register(ret, * Clock);
catend_id = menu_register(ret, " Calendar”®);

/* Size window titles for templates */
graf_handle(pointers(r));
clock_r.w = r.w + r.x * sfzeof(clock 8);

- ctock_r.h = r.h;
calend r.w = row + r.x * sizeof(calend s);
calend_r.h = r.h;

/* Position window at upper right corner */
wind_get(0, WF_FULLXYWH, pointers(r));
clock_r.x = r.w - clock_r.w; clock_r.y = r.y;
calend_r.x = r.w - calend r.w; calend r.y = r.y;

294 desk accessory

/* Initislize window handles as closed */
clock_w = calend_w = -1;
for (;;) (

/* Await message or timer event *y
if (MU_MESAG & ewnt_multi(
MU_MESAG | MU_TIMER,
0, 0,0,
0, 0,0, 0,0,
0, 0,0, 0,0,
mb, 30000, 0, /* 30 second timer interval */
tret, Lret, Lret, Zret, &ret, Lret)) (

switch (mb(0]) ¢

/* Accessory menu line selected */
case AC_OPEN:
i (mb[4] == clock_id) (
w = clock_w;
r = clock_r;
} else if (mbi4) =x calend_td) (

w * calend w;
r = calend_r;

) else
break;
if (w>0) ¢
wind_set(w, Wr_toP, 0, 0, 0, 0y;
break;
)
¥ = Wind_creste(NAME |CLOSER [MOVER, elements(r));
H(w>0) ¢
it (mbl4) == clock_id) (
clock_w = w;
wind_set(w, WF_NAME, clock_s, 0, 0);
) else (
calend w = w;
wind_set(w, WF_NAME, calend_s, 0, 0);
)
wind_open(w, elements(r));
}
bresk;

/* Screen manager restart */
case AC_CLOSE:
H (mb(3) == clock_id)
clock w = -1;
else if (mb{3] == calend_id)
calend_w = -1;
break;

desk accessory 295

/* Window close box selected */
cese W_CLOSED:
w = mb{3];
if (u == clock_w)
clock_w = -1;
elge if (w == calend w)
colend w = -1;
elge
break;
wind_close(w);
wind_delete{w);
break;

/* Window dragged to new position */
case WM_MOVED:
w = mb(3];
r = *(Rectangle *)(mb+4);
if (w == clock_w)
clock_r = r;
else if (u == calend_w)

calend r = r;
else
break;
wind_set(w, WF_CURRXYWH, elements{(r));
bresk;
case WH_NEWTOP:
case WM_TOPPED: /* Window clicked to top */
w = mb(3);
§f (w I= clock_w &% w 1= calend_w)
bresk; .
wind_set(w, WF_YOP, 0, 0, 0, 0);
break;
)

/* Update time on each evgnt 1f window is open */
if (clock_w > 0 || calend_w > 0) (

register struct tm *tp;
register char *p;
time_t tt;

time(&tt);
tp = loceltime(dtt);
p = asctime(tp);

emee o
X3
SYNPLRN

o
et YR g

296 df

Dfree 297

calend_s (0}
calend_s{1)
calend s(2)
calend s(3)
calend_s[4)
calend_s(5)
calend_s(6)
calend s(7)
calend_s(8)
calend_s (9]
calend s(10]

clock_s{0] =
clock_s[1) =
clock_s(2) =
clock_s(3) =
clock_sl4) =
p+=3;

clock_s{5) =

celend_s{11]
calend s[12])
calend s[13)
calend_s(14]

p = tp->tm_isdst <= 0 7 tzname([0] : tznsme(1);

clock_s(6] =

R
pre;
tpre;
pre;
= *phas
= 'P“,’
=

pre;

= *rses

L O
pres

See Also

commands, mf, msh

Dfree — gemdos function 54 (osbind.h)

Get information on a drive's free space

#include <osbind.h>

vold Dfree(fs, drive) long fs[4]; int drive;

Dfree retrieves information about free space on & disk drive.

fs is an array of four unsigned longs into which Dfree writes, respectively, the
number of free allocation units (also called “clusters”) on a disk; the total number
of allocation units on the disk; the size of a sector, in bytes; and the size of each
allocation unit, in sectors. If you prefer, you can pass fs as a pointer to a structure
of four longs.
drive is the number of the disk drive you wish to check, with zero indicating the

default drive, one indicating drive A, ete.

Example
This example displays disk statistics for the default drive.

#include <osbind.h>
struct disk_info

et L

clock_S[7] = *p+s;
clock_s{B] = *p+s;

if (clock_w >= 0)
wind_set(clock_w, WF_NAME, cloc :
it (calend w >= 0) - - ’ Ko 0 00
wind_set(calend_w, WF_NAME, calend s, 0, 0);

)
)

>

See Also

crtsd.o, TOS

df — Command

Measure free space on disk
df [-a] device

df measures the amount of free s i

. f space left on a floppy disk, on a logical devi
{mrd disk, or on a RAM disk. device is the name of the device yogiwisierocihoer::kﬁ
-or example, to check the amount of space left on the disk in drive A:, type: ’

df a:
The default device is the one you are currently using.

The option -a prints the amount of space left on all devices.

unsigned tong di_free; /* free sllocation units */
unsigned long di_many; /* how many AUs on disk */
unsigned long di_ssize; /* sector size */

unsigned long di_spau; /* sectors per AU */

main()

{
long fs;
tong fb;
int dd;
{ong ts;
long tb;

struct disk_info disk;

dd = Dgetdrv();

pfree(&disk, dd+1);

fs = disk.di_free*disk.di_spau;
ts = disk.di_spau*disk.di_meny;
fb = fs * disk.di_ssize;

th = ts * disk.di_ssize;

printf("Disk Xc: has Xid bytes free in Xid sectors\n",

dd+’a’, fb, fs);
printf("from total of Xid bytes in Xld sectors (cluster gize Xid)\n",

tb, ts, disk.di_spautdisk.di_ssize);

298 Dgetdrv — Dgetpath

See Also
gemdos, TOS

Dgetdrv — gemdos function 25 (osbind.h)

Find current default disk drive
#include <osbind.h>
int Dgetdrv()

Dgetdrv returns an integer that indicates the current drive: 0 corresponds to drive
A, and so on through 15 corresponding to drive P.
Example
This example prints the default drive.
¥include <osbind.h>
main() (
printf("'Xc:’ {s the current default drive.\n¥,

(char) Dgetdrv() + *A’);
)

See Also
Dsetdrv, gemdos, TOS

Dgetpath — gemdos function 71 (osbind.h)

Get the current directory name
#include <osbind.h>
long Dgetpath(buffer, drive) char *buffer; int drive;

Dgetpath gets t}.te name of the current directory. buffer points to the area where
the buffer name is to be stored. drive holds a number that indicates the disk drive
to be examined, as follows: 0, the default drive; 1, drive A; etc.

Example

This example prints the current path name and device string.
#include <osbind.h>

main() (
int drv;
char pathbuf [66]; /* Path buffer */
char *buf;
buf = pathbuf;
*buf++ = (drv=Dgetdrv{))+'A’; » -
s o or ;' gft.(/irive /
Dgetpath(buf, drv+1); /* Rest of path */

printf("Current path is Xs\n", pathbuf); /* Display it £/
|

diff 299

See Also

Dsetpath, gemdos, TOS

diff — Command

Summarize differences between two files
diff [-b] [-c symbol] filel file2

diff compares file] with file2, and summarizes the changes needed to turn filel
into file2.

Two options involve input file specification. First, the standard input may be
specified in place of a file by entering a hyphen *’ in place of filel or file2. Second,
if filel is a directory, diff looks within that directory for & file that has the same
name as file2, then compares file2 with the file of the same name in directory filel.

The default output script has lines in the following format:

1,2c¢3,4
The numbers 1,2 refer to line ranges in filel, and 3,4 to ranges in file2. The range
is abbreviated to a single number if the first number is the same as the second.
The letter ‘¢’ indicates that lines 1,2 of filel should be changed to lines 3,4 of file2.
diff then prints the text from each of the two files. Text associated with filel is

)

preceded by ‘< ', whereas text associated with file2 is preceded by ‘> .

The following summarizes diff's options.

-b Ignore trailing blanks and treat more than one blank in an input line as a
single blank. Spaces and tabs are considered to be blanks for this com-
parison.

-¢ symbol

Produce output suitable for the C preprocessor cpp; the output contains
#ifdef, #ifndef, #else, and #endif lines. symbol is the string used to
build the #ifdef statements. If you define symbol to the C preprocessor
cpp, it will produce file2 as its output; otherwise, it will produce filel. Note
that this option does not work for files that already contain #ifdef,
#ifndef, #elge, and #endif statements.

See Also
commands, egrep
Diagnostics

diff's exit status is 0 when the files are identical, 1 when they are different, and 2
if a problem was encountered (e.g., could not open a file).

Notes
diff cannot handle files with more than 32,000 lines. Handing diff a file that ex-
ceeds that limit will cause it to fuil, with unpredictable side effects.

300 difftime — do

Dosound 301

difftime — Time function (libc)

Return difference between two times
#include <time.h>
double difftime(newtime, oldtime) time_t newtime, oldtime;

difftime calculates the difference in seconds between newtime and oldtime.

Both arg\lment.s are of type time_t, which is th sY y
-4, e current stem time, and which is
defined in the header file time.h. Note that the function time returns the current

Mark Williams C defines the current i i
/ system time as bein
since January 1, 1970, 0h00m00s GMT. eing the number of seconds

See Also

time (overview), time.h

directory — Definition

A directory is a tgble th{;t maps names to files; in other words, it associates the
names of a file v«nt.h thex_r locations on the mass storage device. Under some
operating systems, directories are also files, and can be handled like a file.

Directories allow files to be organized on a mass storage device in a rational man-

ner, by function or owner. Note that the d i
n 4 . ocumentati
folder” as a synonym for “directory”. on for TOS uses the term

See Also
file, msh

do — C keyword

Introduce a loop

do is a C control statement that introduces a loop. Unlike for and while loops,

the condition in a do loop is evaluated ion i
1 after the o
works in tandem with while; for exampl/e7 peration is performed. do alweys

do (
puts{"Next entry? "):
fflush(stdout);

) while(getchar() t= EOF);

prints a prompt on the screen and waits for the

! I pt ¢ user to reply. The do loop i -
venient in this instance because the prompt must appear at least oncep :r;xc:}?
screen before the user replies. °)

See Also '

break, C keywo;'ds, C language, continue, while
The C Programming Language, page 59

Dosound — xbios function 32 (osbind.h)

Start up the sound daemon
#include <osbind.h>
long Dosound(buffer) char *buffers

Dosound starts up a daemon to control the sound generator. buffer points to buff-
er that holds the commands and arguments to be passed to the daemon.

Each command consists of an eight-bit hexadecimal number followed by one or
more characters; the commands are as follows:

0x00-0x0F
Each of these commands is followed by a one-character argument; each
writes its argument into the appropriate register in the GI sound generator,
with 0x00 corresponding to register 0, 0x01 to register 1, and so on. Fora
fuller explanation of what each register governs in the sound register, see
the entry for Giaccess.

0x80 This takes a one-character argument and writes it into the temporary
register.

0x81 This command takes three one-character arguments. It takes the character
that had been loaded into a temporary register with the 0x80 command,
loads it into a sound generator register, and controls its execution. The
first argument is the number of the register into which the previously
stored character is to be loaded. The second argument is a two's-
complement number that is added to the contents of the temporary
register. The third argument is an end-point value. The instruction that
was loaded is executed continually, once each update, and the contents of
the temporary register are incremented; this process ends when the value
stored in the temporary register equals that of the end-point value.

0x82-0xFF
Each of these commands takes a one-byte argument. If the argument is
zero, sound processing is halted. If the argument is greater than zero, it is
taken to indicate the number of timer ticks (each tick being 20 milliseconds
long) that must pass until the next sound process is performed. In effect,
these commands set how long a tone is sustained.

When buffer points to a list of commands, Dosound returns the old pointer if the
sound daemon was active, and NULL if it was not. If buffer is set to -1L, Dosound
returns zero if the sound daemon is idle, and a number greater than zero if it is
not. This will be helpful in constructing musical resources.

Example
This example generates an interesting geries of sounds. Type a key after the bell
sounds.

e e Yy

v e e et M b et

o3

Vo e AR T

N e S O e P A e e

S e

302

Dosound

#include <osbind.h>

cher noise(l=(

OxFF, 0x50,
0x00, OxF6,
0x01, 0x02,
0x02, OxDE,
0x03, 0x01,
0x04, Ox3F,
0x05, 0x01,
0x06, 0x00,

0x07, OxF8,
0x08, 0x10,
0x09, 0x10,
0x0A, Ox10,
0x08, 0x00,
0x0c, 0x30,
0x00, Ox09,
OxFF, 0x30,
0x00, 0x00,
0x0%, 0x01,
0x07, Ox3E,
0x08, Ox08,

0x09, 0x00,
Ox0A, 0x00,
0x80, 0x01,
0x81, 0x00, 0x01,

0x01, 0x02,
0x80, Ox01,
0x81, 0x00, Ox01,

0x07, Ox3F,
OxFF, 0x40,
0x00, 0x34,
0x01, 0x00,

0x02, 0x00,
0x03, 0x00,
0x04, 0x00,
O0x05, 0x00,
0x06, 0x00,
0x07, OxFE,
0x08, 0x10,
0x09, 0x00,
0x0A, 0x00,
0x08, 0x00,
0x0c, 0x10,
0x0D, 0x09,
OxFF, 0x00

/* Delay & while... */

/* Load reg 0 (Chamnel A fr
. fine) *
/: Loed reg 1 (Charnel A fr:: coar:e)l'/
/. Load reg 2 (Chamnel B freq: fine) */
/' Load reg 3 (Channel 8 freq, coarse) */
/. Loed reg 4 (Channel C freq, fine) */
/. Load reg 5 (Chennel C freq, coarse) */
/* toed reg & (Noise period) */
/* Load reg 7 (Voice enabl
e) v/
/: Load reg 8 (Channel A volume) */
/. Load reg 9 (Channel B volume) */
/* Load reg A (Channel C volume) */
;: to:g reg B (Env period fine tune E) %/
. L:ad reg C (Env perfod cosrse tune E) */
G r:g D (Env shape/cycle) */
elay
/* Load reg 0 (Channel A fr
31 d
/* Load reg 1 (Channel A f o coma ,'
/e tod 8 req, coarse) */
. reg 7 (Voice enable) */
/* Load reg 8 (Channel A vol) */
/* Load reg 9 (Channel B v
ot) *
/: Losd reg A (Channel C vol) ';
6;F;nit temp register %/
.
/* Loop defined... */
/: Next step down */
6;F:nit temp register sgain */
’
/* Loop again */
/* Diseble voices..., */
;: €el;y 40 ticks,.. */
oad reg 0 (Channel A freq, fi
. . finey &/
/* Loed reg 1 (Channel A freq, coarse) */
/* Load reg 2 (Channel B
req, fi *
/: Loed reg 3 (Channel 8 fr::, co::;e)/'/
5' Load reg & (Channe!l C freq, fine) */
. Load reg 5 (Channel C freq coarse) */
;. Load reg 6 (Noise period) */
. toad reg 7 (Voice enable) */
N oad reg 8 (Channel A vol) */
/' Load reg 9 (Channel B vol) */
;. toag reg A (Channel C vol) %/
0ad reg B (Env i
/* Load reg C (Env pe:igg o B
. pe cosrse tune E) */
Load‘reg D (Env shape/cycle) */
/* Terminate delay timer */

o drtomw file ...

double — drtomw 303

4
main() (
posound(noise); /* Make some noise... */
: while (Cconis() »= 0) /* Loop until user types 8 key */
: Cconus("listen... ");
Ceonin(); /* Get the key. */
posound(noise); /* Mpke some noise agsin */
)
)
See Also

. daemon, Giaccess, TOS, xbios
double — C keyword

Data type

A double is the data type that encodes & double-precision floating-point number.

On most machines, sizeof(double) is defined as four machine words, or eight
i chars. If you wish your code to be portable, do not use routines that depend on a
) double being 64 bits long. Different formats are used to encode doubles on

various machines. These formats include IEEE, DECVAX, and BCD (binary coded

decimal), as described in the entry for float. Mark Williams C always uses
DECVAX format.

See Also

C keywords, C langusge, data formats, declarations, float, portability
The C Programming Language, page 34

drtomw — Command
Convert from DRI to Mark Williams format

table object, or an archive from DRI to Mark
rted file into a temporary file, which it then
] fail if the disk with the input files is write-

drtomw converts an object, an execu
Williams format. It writes the conve
writes over the original file. This wil
protected or if the input file is set as read-only.

s to indicate to the user the type of file given as input,
whether object file or archive. Normally, the format of a file cannot be distin-
guished easily by its contents; therefore, drtomw distinguishes file format by the
suffix to the file name: relocatable objects should have the suffix .0, whereas ex-
ecutable objects should have any other extension or no extension at all.

When working with a DRI archive, drtomw first converts the archive into a Mark
Williams object archive, and then converts all of the object files within it to Mark
Williams object files. The archive will still need a “ranlib” header, which may be

added by using the command:

ar rs archname. s renlib.sym

drtomw generates message

304

Drvmap — drvprs

drtomw converts DRI executable files to Mark Williams format. This involves ap-
pending a Mark Williams format header to the end of the file. If characters are

present beyond the end of the relocation bytes of the executable file, drtomw
reports this and aborts the conversion.

See Also

as, as68toas, commands, mwiomw
Notes

The edition of drtomw that is shipped with version 3.0 transforms DRI objects into
the new Mark Williams object format.

Drvmap — bios function 10 (osbind.h)

Get a map of the logical disk drives
#include <osbind.h>

#include <bios.h>

long Drvmap();

Drvmap returns a bit map of the system’s logical configuration of disk drives. In
this map, bit 0 corresponds to drive A, bit 1 to drive B, etc.

Example

¥include <osbind.h>
main() (
tong drivemap; h
int drv;
tong drvmsk=1;
drivemap = Drvmap();
puts("Drives on system:\n");

for(drv = 0 ; drv < 16 ; drv++) (
if(drvmsk & drivemap)
printf("\tdrive Xc:\n", (drv+’A’));
drvmsk <<= t1;
2
>

See Also
bios, bit map, TOS

drvprs — Command

Check if a drive is present on the machine
drvprs [-q] drive

The command drvprs checks to see if drive is present on the machine, where drive
is the name of a floppy drive, a logical drive on a hard disk, or a RAM disk.

The option -q suppresses the message that this command normally returns.

drvprs returns a status value so that it can be used in a msh script conditional.

Dsetdrv 305

See Also

commands, msh

Dsetdrv — gemdos function 14 (osbind.h)

Make a drive the current drive
#include <osbind.h>)
long Dsetdrv(drive) int drive;

rive the current disk drive. drive can be any integer between 0
]a):§ t&?wﬁikgsigdicaﬁng drive A, 1 ix_xdicating drive I}, and 80 onﬁthro:g{mh 1})51 t:;n()
dicating drive P. Dsetdrv returns a bit map of th.e drive cox’lﬁgur%‘top,diwws e
through 15 indicating drives A through P, respectively. Setting a bit in
the corresponding disk drive is present on the system.

Example o
This example sets the default drive to B:. Upon exiting, the default drive ig reset to
A:.

#include <osbind.h>
#define DRIVE_A O
#define DRIVE B 1
#define DRIVE_C 2
#define E DRIVE (-46L) /* Invalid Drive Specified */
main()
long drivemap;

§£((drivemap=Dsetdrv(DRIVE B)) < 0)
{f(drivemap == E_DRIVE) R
printf(*Invalid drive (Xc:) specified.\n",
(DRIVE_B + 'A%));
else .
printf("GEMOOS error Xld\n", drivemsp);
} else {
fnt drv;
long drvmsk=1;

printf("Current drive is Xc:’. Others are:\n",
(DRIVE_B + 'A’));
for(drv = 0 ; drv < 16 ; drv++)
{f(drvmsk & drivemesp)
printf(*\tdrive Xc:\n", (drve’A’));
drvmsk <<= 1;

)

)
See Also
Dgetdrv, Drvmap, gemdos, TOS

SN
IR

P

R
AEEI s T

DT

R e
A%

P DuntS

x4
ety

MEY

RAC abEos

-~

RSO S N

~

306 Dsetpath

Notes

When a program exits, GEMDOS always resets the current drive and the current
directory to what they were before the program was run.

Dsetpath — gemdos function 59 (osbind.h)

Set the current directory
#include <osbind.h>
long Dsetpath(path) char *path;

Dsetpath sets the current directory; it returns 0 if the directory could be set, and
non-zero if it could not. path points to the directory’s path name, which must be a
NUL-terminated string.

Example

This example allows the user to set and display the default path, or get the current
path string for device specified. If drv equals -1, it uses the default drive and
returns a pointer to the path buffer.

#include <osbind.h>
char *getpath{pathbuf,drv)
char *pathbuf;

int drv; (
char *buf;
buf = pathbuf; /* Target buffer */ h
if (drv < 0) /* 1f drive is default */

drvz=Dgetdrv(); /* get default drive no. */

buf+s = drverAr; / Put drive letter in string */
buf++ = 130 / dr %/
Dgetpath{buf, drv+1); /* get the rest of the path */
return(pathbuf); /* Return the buffer sddress */

)

*

* Allow default directory to be chsnged.
*/

main(argc, srgv) int arge; char **argv; (
char path[80);
char *dst;
char *src;

if(arge < 2) € /* No new path? display old */
Ceconws(""Current path is "):
Cconws(getpath(path,-1));
Ceconus ("\r\n");
Pterm0(); /* Then exit. */
)
Cconws("Old path was "); !
Ccomws(getpath(path,-1)); |
Cconws("\r\n"};

dst = src = argvil); /* Get new path */
hd 1= \0’) (/* Scan for device ./
white (if‘:c'src** == 13) (/* 1f found, set device */
int drv; 7% Move pointer past ™:* */

drv = src{-21;
if(dry > 1)
drv -= '8’;
else
drv -= 'A’';
if(drv >= 0 && drv <= 15)
Dsetdrv(drv);
dst = src;
bresk;
}
3

if (*dst ts \O7) (
if (Dsetpath(dst) 1= 0) (
Ccomms("Setpath failed, Path is ");
Ccorms(getpath(path,-1));
Ceomwa("\r\n");
pterm(1);
M

>
Cconws("Path now set to ")}

Ceonws(getpath(path,-1));
Ceonws("\r\n");
Pterm0{);

>
See Also
Dgetpsath, Dsetdrv, Dgetdrv, gemdos, TOS

Roges intain thei idea of the current path

h h functions pwd and cd maintain their own 1dea : .
gr:grx:r:s, like the eximple, which reset the current.dnve tender the shell's data
invalid. A cd to a completely specified path will fix this.

dup — UNIX system call (libc)

Duplicate a file descriptor
int dup(/d) int fd;

i isti i descriptor. The
dup duplicates the existing file descriptor fd, and' returns the new)
retgrneg value is the smallest file descriptor that is not already in use by the calling
process. fd must be less than six under TOS. .

Example

For an example of this function, see the entry for system.

B sl

308 dup2

echo —ecvt 309

See Also
fopen, fdopen, STDIO, UNIX routines
Diagnostics

dup returns a number 1
! ess than zero
descriptor or no file descriptor available, when an error occurs, such as bad fie

dup2 — UNIX system call (libc)

puplicate a file descriptor
int dup2(fd, newfd) int fd, newfd;

dup2 i i

spex;ifyd:prllﬁtegl:hde ﬁlg descriptor fd. Unlike its cousin dup, dup2 allows you to

ot A escriptor newfd, rather than having the system select one. If
y open, the system closes it before assigning it to the new file dx'1p2

returns the duplicate descri
o e duplics riptor. Under TOS, fd must be greater than five, and

Example
For an example of this functi

ction, see the entry for syst
See Also e
STDIO, UNIX routines
Diagnostics

dup2 returns

a number less than zero when
A an error occurs, such as a bad file
descnpt,ol or no file descriptor available. ' !

echo — Command

Repeat/expand an argument

echo [-n] [argument ...]

echo prints each argument on the standard output, placing a space between each
argument. It appends a newline to the end of the output unless the -n flag is
present.

If argument is & msh variable, echo will expand it before printing it. For example,

if you type

set esc=<esc>

set cls=$(esc)E ; echo Scls
where <esc> indicates the escape character, echo will send the characters
<esnc>E to your terminal, which will clear the screen and home the cursor.

See Also

commands, msh

ecvt — General function (libc)

Convert floating-point numbers to strings

char *ecvt(d, prec, dp, signp) double d; int prec, *dp, *signp;

ecvt converts d into a NUL-terminated ASCII gtring of numerals with the precision
of prec. Its operation resembles that of printl's %e operator. ecvt rounds the last
digit and returns a pointer to the result. On return, ecvt sets dp to point to an in-
teger that indicates the location of the decimal point relative to the beginning of the
string, to the right if positive, to the left if negative; and it sets signp to point to an
integer that indicates the sign of d, zero if positive and nonzero if negative.

Example
The following program demonstrates ecvt, fevt, and gevt.

char *ecvt(), *fevt(), *gevt();

main()

¢
cher buf[64];
double d;
int 1, §;

char *s, *strcpy();

d = 1234.56789;

s = ecvt(d, S, &I, &]);
printf("ecvt=\"Xs\" i=Xd j=xd\n®, s, 1, j);
/* prints ecvt='12346" =4 j=0 */

. A

YT RS
. -
Ba

SARR
SRR

i
£

ad-N

S RS

)
% R

L
R

=%

REY

Lo

]
5

oA
i

T

AT et

310 edata — egrep

strepy(s, fevt(d, 5, &i, &j));
printf("fevt=\"Xs\" {=Xd j=Xd\n", 8, §, J);
/% prints fovesn1234567890 f=4 jo0 %/

s = gevt(d, 5, buf);
printf(''gevt=\"Xs\"\n", 8);
/* prints gevt="1234_S6789" */

)

See Also

fevt, frexp, gevt, ldexp, modf, printf
Notes

ecvt performs i ithi i i i
execuz erf conversions within static string buffers that are overwritten by each

edata — Linker-defined symbol

extern int edata(];

:a}?alt.a):s the Iocz.:t.io.n after the shared and private data segments. It is defined by
[,ne 1)n er when it binds the program together for execution. The value of edata is

Va;!rey ag address. The location to which this address points contains no known

v ue, and may be an illegal memory location for the program. The value of edata
oes not change while the program is running.

Example

For an example of this function, see the entry for memory allocation.

See Also

end, etext

egrep — Command

Extended pattern search
egrep [option ...} [pattern] [file ...]

egrep searches each file for occurrences of

.) f ! pattern (also called -
sion). If no file is specified, it searches the standard input. Norm:)l reig'tulaf gpmh
line matching the pattern. ' Yo 1 pins e
Wildcards

The simplest patterns acce i
pted by egrep are ordinary alph i i
can also process patterns that include the following v»r?i’ldcl;r?lncl}l::ri::eit;n@. oo

~

Match beginning of line, unless it appears immediately after ‘[’ (see below)
$ Match end of line. :

L]
Match zero or more repetitions of preceding character.

egrep 311

.

[chars]

{“chars]

Match any character except newline.

Match any one of the enclosed chars. Ranges of letters or digits may be in-
dicated using -

Match any character except one of the enclosed chars. Ranges of letters or
digits may be indicated using I

\¢ Disregard special meaning of character c.

| Match the preceding pattern or the following pattern. For example, the
pattern cat|dog matches either cat or dog. A newline within the pattern
has the same meaning as ‘|’.

+ Match one or more occurrences of the immediately preceding pattern
element; it works like “*’, except it matches at least one occurrence instead
of zero or more occurrences.

7 Match zero ot one occurrence of the preceding element of the pattern.

() Parentheses may be used to group patterns. For example, (Ivan)+
matches a sequence of one or more occurrences of the four letters T" v’ ‘a’
or ‘n'.

Because the metacharacters **’, ‘7", ‘%', °C, 9,0, ‘7, and ‘|’ are also gpecial to the
micro-shell msh, patterns that contain those literal characters must be quoted by
enclosing pattern within double quotation marks.

Options

The following lists the available options:

-b With each output line, print the block number in which the line started
(used to search file systems).

-c Print how many lines match, rather than the lines themselves.

-e The next argument is pattern (ugeful if the pattern starts with *-").

-f The next argument is a file that contains a list of patterns geparated by
newlines; there is no pattern argument.

-h When more than one file is specified, output lines are normally accom-
panied by the file name; -h suppresses this.

-1 Print the name of each file that contains the string, rather than the lines

themselves. This is useful when you are constructing a batch file.
-n When a line is printed, also print its number within the file.

A3

b

T TP L

s e e

s JVSURRp—
RIEES Wt

PRVIFREPRPRTEY PR LI,

312

else — #else 313

-8 Suppress all output, just return exit status.
-v Print a line only if the pattern is not found in the line.

-y Lower-case letters in the pattern match lower-case and upper-case letters
on the input lines. A letter escaped with ‘/' in the pattern must be
matched in exactly that case.

See Also

commands
Diagnostics

egrep returns an exit status of zero for success, one for no matches, and two for
error.

Notes

egrep uses a deterministic finite automaton (DFA) for the search. It builds the
DFA dynamically, so it begins doing useful work immediately. This means that

egrep is considerably faster than earlier pattern-searching commands, on almost
any length of file.

#elif — Preprocessor instruction

Include code conditionally
#elif (expression)

#elif is an instruction interpreted by the C preprocessor epp. It can be used within
a conditional expression begun with the instructions #1f, #1fdef, or #ifndef.

This instruction tells cpp that if the condition named in the preceding #if or #if-
def expression is false and if the current condition succeeds, then include the
following lines of code up to the next #else or #endif instruction.

An #elif command can also be coupled with #else commands to create several

levels of conditions. Note that a conditional expression can have any number of
#ellf statements. For example:

#if (conditionl)
int foo = 1;
¥elif (condition2)
int foo = 2;
Helif (condition3)
int foo = 3;
Helse
- int foo = 4;
#endif

See Also |
cc, cpp, #else, #endif, #if, #ifdef

Notes
Note that all preprocessor comm
they will not be executed by cpp-

ands must be set flush with tbe left margin, or

else — C keyword

Introduce a conditional statement .
ip si s i dition described in the if statement
is the flip side of an if statement: if the con . ent
?;it;se, lt;shen thg statements introduced by the else statement are executed. For
ample,
i (getchar() == EOF)
exit(0);

else
dosomething();

exits if the user types EOF, but does something if the user types anything else.

See Also

C keywords, C language, if
The g‘;”mgmmming Language, pages 51, 53

#else — Preprocessor instruction

Include code conditionally

#else
#else is an instruction interpreted by the C preprocessor cpp. It can be used

within a conditional expression initiated by the instructions #if, #ifdef, or
#ifndef. :

This instruction tells cpp that if the goncgﬁ(;nﬁ nqme(llirizst‘:}ecg;:c{elzirég :;Lf r?:;ft
i i i the following
#elif instructions are false, then mcl\{ le ng lines of oo o aumber <t
dif instruction. Note that a conditional expressio ‘
##Z?lf stz::ements, but can have only one #else statement. For example:

#if (conditionl)
fnt foo = 1;
Aelit (condition2)
int foo * 2;
Relif (condition3)
int foo = 3;
Helse
int foo = &;
Hendif

See Also
ce, cpp, #elif #endlf, #1f, #ifdef, #ifndef

314

end — #endif

NOteS
Nota at prep 5! 8 h the left margin, or
O st
th all preprocessor commands mu be set flush wit y

end — Linker-defined symbol

extéern int end[];

end is the location after the uninitialized data se; iti i
3 the gment; it is defined by the link
:«('il:}en it binds the program together for execution. The value of end ig m:relly :1:
megraelssr;legl;:ayl;)catzpn tx; wh}:ch it points contains no known value, and may be
ocations for the . , i
the rogram o oo program. The value of end does not change while
Example

For an example of this function, see the entry for memory allocation.

See Also
edata, etext

. —end — External data

extern char * _end;

—end is an external variable that poi
€ \ points to the end of your program’s data
It is set by the C runtime startup, and can be incremented by It)hegf:xancﬁonash:lptace'

See Also

malloc, maxmem, sbrk

#endif — Preprocessor instruction

End conditional inclusi f
End con sion of code

#endif is an instruction inte ted
ot Bl emmpl;;:e by the C preprocessor cpp. It ends a con-

#if (conditioni)

int foo = 1;
#elif (condition2)
int foo = 2;
#elif (condition3)
int foo = 3;
#else
int foo = 4;
#Hendif
See Also

cc, cpp, #elif, #else, #1f, #ifdef, #ifndef

entry — enum 316

entry

Notes
Note that all preprocessor command
they will not be executed by cpp.

s must be set flush with the left margin, or

— C keyword
Undefined keyword
entry is a C key word that is reserved for future use.

See Also
C keywords, C language

Notes
The draft ANSI standard for the C language eliminates entry from the

keywords.

table of

enum — C keyword

Dedlare a type and identifiers

An enum declaration is a data type W
and union declarations. It lets you enumerate the legal val

For example,

hose syntax resembles those of the struct
ue for a given variable.

enum opinfon (yes, maybe, no) GUESS;
declares type opinion can have one of three values: yes, no, and maybe. It also
declares the variable GUESS to be of type opinion.

on declaration, the tag (opinion in this example) is

As with a struct or uni
be used in subsequent declarations. For example, the

optional; if present, it may
statement

register enum opinion *op;
declares a register pointer to an object of type opinion.

identifiers must be distinct from all other identifiers in the

All enumerated
tifiers act as constants and be used wherever constants are ap-

program. The iden
propriate.

Mark Williams C assigns values to the identifiers from left to right, normally begin-
ning with zero and increasing by one. In the above example, the values of yes, no,
and maybe are set, respectively, to one, two, and three. The values often are ints,
although if the range of values is small enough, the enum will be an unsigned
char. If an identifier in the declaration is followed by an equal sign and a constant,
the identifier is assigned the given value, and subsequent velues increase by one

from that value; for example,

enum opinion (yes=50, no, maybe) guess;

H I#lﬁr gy ey
g

, 316 envirom — environment
$341

envp — EOF 317

§13 sets the values of the identifiers yes, no, and maybe to 50, 51, and 52, respec-
tively.

To add enum to the formal definition of C, am

Appendix A of The C Programming Language to i
the following syntax:

end the list of type-specifiers in
nclude enum-specifier, and add

enum-specifier;
. enum { enum-list }
enum identifier { enum-list }
enum identifier
enum-list:
enumerator

enum-list , enumerator
enumerator:

identifier
identifier = constant-expression

See Also
C keywords, C language, declarations

environ — Definition
extern char **environ;

environ is a pointer set by the run-time start-u
ment vector, which is equal to the third a
this, in turn, is the handle that the functi

p routine. It points to the environ-
rgument passed to main, char *envp({};
on getenv uses to find the environment,

Example

For an example of how this element is used in a C program, see the entry for
memory allocation.

See Also

environment, envp
environment — Definition

The environment is & set of information
run on your system. It consists of one or
You set; for example, when you set the envir

that you wish to pass this information to
TOS itself.

By c!u.;nging the environment, you can change the way a comimand works without
rewriting any commands that you may have embedded in batch files, scripts, or
makefiles.

that you wish to pass to all programs
more environmental variables that
onmental variable PATH, you tell TOS
all programs on your system, including

i t extensively to find
illi ¢ i troller cc uses the environment fin
Mark Wﬂ}il'am:ec sr:;:;g;era;%n files. For example, the gnwrg}:\emglrﬁl 8\;&(;122 t:
lItl’iT(DB]}l)tI);)lr tx;?s ccf where to find its hea(;ler ﬁlg;vfzbegfl\:gu e e informe.
indi i include on C . e
l'I\JCIt?o“t.{hzo Cm:rlggtfo;:seso??;t:pwrg, which will then look in that directory for the
tion

files that are called with an #linclude statement.
See Also

envp — Definition

Argument passed to main
char *envp(};

i traditional name
iati i tal parameter. It is the !
i bbreviation for environmen o o,
?ox:v:’plgi:t:rato an array of string pointers pa;ie& t:; ;ig program _
and is by convention the third argument pass .

i work
See the Lexicon entry for argv for more information how envp and argv
together to pass information into a program.

mple on.
f;aanimmple of this function, see the entry for memory allocation

See Also
argc, argv, main

EOF — Manifest constant

in stdio.h
“ " is the manifest constant defined in 8
i acronym for “end of file”. It is
ggf it;suasgd to signmal that the end of a file has been reached.

i keyboard under TOS, you
i m reading from the eons&_)le t | o
Z}?ozllgngl'plz(ch::l-aZSrgg{:wed by <:~e:;iurn>ﬁ on aplme ng ;t:he:'t u::t;})g> caei.]ss n
ignal is implemented by the read routine. IFrogra
fze(;g tignconsole rgust implement an EOF signal themselves.

e til you e
f:: ,f:)llll)mving example echoes characters you type at the keyboard until you typ

EOF.

¥include <stdio.h>
main()

int ¢;
" uhiLle((cxgetchar()) 1 <EOF)
putchar(c);

s

|
|

318 equal — errno errno.h —error codes 319 | g
i

. 5 ;
: WHN
See Also » See Also ¥ e
manifest constant, stdio.h errno.h, error codes, mathematics library, perror, routines i L %l
equal — Command ‘ errno.h — Header file L7 &z
Compare two arguments ‘ : Error numbers used by errno() A 53
equal argumentl argument2 #include <errno.h> ed b Lol
. . i er- %y
equal is a test command that is built into msh. It tests if argument1 is equal to ar- e errno.h is a header that defines and describes the error numbers return Yy i 4
gument2; it returns zero if they are equal, and a value greater than zero if they are . mo. j e
. not. The arguments may be absolute values or values returned by another com- ! See Also iRt
mand. @ ‘ R
errno, header file, TOS : 1%3
Example 8 L : R
The following command prints the string High res on the screen if the monitor is - error codes — Technical information b ~A!,f»‘
in high resolution, and prints Not high res if it is not. The following lists the error codes returned by TOS: , i &%
if (equal ‘getrez’ 2) (echo "High res") (echo "Not high res") " : BIOS-level errors: i%ﬁ!
Note that the command getrez returns two if the monitor is in high resolution. e AE_OK oL OK, no error 0 b
See Also AERROR L basic, fandamental error 'f o
commands, if, is_set, msh, not, while AEDRVNR -2L drive not ready R
AEUNCMD -3L unknown command i1y 73
errno — UNIX data AE_CRC 4L CRC error g g
External integer for return of error status i AEBADRQ -5L bad request
extern int errno; : AE_SEEK -6L seek error .
. . ' AEMEDIA -7L unknown media
errno is an external integer that Mark Williams C sets to the negative value of any AESECNF -8L, gector not found
error status returned by TOS to the functions that emulate UNIX system calls. AEPAPER -9L no paper
The function perror or the array sys_errlist can be used to translate the errno . AEWRITF -10L write fault
into text. : AEREADF -11L read fault
The number stored in errmo is not the TOS error, but is often the absolute value . AEGENRL -12L ger‘leral egg: i
of it. Because all TOS errors are negative, and are defined as such in errno.h, the . AEWRPRO -13L write prl:) i
value stored in errno must be negated before it can be used to determine whater- i J5E. AE_CHNG -14L media change e
ror occurred. e AEUNDEV -15L unknown device i
AEBADSF -16L bad sectors on format é
Mathematical functions also use errno to indicate classifications of errors om AEOTHER -17L insert other disk P ie i

return. errno is defined within the header file errno.h. Because not every func-

2 .
tion uses errno, it should be polled only in connection with those functions thet : GEMDOS-level errors: g
document its use and the meaning of the various status values.

5 AEINVFN -32L invalid function number p:
The error codes returned by TOS are listed in the entry for error codes, below. T - AEFILNF -33L file not found ;: i
. gz AEPTHNF -34L path not found ;,f 3
prample ; 3y AENHNDL -35L too many open files no handles left R¥aa
For an example of using errno in & mathematics program, see the entry for acos. N AEACCDN .36L access denied
AEIHNDL -37L invalid handle i
AENSMEM -39L insufficient memory i i
AEIMBA -40L invalid memory block address

evnt_dclick — evnt_keybd 321

" 320 etext — évmt_button
AEDRIVE -46L invalid drive was specified
AEXDEV -48L cross device rename not documented
AENMFIL -49L no more files
Miscellaneous error codes:
AERANGE -64L range error
AEINTRN -65L internal error
AEPLFMT -66L invalid program load format
AEGSBF -67L setblock failure due to growth restrictions
: See Also
. errno, errno.h, perror
et etext — Linker-defined symbol
B ;‘? Nk extern int etext[];

etext is the location after the shared and private text (code) segments; it is defined
by the linker when it binds the program together for execution. The value of etext
is merely an address. The location to which it points contains no known value, and
may be illegal memory locations for the program. The value of etext does not
change while the program is running.

Example

For an example of this function, see the entry for memory allocation.

See Also
edata, end, malloc

evni_button — AES function (libaes)

Await a specific mouse button event

#include <aesbind.h>

int evnt_button(clicks, button, state, xptr, yptr, bptr, kptr)
int clicks, button, state, *xptr, *yptr, *bptr, *kptr;

evnt_button is an AES routine that waits for a specified button event. clicks is
the number of clicks to await. button is the number of the button to await, coun-

ting from the left, as follows: 0x1, leftmost button; 0x2, second from left; 0x4, third
from left; etc.

state is the button state to await: zero indicates up and one indicates down.

evnt_button returns zero if an error occurred, and a number greater than zero if
one did not.

xptr points to an integer that holds the X coordinate of the'; mouse pointer. yptr
points to an integer that holds the Y coordinate of the mouse pointer. bptr points
to an integer that indicates the button state when the event occurred. Finally, kptr
points to an integer that represents the states of the control, alt, and shift keys
OR’d together, as follows: -

0x0 all xeys up
Ox1 right shift key down
0x2 left shift key down
Ox4 control key down
0x8 alt key down .
evnt_button returns the number of times the button entered the desired state.
Example
For an example of this routine, see the entry for v_circle.

See Also
AES, TOS

Notes . ‘
evnt_button can wait for only one button event. If you attempt to tell it to wait

for button 1 or button 2, it will react as if you told it to wait for button 1 and but-

ton 2, i.e., for both buttons to be pressed simultaneously.

evnt_dclick — AES function (libaes)

Get/set double-click interval

#include <aesbind.h>]

int evnt_dclick(speed, getset) int speed, getset; .
evnt_dclick is an AES routine that gets or sets the mouse’s double-click speed.

speed is the double-click speed, from zero th.rough four, with zero beufxlg th:esrl:wt;?:
‘and four the fastest. It is ignored if getset is set tonzerc_)i %glsettxsti ! argl;w D
se .

2S to return the current speed, and. one tells i €
igdecllck returns the old click speed (if getset is set to zero) or the new click

speed (if it is set to one).

See Also
AES, TOS

evnt_keybd — AES function (libaes)

Await a keyboard event

#include <aesbind.h>

int evnt.keybd() . -
i S routine that awaits a keyboard event. In other wor ls,

\ear‘:iltt; tl';?'yt‘;\(ei :xs:;earntoA;])Sress a key on the keyboard. evnt_keybd re‘t)urns a:';;té t};z

high byte contains the scan code of the key pressed, and the low byte co

ASCII code, if any, modified by the <ctrl> or <shift> keys.

Example
The following example prints out the scan ¢
<return> key exits,

ode for each key pressed. Pressing the

322 evnt_mesagA

evnt_mesag 323

#Ainclude <aesbind.h>
#include <gemdefs.h>
#define RETURN Ox1C00

slertf(n, p) int n; cher *p;

<
static char buffer(512);
sprintf(buffer, “Xr*, Lp);
) return form_alert(n, buffer);
main()
<
unsigned key;
eppl_init();
for(;;) (
key = evnt_keybd();
switch(key) €
case RETURN:
appl_exit();
exit(0);
default:
alertf(1, “[1](The scan code fs: Xx) [OKI™, key);
continue; ’ '
b
>
>
See Also

AES, keyboard, TOS

evnt_mesag — AES function (libaes)

Await a message
#include <aesbind.h>
Int evat_mesag(buffer) Int buffer[8];

evnt_mesag ig the AES routine that i i
Entegors et helds the mmenn. at awaits a message. buffer is an array of eight

GEM uses 12 predefined messa i i
use ges to pass information am i i
Each is eight ints (or “words”) long, and each has the foUmvingor;gn:gugP ficatione

Word 0 type of message
Word 1 handle of application that sent the message
Word 2 no. of bytes in message beyond 18

Words 3-7 contents of message |

The following lists the predefi ’
the header fils gemdef:h: efined messages by the value of word 0, as defined In

MN_SELECTED

WM_REDRAW

WM_TOPPED

WM_CLOSED
WM_FULLED

WM_ARROWED

WM_HSLID

WM_VSLID

WM_SIZED

WM_MOVED

AC_OPEN

AC_CLOSE

(menu selected) Word 3 gives the number within its object
tree of the title of the selected menu, and word 4 gives the
number of the selected item.

(redraw a window) Word 3 gives the window’s handle; words 4
through 7 give, respectively, the X coordinate, the Y coor-
dinate, the width, and the height of the window to be drawn.

(make a window the topmost window) Word 3 gives the win-
dow's handle.

(close-window box clicked) Word 3 gives the window’s handle.
(full-window box clicked) Word 3 gives the window's handle.

(arrow or scroll bar clicked) Word 3 gives the window's handle.
Word 4 gives the action requested, as follows:

Page up

Page down
Row up

Row down
Page left
Page right
Column left
Column right

(horizontal slider moved) Word 3 gives the window's handle.
Word 4 gives the slider’s position: zero indicates the leftmost
position, and 1,000 the rightmost.

(vertical slider moved) Word 3 gives the window's handle.
Word 4 gives the slider’s position: zero indicates the lowest
position, and 1,000 the highest.

(window size altered) Word 3 gives the window's handle.
Words 4 through 7 give, respectively, the X coordinate, the Y
coordinate, the new width, and the new height.

(window position altered) Word 3 gives the window's handle.
Words 4 through 7 give, respectively, the new X coordinate,
the new Y coordinate, the width, and the height.

DTN O

(desk accessory opened) Word 3 gives the line in the desk
menu that was clicked to open the application. Word 4 gives
the desk accessory's menu item identifier, as set by the func-
tion menu.register.

(desk accessory closed) Word 3 gives the desk accessory’s
menu item identifier, as set by the function menu_ register.

P

%

erpecy—
R A

SNy

.j,
<

B Pt T A

%

15

P
LA

R

Ty 4 e,
IR

0
tige)

i

RNy M e
e o =

324 evnt_mouse

evnt_mesag always returns one.

Example

For an example of this routine, see the entry for window
See Also .
AES, TOS, window

Notes

The i L .
fol:; 1;figzlziggﬁnnt(i:lude§l w1t:h the message AC_CLOSE does not appear to con-
torm o the ¢ ption given in DRI documentation. The description given above i
the 1 aophisﬁgx;;xtgz]?sence in working with evnt_mesag. Users who wish ta(?"';)ee:'5

, such as passi : icati '
on guard that the correct infonnagons;: %g:?;f::egemeen epplications, shovld be

evnt.mouse — AES function (libaes)

Wait for mouse to enter speci
ecified
;anlude <aesbind.h> P rectangle
int evnt_mouse(inout, x,
€ ., x, ¥, w, h, xptr, yptr, bpt
Int inout, x, y, w, h, *xptr, *yptr, ’;glr, .‘)fptr;p " kptr)

evnt_m i : .
. spedﬁ;}u::cg;helAES routine that waits for the mouse pointer to enter or leav
pointor to ente gular space on the screen. inout tells AES whether to wait f the
constantly ch f;;ézem) or leave (one) the rectangle. Note that the screen ma(:xr :

y checks the location of the mouse; it is more accurate to say igﬁ:

evnt_mouse waits f i i
bl or the mouse pointer to be found inside or outside the rec-

The arguments x,
2) I W, and h hold, respectively, the X i
tangle, its Y coordinate, its width, and its heigh{; alleare‘;?::t):rb: of the target rec

;;;:; tgo;xt:nui)n: mtiehger that holds the X coordinate of the mouse pointer. ypt
gl thg:r' dgt holds the Y coordinate of the mouse pointer. bptr ; oﬁ?t;
Beatan e Onxen il:gitzztet:ed(t;:xvtnton Fslt:atfl wl;een the event occur;~ed: ze‘r)o in-
represents the states of the control, alt, and shi)f;, kel;:;roxl)l?:ingg;fheina:}t?lger th o

0x0 all keys up ' e

Ox1 right shift key down

0x2 left shift key down

0x4 control key down

0x8 alt key down

evnt_mouse always returns one.

evnt.multi 328

See Also
AES, TOS

evnt_multi — AES function (libaes)

Await one or more specified events
#include <aesbind.h>
int evnt_multi(events, clicks, button, state, mlinout, x1, y1, wl, k1,
m2inout, x2, y2, w2, k2, buffer, lowtime, hightime, xptr, yptr, bptr,
kptr, key, times)
int events, clicks, button, state, mlinout, x1, y1, wi, h1;
int m2inout, x2, y2, w2, h2, buffer(8] lowtime, hightime;
int *key, *times, °xptr, *yptr, *bptr, *kptrs
that awaits any one of & set of AES events. It is one
and the one most commonly used.

h the process is waiting, as follows:

evnt_multi is an AES routine
of the most complex AES functions,

events is a flag that indicates the events for whic!

0x01 keyboard event

0x02 mouse button event

0x04 first defined mouse event
0x08 second defined mouse event
0x10 message from another process
0x20 timer event

clicks is the number of mouse button clicks the process is awaiting. button is a
mask of the number of the mouse button that the processing is awaiting, from one

to 16, as counted from the left:

0x01 leftmost button
0x02 second button from left
0x04. third button from left

Note that as of this writing no mouse has more than three buttons.
state is the button state being awaited: zero indicates up, and one indicates down.

evnt_multi can await either of two mouse events. A “mouse event” occurs when

the mouse pointer either enters into or exits from a defined rectangular space on

the screen. mlinout indicates whether the process is waiting for the mouse pointer
to enter (zero) or exit (one) the first mouse rectangle. Note that the screen
manager constantly polls the screen to check the location of the mouse; it is more
accurate to say that evant_multi waits for the mouse pointer to be found inside or
outside the rectangle. The arguments x1, y1, w1, and hl define, respectively, the X

point of the rectangle to be watched, its Y point, its width, and its height.

m2inout plus x2, y2, w2, and k2 define the second mouse event. They are defined
in exactly the same manner as the arguments for the first mouse event.

buffer in the space into which AES writes any message from another process.

326 evnt_multi

lowtime and hightime are, respectively, the low word and the high word of the time
interval that the process will wait before it “times out”, in milliseconds.

xptr points to an integer that holds the X coordinate of the mouse pointer when an
awaited event occurs. yptr points to an integer that holds the Y coordinate of the
mouse pointer. bptr points to an integer that indicates the button state when the
event occurred. Finally, kptr points to an integer that represents the states of the
control, alt, and shift keys OR'd together, as follows:

0x0 all keys up

Ox1 right shift key down

0x2 left shift key down

0Ox4 control key down

0x8 alt key down

If a keyboard event occurs (that is, if the user presses a key on the keyboard), key

points to the code of the key pressed. See the Lexicon entry keyboard for a table
of the key codes.

Finally, times points to where to number of times the mouse button entered the
desired state.

evnt_multi returns a number that indicates which event occurred, encoded in the
same manner as the variable events, above.

Example

This example demonstrates how to use evnt_multi. It displays a window; the
mouse pointer changes from an arrow to a bumblebee when it moves from inside to
outside the window. The program exits when a key is typed.

¥include <sesbind.h>
¥include <gemdefs.h>

struct (int x, y, w, h;) Rectangle;

/* place for unused pointers to point st */
int nowhere(11];

main()
[

/* declarations for window */
int handle;
char *title = * TITLE e

/* declarstions for ewnt_multi() */
unsigned int which = (MU_KEYSD | Mu_Mt | oy H2);

/* no. of times mouse button enters state %/
int times = 0;
appl_init();

evot_multi 327

* get dimensions of desktop window */
(aing get(0, WF_WORKXYWH, LRectangle.x, tRectanglo.y,
~ trectangle.w, LRectangle.h);

/* slter size of Rectangle */
Rectangle.x = Rectangle.w/3;
Rectangle.y = Rectsngle.h/3;
Rectangle.w /= 3;
Rectangle.h /= 3;

/* create window */
handle = wind_create(HANE, Rectengle);

/* set window, open */
wind_set(handle, WF_NAME, title, 0, 0);
graf_growbox(0, 0, 0, 0, Rectangle);
u!nd:open(handle, Rectangle);

for(”)lu({t:h(evnt mutti(uhich, 1, 1, 1, 0,
Rectangle, 1, Rectsngle, nowhere,
nowhere (0], nowhere(0], nowhere,
novhere, nowhere, nowhere, novhere,
Ltimes)) (

case MU_KEYBD:
wind_close(handle);
gref_shrinkbox(0, 0, 0, 0, Rectsngle);
eppl_exit();
exit(0);

cose MU_M1: Co .
graf_mouse(ARROM, nowhere);
which = (MU_KEYBD | MU_N2);
continue;

case MU _M2:
graf_mouse(BUSY_BEE, nowhere);
which = (MU_KEYBD | WU_M1);

continue;
defsult:
continue;
)
>
}
See Also
AES, keyboard, TOS
Notes

i t_multi to wait only for
Note that, with regard to button events, you can tell evn ; A
one speci%led event, e.g., for button 1 to be pressed. .If you t.ell it to wait for lzjult)totn
1 or button 2 to be pressed, it will act as if you told it to wait for button 1 and but-
ton 2 to be pressed.

P
poAd

iy

BECNS

SR TP o

IR A e

A T T e S g sz

e S 2t

328 evni_timer — execve

evnt._timer — AES function (libaes)

Wait for a specified length of time
#include <aesbind.h>
int evnt_timer(lowtime, hightime) int lowtime, hightime;

evnt_timer is an AES routine that awaits a time i i i
ﬁ%%?e;fn (tiismelotlztl;::cssi.s ;I}'lhel time interval to_wai; aﬁgfel;%ntgr?; :,:::5? ii;) rg?vegz:lveiz
mille evnt.._tlmer ol iegx :;'o;:e(')f the time interval, and hightime is the high
Example

For an example of this function, see the entry for VDI

See Also

AES, TOS

Notes

As of this writing, using evot._timer within i

: s a desk accessory will cause the syste
}o crash if the desk accessory performs any calls to a GDOS routine. For fn?)yre ilr:
ormation on GDOS, see the entries for VDI and metafile. '

executable file — Definition

An executable file is one that can be | i
oaded directly by the operati
;;xe;t:ltggl:ederbrgally. l;‘l"l exlecumb]e file is one that has bg'th beeg c:m;zglf??}r:ar? itz
e into machine language, and linked, where the compiled rogm'
received all operating system-specific information and library func‘:;ons.p m hes
See Also
file

execve — UNIX system call (libe)

Execute a command from within a pr

ogram
Int execvetfile, argu, env) progr
char *file, *argu(], *env(}

;zhx:)?g}z] ;Zggmété N}lJ’?)uO g) c;lelllpt,o TOSTe‘::ecutle a specific command. This is done
h ; exec. e calling program is suspended whil

command is being executed; it returns when th hished exocu oy
file is the complete path nar,ne of the fil e g el Srecudng

e to be executed. argv points to & list -
guagf:::etlg b?fp:secll)to the command. env points to a list of s't)atus enviml:m(:efnat:l

. o . f .

D exec status is negative, then errno is set to 'the absolute

%
:

8

exit — _exit 329

See Also

environment, Pexec, system, UNIX routines

exit — General function (libc)

Terminate a program

void exit(status) int status;

exit terminates a program gracefully. It flushes all buffers, closes each open file,
and then returns status to the calling program. By convention, an exit status of
zero indicates success, whereas an exit status greater than zero indicates failure.
Some systems, such as the Series Il under ISIS, throw away the status. On TOS,

it is returned to the parent program as the result of Pexec.

Example
For an example of this function, see the entry for fopen.

See Also
_exit, runtime startup, system, UNIX routines
The C Programming Language, page 154

exit — Command

Exit from a msh shell

exit [status]

exit terminates the lowest level of the shell msh. If you are working in a sub-
ghell, such as MicroEMACS invokes with its command <ctrl-X>1, exit returns you
to the program that invoked the sub-shell; otherwise, exit terminates msh and
returns you to the GEM desktop. msh executes exit directly. The optional argu-
ment status is an integer which is returned as the exit status.

See Also

commands, msh

_exit — UNIX system call (libc)

Terminate a program
int _exit(status) int status;

_exit terminates a program directly. It returns status to the calling program, and
exits.

Unlike the library function exit, _exit does not perform extra termination cleanup,
such as flushing buffered files and closing open files.

_exit should be used only in situations where you do notf want buffers flushed or

files closed; for example, when your program detects an irreparable error condition,
and you want to “bail out” to keep your data files from being corrupted.

_exit should also be used with programs that do not use STDIO. Unlike exit,
_exit does not use STDIO. This will help you create programs that are extremely

s o <y e e =

-

330 exp

extern 331

small when compiled.

See Also

exit, Pterm, runtime startup, system, UNIX routines
Notes

Iloglaﬂls should nor l'ﬂll"y terminate via exit which flushe: buﬂeled I/O and
(] 8 /
function F term.

exp — Mathematics function (libm)

Compute exponent
#include <math.h>
double exp(z) double z;

exp returns the exponential of z, or e”2.
Example

The following program
prompts you fi : .
returned by exp, pow, log, and l{)gm?r a number, then prints the value for it ss

#¥include <math.h>

dodisplay(value, name)
<(5otble value; char *name;
if (errno)
perror(name);
else
printf(*X10g Xs\n" :
errno = 0; g Xs\n", value, name);
)

#define display(x) dodisplay((double)(x), #x)

main()

S
extern char “gets();
double x;
char string(64];

for(;;) (
printf("Enter number: *);
if(gets(string) == 0)
break;
x = atof(string);

display(x);

display(exp(x));

dfsplay(pou(‘lo.o,x)); :
displsy(log(exp(x)));
display(log‘lO(pou(w.U,x))),‘

See Also

errno, mathematics library

Diagnostics
exp indicates overflow by an errno of ERANGE and a huge returned value.

extern — C keyword

Declare storage class

extern indicates that a C element belongs to the external storage class. Both
variables and functions may be declared to be extern. Use of this keyword tells the
C compiler that the variable or function is defined outside of the present file of
source code. All functions and variables defined outside of functions are implicitly

extern unless declared static.

When a source file references data that are defined in another file, it must declare
the data to be extern, or the linker will return an error message of the form:

undefined symbol name
For example, the following declares the array tzname:

extern char tzname(2] (32);

When a function calls a function that is defined in another source file or in a
library, it should declare the function to be extern. In the absence of a declaration,
extern functions are assumed to return ints, which may cause serious problems if
the function actually returns a 32-bit pointer (such as on the 68000 or 18086

LARGE model), a long, or a double.
For example, the function malloc appears in a library and returns a pointer; there-
fore, it should be declared as follows:

extern char *matloc();
If you do not do so, Mark Williams C will assume that malloc returns an Int, and
generate the error message
integer pointer pun
when you attempt to use malloc in your program.
See Also

auto, C keywords, C language, pun, register, statlc, storage class
The C Programming Language, pages 28, 72, 204

332 fabs — Fattrib

F

fabs — Mathematics function (libm)
Compute absolute value
#include <math.h>
double fabs(z) double z;

fabs implements the absolute value function. It returns z if z is zero or positive, or
-z if z is negative.

Example

For an example of this function, see the entry for cefl.

See Also
abs, ceil, floor, frexp, mathematics library

Fattrib — gemdos function 67 (osbind.h)
Get and set file attributes
#include <osbind.h>
long Fattrib(name, readset, setatrib) char *name;
int readset, setatrib;

Fattrib gets and sets file attributes. name points to the file's name, which must be
a NUL-terminated string. readset contains a 0 if you wish to read the file’s at-
tributes, or a 1 if you wish to set them. setatrib contains an integer that encodes
the file’s attributes, as follows: 0x01, read only; 0x02, hidden from directory search;
0x04 set to system, hidden from directory search; 0x08, contains volume label in
first 11 bytes; 0x10, file is a subdirectory; and 0x20, file has been written to and
closed. Fattrib returns the file’s attributes if they have been read successfully;
otherwise, it cannot be relied on to return meaningful information,

Example

#include <osbind.h>
extern int errno;

char *atrtablef} = (
"read only",
“hidden®,
“system file",
Yvolune label®,
"subdirectory”,
"written to and closed"

Fclose — fclose 333

main(arge, argv) int ergc; cher **argv; {

int attribs;
unsigned point; -
int i;

i ("g;ri(ntzf)('susage: Fattrib file\n");
pPrerm(1);
b . ¢
" “‘“ffﬁ’?f{»c':rff(‘?ﬁ:(?(é'f’i"f'xf’-’-\nf,’ argvill);
3 zrrno « -attribs;
perror("Futtr!b failure®);
pterm(1);
>
printf(“File xs:", argvi1));

ttribs == 0) (
e printf(* normat fite\n");

prerm0();

>
int = 1;
‘:Zr (=0 ; §<6 ; i+4) (ibs)
int & attr
i e ;rintf(n (Xs)¥, atrtsblelil);

point <<= 1;

>
printf("\n");

')
g See Also
gemdos, TOS

Fclose — gemdos function 62 (osbind.h)

Close & file
#include <osbind.h>
long Felose(handle) int handle;
i file handle
lose closes a file. handl_e is the
l;‘f:r(:;te(). Fdup(), or inherited by the process.
be closed, and non-zero if it could not.

that was returned by Fopen(},
Felose returns 0 if the file could

Example '
For example of how to use this macro,

See Also
gemdos, TOS

. felose — STDIO function (libc)

Close stream
#include <stdio.h>

gee the entries for Feeek and Fcreate.

a3 int folose(fp) FILE *fb;

334 Fcreate

fclose closes the stream fp. It calls fflush on the given fp, closes the associated file,
and releases any allocated buffer. The library function exit calis fclose for open
streams.

Example
For examples of how to use this function, see the entries for fopen and fseek.

See Also

STDIO
The C Programming Language, page 163

Diagnostics
fclose returns EOF if an error occurs.

Fcreate — gemdos function 60 (osbind.h)
Create a file
#include <osbind.h>
long Fcreate(name, type) char *name; int type;

Fcreate creates a file. name points to the file’s path name, which must be a NUL-
terminated string. fype contains a number that encodes the file's attributes, as
follows: 0x01, read-only; 0x02, hidden from directory search; 0x04, set to system,
hidden from directory search; and 0x08, contains volume label in first 11 bytes. If a
file could be created, Fcreate returns a handle with which it can be accessed
through TOS. If a file could not be created, Fcreate returns an error code. Note
that all TOS error codes are negative.

Example
The following example, when compiled, takes two arguments, filel and file2; it then
copies filel into file2. If file2 does not exist, it is created.

#include <osbind.h>
#include <stdio.h>
#include <stat.h>
extern int errno;

main(argc, argv) int argc; char **argv;
{

int status;

int tnhand;

int outhand;

struct DHABUFFER *mydts;

char *buffer;

long copysize;

if (arge < 3) (

Cconws(“Usage: Fcreate source target\r\n®);
Pterm(1);

Fcreate 335 z{ﬁﬁ%

{f ((inhand = Fopentargvlll, 0)) < 0) (
fprintf(stderr,"\nCan’t open frput fite Xe® ergviil);
errno = -iphand;
perror(“Fopen failure“);

Prerm(1);

)

Fsetdta(mydtax(struct DMABUFFER *“ymalloc(sizeof (struct DMABUFFER)));

if ((atatus=Fafirst(argv(1]l, OxF7)) (= 0) €
Fclose(inmhend); .
tprintf(atderr, "\nError getting stats on input file Xe®,

argv(il);
errno = -stetus;
perror("fsfirst faflure");
Pterm(1);
>

status = mydte->d_fattr & 7;

{#((outhand = Fcreate(srgv(2], status)) < 0) (
fclose(inhand);
fprintf(stderr,"\nCan’t open output file Xs”,orgvi(2]);
errno = -outhand; .
perror("Fcreate failed");
Pterm(1);

b

buffer = (char *)malloc(4096);
copysize = mydta->d_fsize;
while (copysize>4096) (
if ((stetus=Fresd(inhand, 4096L, buffer)) < 0) {

Fclose{inhand);

Fclose(outhand);

Fdelete(argv(2]);

fprintf(stderr,"\nResd error on Xs", ergvill);

errno = -status;
perror("Read failure®);
pterm(1);

)

it ((status=Furite(outhand, 4096L, buffer)) < 0) (
Fclose(inhand);
Fclose{outhand);
Fdelete(argv(2]);
fprintf(stdérr, "\niirite error on file Xs", argv(2));
errno = -status;
perror("Write failure");
pterm(1);

336 fevt

Fdatime 337

copysize -= 4096;

)
it (copysize > 0) (
it ((stetus=Fread(inhand, ¢
. copysize, buff
Fclose(inhand); e <0«
Fclose(outhand);
l;delote(argv 23);
printf(stderr,”\nRead error Xs* :
errno = -statu;; - o erovin:
perror(“Read fsilure");
pterm(1);
)

if ((status=Furite(outhsnd
A A , copysize, buffer)) < 0) {
Fclose(outhand);
;cielete(argv{ZJ);
printf(stderr,®
forint! _"aw;:\n\lrite error on Xs", argv(2});
perror("Write failure");
Pterm(1);

b
Fclose(inhand);
Fclose(outhand);
printf("File Xs
Freacmydtays copled to file Xs.\n", ergv(1], argv(2]);
Fgetdta(NULL);
Prerm0();
>

See Also
gemdos, TOS

fevt — General function (libc)

Convert floating point numbers i
! to ASCII strin
char *fevt(d, w, dp, signp) double d; int w, §'t'}p, *signp;

fevt converts floating poi

point numbers to ASCII strings. Its operati

. t
g;‘ t:}tf z’;t; }:)perator' to pri‘ntf‘ It converts d into a NUL~term?nated0:t:i?er:tp :leegcithﬁ
pogilnt) e prf;cprﬁcxrs(l’%n d(l.eé) thle nu(;nber of characters to the right of %he decirrgal

g nds the last igit and returns a pointer to th

;tiﬁ;n;ef:t\;‘tlesastgpe ‘t;(: ;zl:‘t; ;o ?r{ hint;gfar that indicates the location oei' :}?:u(;te‘cin?:l
; b € ing of the string: to the right if positive i
negative. Finally, it sets signp to point to an integer thag indica’t;n?h?sti};l?;;

zero if positive, and 3 .
format nd nonzero if negative. fevt rounds the result to the FORTRAN

Example

For an example of this function, see the entry for ecvt.

See Also .
ecvt, frexp, gevt, ldexp, modf, printf

Notes
fevt performs conversions within static string buffers that are overwritten by each

execution.

Fdatime — gemdos function 87 (osbind.h)

Get or set a file's date/time stamp
#include <osbind.h>

long Fdatime(info, handle, getset)
int handle, getset, info{2};
Fdatime retrieves or sets & file's time/date stamp. handle is the file’s handle that
was set when the file was first opened. getsel indicates whether the stamp is to be
reset or retrieved: 0 indicates get, and 1 indicates set. info points to & buffer that
holds two integers; this buffer will either has the time/date stamp written into it,
or hold the new time/date stamp that is to replace the previous stamp, depending
on whether the stamp is to be retrieved or reset. In either case, the first integer of
info encodes the time and the second integer encodes the date, as follows:

infoll] 0-4 no. of two-second increments (0-29)
5-10 no. of minutes (0-69)
11-15 no. of the hour (0-23)
infol2] 0-4 day of the month (1-31)
5-8 no. of the month (1-12)
9-15 no. of the year (0-119, 1980 = 0).

Fdatime returns an error status, or zero.

Example
The following example demonstrates Fdatime.

#include <osbind.h>
#include <errno.h>
Rinctude <time.h>

main(argc, argy)
int argc; char *argvi(l; {

int fd;

rtetd_t rtd; /* Backwards time, date */
utetd_t utd; /* Forwards dste, time */
time_t t; /* COHERENT time */

tm_t *tp; /* Time fields */

338 Fdelete — fdopen

if Carge < 2) (
printf(*Usage: Fdatime <filename>\n%);
exit(1);

if ((fd = Fopen(argv(i]l, 0)) < 0) {
errno = -fd;
perror{argv(1l);
exit(1);

M

fdatime(drtd, td, 0);

utd.g_date = rtd.g_rdate;
utd.g_time = rtd.g_rtime;

tp = tetd_to_tm(utd);

t = jday_to_time(tm_to_jdey(tp));

printf("Xs*, asctime(tp));
printf("Xs", ctime(lt));
return 0;

>

See Also
gemdos, TIMEZONE, TOS
Notes

msh updates the time it returns by one hour if the daylight savings time flag is set
in the environmental parameter TIMEZONE. Therefore, during the summer
months, the time returned by this routine may be one hour behind the time
returned by the date command.

Note, too, that Fdatime overwrites the time/date buffer, even when you are set-
ting the time and date on a file.

Fdelete — gemdos function 65 (osbind.h)

Delete a file
#include <osbind.h>
long Fdelete(name) char *name;

Fdelete deletes a file. name points to the file’s name, which must be a NUL-ter-

minated string. Fdelete returns 0 if the file could be deleted, and non-zero if it
could not.

Example

For examples of how to use this macro, see the entries for Fseek and Fcreate.

See Also .
gemdos, TOS ;

fdopen — STDIO function (libc)

Open a stream for standard 1/0
#include <stdio.h>

fdopen 3839

I —

. char *fype;

LE *fdopen(fd, type) int fd; c '
F1 tes and returns a FILE structure, or stream, for thg t:‘\e d:s::gtor% f:i‘;
fdo%et:i a]}ioi:or: open, creat, or dup. fype is the manner in which yo
as obtaine ,
be opened, 83 follows:

r read a file
w write into a file
a append onto a file

Example . '
The following example obtains & file descrip
to build a pointer to the FILE structure.

tor with open, and then uses fdepen

#include <ctype.h>
#include <stdio.h>

main(argc, orgv)
int argc; char *argv(};

¢ extern FILE *fdopen();
FILE *fp;
int fd;
int holder;
--argec = 1) .
e adios("Ussge: example £ilename");
it ((fd = open(argvﬁ], 0)) == -1}
sdios(topen falled.™);
if ((fp = tdopen(fd, "r'")) == RULL)
adios("fdopen failed.");
while ((holder = foetc(fp)) 1= EOF)
if (Chotder > '\177") 1 Cholder < * ')
switch(holder)
cese '\t':
case ’'\n’:
bresk;
dehu“f:pr{ntf(stderr, ngeeing char %d\n", holder);
exit(1);
2
fpute(holder, stdout);
2}
)
edios(message)
char *mestage;
¢ tprintf(stderr, wXs\n", message);
exit(1);
>

e dmaie A e SRS TSR R R

340 Fdup — ferror

See Also

creat, dup, fopen, open, STDIO

Diagnostics

fdopen returns NULL if it cannot allocate a FILE structure. Currently, only 20

FILE structures can be allocated per program, including stdin, stdout, and
stderr. :

Fdup — gemdos function 69 (osbind.h)

Generate a substitute file handle
#include <osbind.h>
long Fdup(handle) int handle;

Fdup generates a substitute file handle for a standard file handle: between zero
and five, inclusive, It returns the new, non-standard file handle if successful, or the
error code EINHNDL (invalid handle) or ENHNDL (no handles left, i.e., too many
files open) if not.

See Also

gemdos, TOS

Notes

Fdup returns with no error indication if the argument it is passed is a file handle
that has been processed by Fclose; however, the system will generate an address
error when the process terminates,

feof — STDIO macro (stdio.h)

Discover stream status
#include <stdio.h>
int feof(fp) FILE */p;

feof is a macro that tests the status of the argument stream fp. It returns a num-
ber other than zero if fp has reached the end of file, and zero if it has not. One use
of feof is to distinguish a value of -1 returned by getw from an EOF.

Example

For an example of how to use this function, see the entry for fopen.

See Also
STDIO

ferror — STDIO macro (stdio.h)

Discover stream status
#include <stdio.h>
int ferror(/p) FILE */p;

ferror is a macro that tests the status of the file stream fp. It returns a number
other than zero if an error has occurred on fp. Any error condition that is dis-

fflush 3841

r until clearerr is used to

until the stream is closed oshould be alled before fer-

that employ buffers, fllush
the last block written.

covered will persist either
clear it. For write routines
yor, in case an error occurs on

Example

This example reads a word from one file and writes it into another.

#inctude <stdio.h>

main()
¢
FILE *fpin, *fpout;
fnt word;
char infile(201, outfilef20);
printf("Name dats file you wish to copy:\n");
gets(infile);
printf(*Hame new file\n");
gets(outfile);
¢ ((fpin = fopen(infile, "rb™)) I= KULL) (
e P‘;‘ ((fpout = fopen(outfile, mb)) 1x RULLY (
' hile ((word = fgetu(fpin)) te EOF)
fputw(word, fpout);
if (1ferror(fpin)) (
clearerr(fpin);
printf("Read error\n*);

exft(0);

>

olee printf("Cannot open output filexn");

)

etse printf("Cannot open output file\n™);

fctose(fpin);
fclose(fpout);

)
See Also
STDIO

fflush — STDIO function (libc)
Flush output stream’s buffer
#include <stdio.h>
o it th the file stream /p. The file
ata associated wi e file stream /p.
s’?r‘!:g?n ix;ezpa;y:f;leﬁregisgtiguc;ﬁed. fclose calls fllush, so there is no need for
you to call it when normally closing a file or buffer.

G
YRS

iR .ﬁ?" AT P2 N
At Lt 2o ST Yaos o Boos . et

R

a0l A

342 Fforce — fgetc

Example
For an example of this routine, see the entry for v_gtext.

See Also

buffer, gets, STDIO, write

Diagnostics

fflush returns EOF if it cannot flush the contents of the buffers; otherwise it
returns a meaningless value.

Note, also, that all STDIO routines are buffered. fflush should be used to flush
the output buffer if you follow a STDIO routine with an unbuffered routine, such
as Cconin.

Fforce — gemdos function 70 (osbind.h)

Force a file handle
#include <osbind.h>
long Fforce(shandle, nshandle) Int shandle, nshandle;

Fforce forces the standard file handle, i.e., zero through five, to point to the same

file as the non-standard file handle, i.e, six and up. Fforce returns E_OK (no er-

ror) if successful, or EIHNDL (invalid handle) if not.

See Also
Fdup, gemdos, TOS

fgetc — STDIO function (libc)

Read character from stream
#include <stdlo.h>
int fgete(fp) FILE *fp;

fgetc reads characters from the input stream fp. It is a function whose body is the
macro getc. In general, it behaves the same as gete; it runs more slowly than
getc, but yields a smaller object module when compiled.

Example

This example counts the number of lines and “sentences” in a file.

#include <stdio.h>
main{)
¢
FILE *fp;
int ch, nlines, nsents;
int filensme(20};
nlines = nsents = 0; {

printf(*Enter file to test: ");
gets(filename);

Fgetdta 343

§t ((fp = fopen(filensme nwew)) 1= WULL) €
P ile ((ch = fgetc(fp)) 1= EOF) {
{1 (ch == '\n')

++nlines;
elge if (ch == 7." |
ch == {7 || ch ==) (
1¢ (Cch = fgetc(fp)) I= LIS IR ¢
++ncents;

ungetc(ch, fp);

1lse for(ch=’.’; (chefgetc(fp))=='.";)
H
)
>
printf("xd tine(s), %d gentence(s).\n",
nlines, nsents);

) else .
printf("Cannot open xs.\n", filename);

>
See Also
getc, STDIO

Diagnostics
fgetc returns EOF at end of file or on error.

Fgetdta — gemdos function 47 (osbind.h)

Get a digk transfer address .

#include <osbind.h>

#include <stat.h>

(DMABUFFER *)Fgetdta()

Fgetdta gets and returns the disk transfer address that had been set by Fsetdta,
and will be used by Fsfirst and Fsnext.

Example B
The following example creates a version of the find utility for TQS. It genemtesba
full path name and description for every file in your file system, its ou.tput can be
piped to if you wish to find where you stored a particular file, as follows:

find | egrep filename

This example demonstrate
Fenext. It also demonstrates the use of |
strepy, strlen, and tolower.

This example also demonstrates how to use the global vani
for stack overflow.

s the TOS functions Fgetdta, Fsetdta, Fsfirst, and
sascii, isupper, free, malloc, streat,

able _stksize to check

344 Fgetdta

#include <osbind.h>
#include <stat. h>
#include <ctype.h>
extern long _stkefze;

/* Transtate string to lower case */
char *lowercase(name)
char *name;

4
::?:st?r ch:r *p = name; register int ¢;
.3 c = * - ¢
Mhile nm;p) p++ = Isascif(c) L& fsupper(c) 7 tolower(c) : ¢
3

/* Concotentate path suffix t

h
char *dircat(pfx, sfx) o path prefix ®/
Eeglster char *pfx, *sfx;

extern char *malloc(), “strcat();
;;qister char *p; register int nb, npfx;
= (npfx = strien(pfx)) + 1 + strien(sfx) + 1;

if ((p = malloc(nb)) »» 0) exit(1);
::rcwm. pfx);)
(npfx 1= 0 22 pfxinpfx-1
) By sfx):p x=1) 1= 7\\’) streat(p, "\\");

/* Search the direc
findc , tory specified by dname */
char *name;

register char *globname, *newname; DMABUFFER dumb, *saved:
’ H

if ((long)&saved <= _stksfze+128) (
printf("Stack near overflow in find()\m\r*); return;

globname = dircat(name, "% #*n).
saved = (DMABUFFER ')Fgetdta():
Fsetdta(tdumb); ’

ff (Fafirst{globname, OxFF) =x 0) {
do (
if (crb.d_fname0] (= 7 1) (
newname x dircat(neme, dunb.d fname):
printf("Xs\n", louercase(neun;«:))-)'

find(newnsme);
, free(newnsme);
R) while (Fsnext() == 0);
free(globname);

Fgetdta(saved);

main()

find(“"); return O;

3
See Also
Fsetdta, Fsfirst, Fsnext, gemdos, TOS

fgets — STDIO function (libc)

Read line from stream
#include <stdio.h>
char *fgets(s, n, o) char °s; Int n; FILE *fp;

fgets reads characters from the stream fp into string 8 until either n-1 characters
have been read, or a newline or EOF is encountered. It retains the newline, if any,
and appends a NUL character at the end of of the string. fgets returns the argu-
ment s if any characters were read, and NULL if none were read. '

Example
This example looks for the pattern given by argv(1] in standard input or in file
argv(2]. It demonstrates the functions pnmatch, fgets, and freopen.

#include <stdio.h>
#def ine MAXLINE 128
char buf [MAXLINE};

main(argc, srgv)
int srgc; char *ergvi(};
(8
it (argc 1= 2 &8 ergc 1= 3)
fatal("Usage: prwatch pattern [file 1");
if (srgc==3 && freopen(srgv(2], wpn grdin)==NULL)
fatal("cannot open input file");
while (fgets(buf, MAXLINE, stdin) I= NULL)

{f (pomatch(buf, argvill, 1M
printf("xs”, buf);
)
if (1feof(stdin))
fatal("read error");
exit(Q);
>

fatal(s) char *s;

fprintf(stderr, wprmatch: Xs\n", 8);
exit(1);

346 fgetw

See Also

STDIO
The C Programming Language, page 1565

Diagnostics

read.

fgetw — STDIO function (libc)
Read integer from stream
#lnclude <stdio.h>
int fgetw(/p) FILE */p;

Example

fgetw and fputw.

#include <stdio.h>

main()
(4

FILE *fpin, *fpout;
int word;
char infile{20), outfile(20];

printf("Neme dats file to copy:\n");
gets(infile); oy

printf("Nsme new file:\n");
gets(outfile);

11 ((fpin = fopen(infile, “rb")) 1= NULL)

Zf ((fpout = fopen(outfile, "wb")) 1= NULL)

while ((word = fgetw(fpin)) = EOF)
fputu(word, fpout);

if (1ferror(fpin))
printf("Resd error\n");

} elge
printf("Cannot open output filexn");

) else
printf(*Cannot open output fite\n");

fclose(fpin);
fclose(fpout);
>

See Also
fputw, STDIO

fgets returns NULL if an error occurs, or if EOF is seen before any characters are field — Definition

fgetw is a function that reads an integer from the stream /p.
file — Definition

This example copies one binary file into another. it demonstrates the functions

field — file 347 x

Notes
fgetw returns EOF on er
guish this value from a ge

rors. A call to feof or ferror may be necessary to distin-
nuine end-of-file signal. !

A fleld is an area that is set apart from whatever surrounds it, and that is defined
f data. In the context of C programming, 8 field is

as containing a particular type 0
either an element of a structure, or & set of adjacent bits within an int.

See Also
bit map, data formats, structure
The C Programming Language, page 136

A file is a mass of bits that has been given a name and is stored on a nonvolatile

medium. These bits may form ASCIL characters or machine-executable data.

Under the UNIX system, the COHERENT system, and related operating systems,

external devices can mimic files, in that they can be opened, dosed, read, and writ-

ten to in a manner identical to that of files.

To manipulate the contents of a file, you must first open it. This can be done with
the UNIX-compatible routine open, or with the function fopen. You can then read
the file, write material to it, or append material onto it with the low-level UNIX-
gystem calls read and write, or with the functions fread and fwrite. See the
entries on UNIX system calls and STDIO for more information on manipulating

material within a file.

See Also

close, executable file, fopen, fclose, FI1LE, open

file — Command
Name a file's type
file file ...
file names the type of each file named. It examine
guess about their format.

s files to make an educated

classes of text files: files of commands to the shell; files
files containing assembly language source;
at can be passed to nroff; and plain text

file recognizes the following
containing the source for a C program;
files containing unformatted documents th
files that fit into none of the above categories.

asses of non-te
and link modules for various

file recognizes the following ¢l xt or binary data files: the various
forms of archives, object files, machines, and mis-

cellaneous binary data files.

.- e —— ST
——— eI TS

348 FILE

file descriptor — fileno 349

See Also
commands, Is, msh, size
Notes

Because file only reads a set amount of data to determine the class of a text fils,
mistakes can happen.

FILE — Definition

Descriptor for a file stream
#include <stdio.h>

FILE describes a file stream which can be either a file on disk or a peripheral
device through which data flow. It is defined in the header file stdio.h. A pointer
to FILE is returned by fopen, freopen, fdopen, and related functions.

The FILE structure is as follows:
typedef struct FILE
{

unsigned char *_cp,
-

P
* .
=Py

int _ee;

int ™_gt)(),
*_pt)();

int _ff;

char _fd;

int _ue;

)} FILE;

-cp points to the current character in the file. _dp points to the start of the data
within the buffer. _bp points to the file buffer. _cc is the size of the file, in
characters. _gt and _pt point, respectively, to the function getc and pute. {fisa
bit map that holds the various file flags, as follows:

-FINUSE 0x01 unused

_FSTBUF 0x02 used by macro setbuf
_FUNGOT 0x04 used by ungetc

_FEOF 0x08 tested by macro feof
_FERR 0x10 tested by macro ferror
_FASCII 0x20 fileis in ASCII mode
-FWRITE 0x40 file is is opened for writing
-FDONTC 0x80 don't close file

—fd is the file descriptor, which is used by low-level routines like open; it is also
used by reopen. Finally, _uc is the character that has been “ungotten” by ungetc,
should it be used. '

See Also

fopen, freopen, stdio.h, stream

file descriptor — Definition

i indexes an area in _psbase,
A flle descriptor is an integer between 1 and 29 that in _ ;
which, in turr‘l), points to the operating system’s mbemal' file descriptors. }{t is usﬁe]d
by routines like open, close, and lIseek to w0rk. with files. Nobe t at a file
descriptor is not the same as a FILE stream, which is used by routines like fopen,
fclose, or fread. Note, too, that TOS routines use the term handle as a synonym
for “file descriptor”.

See Also
file, FILE, UNIX routines

fileno — STDIO function (libc)

Get file descriptor
#include <stdio.h>
int fileno(fp) FILE *fp;

i i i file stream fp. The file
fileno returns the file descriptor associated with _thg /
descriptor is the integer returned by open or creat; it is used by routines such as
fopen used to create a FILE stream.

Example o
This example reads a file descriptor and prints it on the screen.

Rinclude <stdio.h>

main(argc,argv)
int argc; char *argvi(l;
(4

FILE *fp;

int fd;

i¢ (arge 1=2)

<
printf("Usage: fd_from fp f{lename\n™);
exit(0);

>

if ((fp = fopen(argv(l], "ru")) == NULL)
(

printf("Cannot open input file\n");
exit(0);

3

fd = fileno(fp);

printf("The file descriptor for Xs {s Xd\n",
argvil), fd);

3560 flexible arrays — float

|

See Also
FILE, file descriptor, STDIO

s T -

flexible arrays — Definition

Flexible arrays are arrays whose length is n ici
 ar ot declared explicitly. Each h -
actly one empty ‘[J' array-bound declaration. If the array is fnulﬁgimenzionx :i)xo

flexible di i i
e mension of the array must be the first array bound in the declaration; for

int exsmplel (3 {20]; /* RIGHT */
int example2(2011{); /* WRONG */

Note that the C langua I i i array
ge allows you to declare an indefinite number of
elements of a set length, but not a set number of array elements of an indefinite

length.
. Flexible arrays occur in only a few contexts; for example, as parameters:
char *ergv{);
char p(1(8};
as extern declarations:

extern int end{);
as extern or static initialized definitions:
static cher digit{)="01234567";

or as a member of a structure — usually, though not necessarily, the last:

struct nlist (
struct nlfst *next;
char name(};

3
See Also
array, data types

float — C keyword
Data type

Floating point numbers are a sub
. 0 oint ! set of the real numbers. Each h ilt-i i
gg;ntl(tor dgc:smat} p}:)mrt") that shifts, or “floats”, as the value of tfean}::l‘mllt);: cr}t:g;x
. It consists of the following: one sign bit, which indicates wh :
; It t ' ther the numb
is positive or negative; bits that encode the number’ 7 and bi o
the number’s fraction, or the numb feh the Deramant otk T ooy
A) er upon which the exponent ks
the magnitude of the nuniber en P bor of bits i o
[coded depends upon the number of bits i
ponent, whereas its precision depends upon the number of bits in the f;ac;il:)rthe =

The exponent often uses a bias. This i
: . This is a value that is subtracted fi -
ponent to yield the power of two by which the fraction will be increasedmm the ex

SRR

float 3561

Floating point numbers come in two levels of precision: single precision, called
floats; and double precision, called doubles. With most microprocessors,
sizeof(float) returns four, which indicates that it is four chars (bytes) long, and
sizeof(double) returns eight.

Several formats are used to encode floats, including IEEE, DECVAX, and BCD (bi-
nary coded decimal). Mark Williams C uses DECVAX format throughout.

The following describes DECVAX, IEEE, and BCD formats, for your information.
DECVAX Format

The 32 bits in a float consist of one sign bit, an eight-bit exponent, and a 24-bit
fraction, as follows:

sign Exponent 1 Fraction
|s eeeceee|e FEEEEEE|FEeeEeEere|feeereee]

Byte & Byte 3 Syte 2 Byte 1
The exponent has a bias of 129.
If the sign bit is set to one, the number is negative; if it is set to zero, then the
number is positive, 1f the number is all zeroes, then it equals zero; an exponent
and fraction of zero plus a sign of one (“negative zero”) is by definition not a num-
ber. All other forms are numeric values.

The most significant bit in the fraction is always set to one and is not stored. It is
usually called the “hidden bit”.

The format for doubles simply adds another 32 fraction bits to the end of the float
representation, as follows:

Sign Exponent Fraction
|8 eceeeeele FEEEEEE|EEeFeaer[freeeeee]
Byte 8 8yte 7 Byte 6 Byte 5

fflfffff‘ffffffff|ffffffff]ffffffff|
Byte 4 Byte 3 Byte 2 Byte 1

IEEE Format

The IEEE encoding of a float is the same as that in the DECVAX format. Note,

however, that the exponent has a bias of 127, rather than 129.

Unlike the DECVAX format, IEEE format assigns special values to several floating

point numbers. Note that in the following description, a tiny exponent is one that

ig all zeroes, and a huge exponent is one that is all ones:

e A tiny exponent with a fraction of zero equals zero, regardless of the setting of
the sign bit.

e A huge exponent with a fraction of zero equals infinity, regardless of the set-
ting of the sign bit.

8562 float

e A tiny exponent wi‘th a fraction greater than zero is a denormalized number,
i.e., a number that is less than the least normalized number.

e A huge exponent with a fraction greater than zero is, by definition, not a num-
ber. These values can be used to handle special conditions.

An IEE}E doubl.e, ur}like DECVAX format, increases the number of exponent bits,
It consists of a sign bit, an 11-bit exponent, and a 53-bit fraction, as follows:

Sign Exponent fraction
Is ececeee|eeee fIff|fffefere|freefeee]
Byte 8 Byte 7 Byte 6 Byte 5

CEEEFEEE|EFFEeaeefrereeee|frfesees]

Byte & 8yte 3 Byte 2 Byte !
?Iotg that the exponent hag a bias of 1,028. The rules of encoding are the same a8
or floats.

BCD Format

T.he BCD (“binary coded decimal”) format is used in accounting to eliminate roun-
ding errors that alter the worth of an account by a fraction of a cent. For that
reason, BCD for.mat' consists of a sign, an exponent, and a chain of four-bit num-
bers, each of which is defined to hold the digits zero through nine.

Q)HESD float has a sign bit, seven bits of exponent, and six four-bit digits, as
8:

Sign Exponent Fraction
|s eecccee| dddd dddd|dddd dddd|dddd dddd |
Byte 4 Byte 3 Byte 2 Byte 1

A BCD double has a sign bit, 11 bits of exponent, and 13 four-bit digits, as follows:

Sign Exponent Fraction
|s eeecese|eeee dddd|dddd dddd]dddd dddd]
Byte 8 Byte 7 Byte 6 Byte 5

dddd dddd|dddd dddd |dddd dddd |dddd dddd |
Byte & Byte 3 Byte 2 Byte 1

Passlitr;g the hexadecimal numbers A through F in a digit yields unpredictable
results.

The following rules apply when handling BCD numbers:
e A tiny exponent with a fraction of zero equals zero.
e A tiny exponent with a fraction of non-zero indicates a denormalized number.

© A huge exponent with & fraction of zero indicates infinity.

e A huge exponent with a fraction of non-zero is, by definition, not a number;
these non-numbers are used to indicate errors. ’

i ‘%M: * ‘éj'm—o
33

floor — Flopfmt 363

See Also
C keywords, C language, data formats, declarations, double

The Art of Computer Programming, vol. 2, page 180ff
The C Programming Language, page M4

floor — Mathematics function (libm)

Set a numeric floor
#include <math.h>
double floor(z) double z;

floor sets a numeric floor. It returns a double-precision floating point number
whose value is the largest integer less than or equal to z.

Example

For an example of this function, see the entry for ceil.

See Also
abs, ceil, fabs, frexp, mathematics library

Flopfmt — xbios function 10 (osbind.h)

Format tracks on a floppy disk

#include <osbind.h>

#include <xbios.h>

int Flopfmt(buffer, intbuf, device, sectors, track, side,
interleave, magic, new)

char *buffer;

int *intbuf, device, sectors, track, side, interleave, news;

long magic;

Flopfmt formats a tra

drives each support 80 tracks per disk, and zero to

The SF314 supports single- and double-sided media,

only single-sided media.

buffer points to a word-aligned area of memory that is large enough to hold the im-

age of an entire track. This is the number of bytes per sector (5612), times the

number of sectors (ten), plus the overhead information. This comes to ap-

proximately eight kilobytes for & nine-sector track, or nine kilobytes for a ten-sector

track. All data in this area are overwritten during the format and verify operstion.

In the case of a format failure, a zero-terminated list of bad sectors is returned to

this array as an array of ints.

device is the number of the floppy disk drive. Zero indicates drive A and one in-
dicates drive B. Any other value yields unpredictable results.

sectors is the number of sectors to be formatted onto each track, one through ten.
The standard format uses nine tracks.

ck on a floppy disk. The Atari SF314 and SF364 floppy disk
ten 512-byte sectors per track.
whereas the SF354 supports

B T L i

e

ey

s v A s

v

T e T

o

364

Flopfmt

track is the number of the track that you wish to format, from zero through 78.
Any attempt to format beyond track 79 may damage the drive.

side is the side of the floppy disk on which you wish to write, i.e., zero or one. Any
attempt to format side 1 with an SF354 drive will fail and may hang the system.

interleave gives the sector interleave factor. With Mega STs, this can be -1, which
specifies that the pointer intbuf contains the sector numbers in the order in which
they appear within the track. This will not work on earlier versions of TOS, and
will yield unpredictable results if used.

magic is a magic number that TOS uses to verify the operation. It must be set to
0x87654321L.

new is the value with which to fill the newly formatted sectors. It must not be
zero, and the high nybble of neither byte can be OxF. This is a word value, and the
recommended value is 0XESES, which sets up a good test pattern in the format.

Flopfmt returns zero if the track was formatted correctly, and nonzero if an error
occurred. If bad sectors are discovered, their numbers are written into the area
pointed to by buffer, in consecutive words terminated by zero. Bad sectors do not
cause Flopfmt to return an error, so the bad sector list should always be checked.
If bad sectors are found, you can either reformat the track, use the bad-sector infor-
mation to mark the bad sectors in the FAT so that GEMDOS will not use them, or
reject the floppy disk altogether.

Flopfmt forces the “changed” status (used by the functions Medlach and Rwabs)
to “definitely changed.”

Example
This example formats a single-sided floppy disk and initializes the first two tracks.
It demonstrates Flopfmt, Flopwr, and Protobt.

#include <stdio.h>
#include <osbind.h>

#define BLANK (OxESES) /* Standard sector format value */
#define MAGIC (OxB87654321L) /* Mandatory magic number value */
#define BUFSIZE (9*1024) /* Buffer size for 9 sectors */
extern int errno; /* Error mumber for perror() */
main()
L4

int track; /* Track counter */

int side; /* Side counter */

int ststus; /* Ststus word... */

short *bf; /* Buffer ptr. */

char reply; /* Reply... */

short *middle; /% Pointer for bad block dump */

g 24

g
T -’ 7

IV

side = 0; /* Only format side 0 */

pr!ntf("aeally format disk in drive 87 ");

#flush(stdout);

1§ ((reply = Crawci
printf("No.
PtermO();

n()) = 'y’ Bk reply = "y (
Floppy in drive B not formatted.\n");

M

rintf("Yes\n");

grintf("Press any key when resdy...");
fflush(stdout);

Ccraucin{);

printf(*\n");

bt = (short *) malloc{BUFSIZE);

for (track=0; track<80; track+) (
print;(“nou formatting track Xd:™,
$$tlush(stdout);
status = Flopfmt{bf, WULL, 1, 9, track, side,
1, MAGIC, BLANK);

treck);

if (status) {
middle = bf;
printf("\tXd\n", status);
while (*middle) (
printf("\taod sector Xd\n®, *middle+s);
)
) else {
pr{ntf("\tokay\n"); .
)
3
printf("Format of sll tracks completed\h");
printf("Any key to continue...");
fflush({stdout);
crewcin(); .
printf("lnitia“zim directory structure\n):
-
* Now, clear out the first two tracks
* First, zero out the buffer...
*/
for (track =

(all zeros...

0; track < (BUFSIZE>»>1); bf (track++] = 0);

J* Mow, write it to all. sectors of the first two tracks */
for (track=0;track<2;)
printf("Zeroing track Xd.\n%, treck);
if (status = Flopwr(bf, oL, 1, 1, trackss, o, N«
errno » -status;
perror(¥Flopwr faiture®);

M

/* Now, we will prototype the boot block... */
protobt(bf, (long)Random(), 2, 0);

356 Floprd

/* Finatly, write this out to the boot sector... ¥/
status = Flopur(bf, OL, 1, 1, 0, 0, 1);
if (status) (
errno « -gtatus;
, perror(™irfte of boot-block failed.");

/* Verify the write..., */
status = Flopver(bf, OL, 1, 1, 0, 0, 1);
if (status) (
errno = -atatus;
perror("Verify of boot-block failed.”);

)
printf("Program done. Disk in drive B is formatted.\n");
free(bf);
PtermO();
b
See Also
TOS, xbios

Floprd — xbios function 8 (osbind.h)
Read sectors on a floppy disk
#include <osbind.h>
#include <xblos.h>
int Floprd(buffer, filler, device, sector, track, side, count)
char *buffer, *filler; Int device, sector, track, side, count;

Floprd reads one or more sectors on a floppy disk. filler is not used, but must be
passed properly for this function to work. buffer must point to a buffer that is large
enough to hold the number of sectors read. device is the number of the device, i.e.,
zero or one. secfor is the sector at which to begin reading, i.e., one through nine,
track is the track number to seek to, i.e., zero through 79. side is the side of the
floppy to read, zero or one. Finally, count is the number of sectors to read; this can
be no greater than the number of sectors on the track.

(I;l(;)prg returns zero if the read succeeded, and returns an error code number if it
id not.

Example

#include <osbind.h>

#include <bios._h>

#define uword(x) ({unsigned)(x))

#define ulong(x) ((unsigned Llong)(x))

#define can2(x,y) (uword(x)|(uword(y)<<8)) {
¥define can3(x,y,z) (can2(x,y)|(ulong(z)<<16)) ¢

Flopver 3567

struct bbpb bb;
main() (
Floprd(sbb, OL, 1, 1, 0, 0, 1); /* read the boot block */
printf("serisl number: Xiu\n",
can3(bb.bp_serhl(0],bb.bp_:erhl(1],bb.bp_ueria\[2))):

printf("bytes per sector: Xu\n",
ean2(bb.bp_bps (0] ,bb.bp_bps(1)));

printf("sectors per cluster: X\n",
uword(bb.bp_spc)):

printf(*reserved sectors: Xu\n®,
can2(bb.bp_res{0},bb.bp_res{11));
printf(“number of fats: Xu\n",
uword(bb.bp _nfats));
printf("root directory entries: Xu\n",
canZ(bb‘bp_ndirsm),bb.bp_ndirsn]));
printf(sectors on media: Xu\n",
can2(bb.bp_nsects (0] ,bb.bp_nsects{11));

printf("media descriptor: Xu\n'",
uword(bb.bp_media));

printf(“sectors per fat: Xnn",
can2(bb.bp_spf (01,bb.bp_spf(11));

printf("sectors per track: Xu\n",
can2(bb.bp_spt (0], ,bb.bp_spt{11));

printf(heads per device: Xu\n*,
can2(bb.bp_nsides(0],bb.bp_nsides(11));
printf("hidden sectors: Xu\n",
can2(bb.bp_nhid(0],bb.bp_rhidl1)));
printf(“check sum: Xx\n", can2(bb.bp_chk (0] ,bb.bp_chk{11));
return 0;
)

See Also
Flopwr, TOS, xbios

Flopver — xbios function 19 (osbind.h)

Verify a floppy disk

#include <osbind.h>

#include <xbios.h>

int Flopver(buffer, filler, device, sector, track, side, count)
char *buffer, *filler; int device, sector, track, side, count;

Flopver reads a sector from a floppy disk, to verify that it can in fact be read. buf-
fer points to a buffer of 1,024 bytes into which a list of bad sectors (if any) will be
written. filler is not used, and can be initialized to anything. device is the number
of the floppy disk, and can be set to zero or one. sector is the number of the sector
to read, one through nine. track is the track on which to seek the sector in ques-
tion, zero through 79. side is the side of the disk to read, zero or one. Finally,
count is the number of sectors to read, and can be no greater than the number of

sectors available on a track.

358 Flopwr — fopen

Flopver returns zero if it could read the sector, and returns an error code if it
could not. If it found bad sectors, it writes a NUL-terminated string of the num-
bers of those sectors into buffer; otherwise, it writes zero into buffer.

Example
For an example of how to use this macro, see the entry for Flopfmt.

See Also
Flopfmt, Floprd, Flopwr, TOS, xbios

Flopwr — xbios function 9 (osbind.h)

Write sectors on a floppy disk

#include <osbind.h>

#include <xblos.h>

int Flopwx{(buffer, filler, device, sector, track, side, count)
char *buffer, *filler; int device, sector, track, side, count;

Flopwr writes one or more sectors on a floppy disk. filler is not used, but must be
passed properly for this function to work. buffer points to a buffer that holds the
information to written onto the disk. device is the number of the device, i.e., zero
or one. sector is the sector at which to begin writing, i.e., one through nine. track
is the track number to seek to, i.e., zero through 79. side is the side of the floppy
on which to write, zero or one. Finally, count is the number of sectors to write;
this can be no greater than the number of sectors on the track.

Flopwr returns zero if it succeeded in writing the information, and returns an er- .

ror code number if it did not. Note that writing over the boot sector on the disk
(sector 1, side 0, track 0) is not recommended.

Example
For an example of how to use this macro, see the entry for Flopfmt.

See Also
Floprd, TOS, xbios

fopen — STDIO function (libc)

Open a stream for standard 1/0
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

fopen allocates and initializes a FILE structure, or stream; opens or creates the file
name; and returns a pointer to the structure for use by other STDIO routines.
name may refer either to a real file or to one of the devices aux:, |con:, or pr:. type
is & string that consists of one or more of the characters “rwab”, to indicate the
mode of the string, as follows:

r read ASCII; error if file not found

fopen 369

R

Y

AR

' ad binary data .
::) ‘l;fﬁte AS(?’H; truncate if found, create if not found

wb write binary data

a append ASCI]; no truncation, create if not found

b append binary data . .
:+ relz):d and write ASCII; no truncation, error if not found
r+b read and write binary data

w+ write and read ASCI]; truncate if found, create if not found

+b write and read binary data) i
:+ append and read ASCII; no truncation, create if not found

a+b append and read binary data

in ‘a’ i int at the end of the file so
odes that contain ‘a’ set the seek pointer to poin of t
tTl::ai :lnata may be appended; all other modes set it to point at the beginning of the

file.

i ich i fault, will return only print-
te that files opened in ASCII mode, Whlch.ls 'the de
gﬁe ch:racters xt)md the newline character ‘\n’. Text files that use the return
character “\r’ must be opened in binary mode. .

Example N
Thian:fample copies argv(1] to argv(2] using STDIO routines. It demonstrates

the functions fopen, fread, fwrite, fclose, and feof.

#include <stdio.h>
char buf [BUFSIZ];

main{argc, srgv)

int srgc; chsr *argv(l;

< .
register FILE *ifp, *ofp;
register unsigned int n;

=3
" (arg:a:ul(zuane: copy source deatinstion);
if ((ifp = fopen(argv(1]l, “rb%)) == NULL)
fatal("cannot open input file");
if (Cofp = fopen(argv(2], "wb")) == RULL)
fatal("cannot open output file®);

white ((n = fread(buf, 1, BUFSIZ, 1fp)) t= 0) (
if (furite(buf, 1, n, ofp) 1= n)
fatal("write error");
3

if (ifeof(ifp))
fatal("read error®);

it (fclose(ifp) == EOF || fclose(ofp) == EOF)
fatal(¥cannot close");

exit(0);

360 Fopen — for

form._alert 361

fatal(s) char *s; (
fprintf(stderr, » .
3 exit(1); » TCopyE Xant,)

See Also
;‘ILE. fdopen, freopen, STDIO
lfe C Programming Language, page 151, 167
Diagnostics
f e
open returns NULL if it cannot allocate & FILE structure, if the type string i
, ng is

nonsense, or if the call to open or ¢ i
1 reat fails. Currentl g
can be allocated per program, including stdin, stdout, an:izrgei?' FILE stroctures

Fopen — gemdos function 61 (osbind.h)

Open a file

#include <osbind.h>

long Fopen(name, mode) char *name; Int mode;
’

Fo i

wr&ei:a&%er;nfinﬁ]e. n;mfz points to the file’s path name, which must be a NUL-
ot follcvg;;- ;:z!c:oe;:agno::;;eger thaqtzncodee the mode in which t.hg file is
Hgoaduiiiey F<; y ; one, write only; and two, read or write.

oS pen returns a handle by which the file can be accessed thglfglg

-
If the file cannot b
- e opened, then F. .
th L 4 open returns a
th;st ;: :e:;:t]ig neiatwe; some devices, such as con: O:eﬁ'\' emr;umrl;:r‘ Note that
e when examined as a word but positive when.;.xa i edum 2, Dandle
Example mined as a long.

For examples of how to i

use this macro, .
See Also , sea the entries for Feeek and Fereate,
gemdos, TOS

for — C keyword

Control a loop
for(initialization; endcondition; modification)

for is a C ke i

yword that introduces
separatefi' by semicolons b
endcondition describes the con
statement that modifies varia
For example,

luces a loop. It takes three arguments, whi

(ziril&t(z)ghza}f'xolr: ia"execubed before the l;)o\; llf:giil:
which will end the loop. modification i .

ble to control the number of itemtionfgcgflzgeliot)};)e

for (i=0; i<10; i++)

first sets the variable 1 to zer n it declares that the l()()]) will continue as lon
0; then it d 1 g
’
as { remains less than te", and ﬁmﬂly, increments i by one after every iteration of

g

the loop. This ensures that the loop will iterate exactly ten times (from i==0

through i==9). The statement

for(;;)
will loop until its execution is interrupted by a break, goto, 0
See Also

break, C keywords, C language, continue, while
The C Programming Language, page 56

r return statement.

form_alert — AES function (libaes)

Display an alert box

#include <aesbind.h>

int form_alert(button, string) int button; char *string:

form_alert is an AES routine that displays an alert dialogue box on the screen.
An alert dialogue box consists of three elements: an icon, which is selected from a
predefined set of three; text, which describes the alert; and one or more “exit but-
tons”, or little boxes that the user clicks to indicate what he wants to do.

button defines which exit button is the default. The default button is drawn with a
heavier outline. It is the one selected if the user presses the return key instead of
using the mouse. The default is set as follows: zero, no default button; one, first
exit button; two, second exit button; and three, third exit button.

string points to the string used with the alert box. The string has the following

format:
. tn) ttexty texity

The square brackets are entered literally. n refers
wish to display, as follows:

to the number of the icon you

0 no icon
1 NOTE icon (exclamation point)
2 WAIT icon (question mark)

3 STOP icon (stop sign)
e alert box. An alert box can hold no more than

text is the text displayed within th
five lines of text, each no longer than 31 characters. A vertical bar ‘|’ indicates a
line break. exit describes the exit buttons. It can have no more than 20 characters.

If you want more than one exit button, separate their texts with a vertical bar. For
example,

(3] (Cannot find file|Try sgain?] [Quit|Try again]
indicates that you want the STOP icon (icon no. 3), that the box is to have two
lines of text (“Cannot find file/Try again?"), and that you want two exit buttons,
one marked “Quit” and the other marked “Try again”.

ot

¥ b b TR A RO 0 e e

N

TR
H SeeTm e VL i

O A T

?

=

&

form_center — form_dial

form_alert returns the number of the exit button selected.
Example

The following example demonstrates form_salert.
#include <sesbind.h>

main()
¢
, slertf(2, (1) (Alert Box){l dig ft1");
alertf(n, p) int n; char *p;
(¢
static char buffer(512];
sprintf(buffer, "Xr", &p);
return form slert(n, buffer);
)
See Also

AES, cc, gem, TOS

form_center — AES function (libaes)

Center an object on the screen
#Include <aesbind.h>
#include <obdefs.h>
int form_center(picture, xptr, yptr, w
1 s s , wptr, hptr)
OBJECT °*picture; int *xptr, *yptr, *wptr, ‘hlfptr',

form._center is an AES routine that centers an object on the screen.

picture points to the object being manipulated. The type OBJECT is defined in th
header file obdefs.h. See the Lexicon entry on object for more information. e

The arguments xptr, yptr, wptr, and hptr poi i
e al) » YpLr, : point, respectively, to ints that hol
object’s X coordinate, its Y coordinate, its width, and its heigyht. old the

form_center always returns one.
Example
For an example of this routine, see the entry for object.

See Also
AES, obdefs.h, object, TOS

form._dial — AES function (libaes)

Reserve/free screen space for dialogue !
#include <aesbind.h> !

int fqrm.dlal(ﬂag, openx, openy, openw, openh, endx, endy, endw, endh)
int flag, openx, openy, openw, openh, endx, endy, endw, endh;

form_do 363

form_dial is an AES routine that either reserves space for 8 dialogue box, or frees
space previously reserved. flag indicates whether the space is to be reserved or

freed, as follows:
0 FMD_START reserve screen gpace
1 FMD_.GROW draw “growing box”

2 FMD_SHRINK draw “shrinking box”

3 FMD._FINISH free memory, send redraw message
The variables openx, openy, open, and openh give, respectively, the X position, the
Y position, the width, and the height of the rectangle from which the dialogue box
grows. These values are used only with flags FM_GROW or FM_SHRINK. endx,
endy, endh, and endw give, respectively, the X position, the Y position, the width,
and the height of the dialogue box itself. All values should be given in rasters.
form_dial returns zero if an error occurred, and a number greater than zero if one
did not.
Note that you are responsible for saving and restoring the portion of the screen
that is obscured by the form_dial dialogue box. form_dial will generate a redraw
message when invoked with flag FMD_FINISH; your program must capture this

message and process it properly.

Example

For an example of this routine, see the entry for object.
See Also

AES, form_do, object, TOS

Notes
The call form_dial(FMD_FINISH ...); can be used to force the screen manager to

redraw any portion of the screen.

form.do — AES function (libaes)

Handle user input in form dialogue
#include <aesbind.h>
int form_do(tree, object) OBJECT *tree; int object;

form_do is an AES routine that handles text the user may need to input into an
object. tree points to the object tree that will accept the text. object indicates the
object within the tree that has an editable text field; zero indicates that the tree
contains no editable text field. form_do returns the index of the object that closed
the dialogue.

Example
For an example of this routine, see the entry for object.

364 form.error

See Also
AES, form_dial, object, TOS

form_error — AES function (libaes)

Display a TOS error
#Include <aesbind.h>
int form_error{error) int error;

form_error is an AES routine that displays a preset error alert. error is an in-
teger that indicates which error message you wish to display, as follows:

0 Undefined
1 Undefined
2 Cannot find file or folder
3 Sameas?2
4 No room to open another document
5 Item with this name already exists
6 Undefined
7 Undefined
8 Not enough RAM to run application
8 Undefined
10 Sameas$8
11 Sameas$8
12 Undefined
13 Undefined
14 Undefined
15 Specified drive does not exist
16 Cannot delete current folder |
17 Undefined
18 Sameas2

The above numbers correspond to error codes under MS-DOS; note, however, that
they are not the same as GEMDOS or TOS errors. All codes greater than 18 are
associated with no specific error message. form_error returns the number of the
exit button that the user clicked, from one through three. At present, all error
alerts have only one exit button.

Example
This example displays the preset error forms.
#include <aesbind.h>

main()

(4
fnt counter;
sppl_init();

fprintf — fputc 366

for (counter = 0; counter <z 20; counter++)
form_error(counter);
appl_exit();

)
See Also
AES, TOS

fprintf — STDIO function (libc)

Print formatted output onto file stream

int fprintf(fp, format, largl, ... argND

FILE *fp; char *format;

{data typel argl, ... argh;

fprintf prints formatted strings onto the file stream fp. It uses the format string to
specify an output format for argl through argN.)

See printf for a description of fprintfs formatting codes.

Example
For an example of this routine, see the entry for fscanf.

See Also
printf, sprintf, STDIO
The C Programming Language, page 1562

Notes

Because C does not perform type checking, it is essential that an argument rr}atch
its specification. For example, if the argument is a long and the spgcxﬁcat:on is for
an Int, fprintf will peel off the first word of that long and present it as an int.

At present, fprintf does not return a meaningful value.

fpute — STDIO function (libc)

Write character onto file stream

#include <stdio.h>

int fpute(c, fp) char ¢; FILE *fp;

fputc writes the character ¢ onto the file stream fp. It returns c if ¢ was written
successfully.

Example ‘
The following example uses fpute to write the contents of one file into another.

366 fputs— fputw

#include <stdio.h>
main()
<
FILE *fp, *fout;
int ch;
int infite{20);
fnt outfile(20];

printf{"Enter name to copy: ");
gets(infile); opys i
printf(¥Enter name of new file:);
gets(outfile); !

Zf ((fp = fopen{infile,“rv)) 1= NULL)
it ((fout = fopen(outfile, ™w")) 1= NULL)

while ((ch = fgetc(fp)) I= EOF)
fputc(ch, fout);

else
) printf("Cannot write Xs.\n", outfile);
else
printf("Cannot read Xs.\n", infite);
fclose(fp);
R fclose(fout);
See Also
STDIO
Diagnostics

fputc returns EOF when a write error occurs, e.g., when a disk runs out of space.

fputs — STDIO function (libc)

Write string to file stream
#include <stdio.h>
fputs(string, fp) char *string; FILE *fp;

fputs writes stri ike i

pend a newlirfemclr:gr::tﬁ‘ tt};etl?eleegfiri?:tr%;g(.}nhke ta cousin puts, it does not ep-
Example

For an example of this function, see the entry for freopen

See Also '

STDIO

The C Programming Language, page 165

fputw — STDIO function (libc)

Write an integer to a stream
#include <stdio.h>

gt

oy

fraction — Fread 387

int fputw(word, fp) int word; FILE *fp;

fputw writes word onto the file stream fp, and returns the value written.

Example
For an examp
See Also
fgetw, STDIO
Diagnostics
fputw returns EOF when an error occurs. A call to ferror or feof may be needed
to distinguish this value from a valid end-of-file signal.

le of this function, see the entry for fgetw.

fraction — Definition

A fraction, in the context of C programming, is the fractional portion of & floating
point number. The term “mantissa” i8 often used as a synonym for it.

See Also
data formats, double, float, frexp

fread — STDIO function (libc)

Fre

Read data from file stream
#include <stdio.bh>

int fread(buffer, size, 1, i}
char *buffer; unsigned size, n; FILE *fp3
fread reads n items, each being size bytes long, from file stream fp into buffer.
Example

For an example of how to use

See Also
fwrite, STDIO
Diagnostics

fread returns zero upon res
ber of items read.

this function, see the entry for fopen.

ding EOF or on error; otherwise, it returns the num-

ad — gemdos function 63 (osbind.h)

Read a file

#Include <osbind.h>

long Fread(handle, n, buffer)

int handle; long n; char *buffer;

Fread reads n bytes from a file opened by Fopen or Fcreate.

handle is the file handle generated when the file was opened; buffer points to the
location where the material being read is gtored.

gy
[DRUURTeors TR L/t Et a3 £

368 free — Frename

Fread returns the number of bytes read if the data were read successfully. If the
value returned does not equal n, you have reached the end of the file or an error
has occurred — usually the former.

Example
For examples of how to use this function, see the entries for Feeek and Fcreate.

See Also
gemdos, TOS

free — General function (libc)

Return dynamic memory to free memory pool
vold free(ptr) cliar *ptrs

free helps you manage the arena. It returns to the free memory pool memory that
had previously been allocated by malloe, calloe, or realloc. free marks the block
indicated by ptr as unused, so the malloc search can coalesce it with contiguous
free blocks. ptr must have been obtained from malloe, calloe, or realloc.
Example

For an example of how to use this routine, see the entry for malloc. For an ex-
ample of this function in a TOS application, see the entry for Fgetdta.

See Also

arena, calloe, malloc, notmem, realloc, setbuf

Diagnostics

free prints a message and calls abort if it discovers that the arena has been cor-

tx;upt,ed. This most often occurs by storing data beyond the bounds of an allocated
lock.

Frename — gemdos function 86 (osbind.h)

Rename a file

#Include <osbind.h>

long Frename(n, oldpath, newpath) int n;
char *oldpath, newpath;

Frename renames a file. oldpath points to the file's old path name, and newpath
to its new path name; both names must be NUL-terminated strings. newpath must
not be the name of an existing file. n is reserved for TOS, and must be zero.
Frename can move a file to another subdirectory, but only on the same disk drive.
It returns zero if the file could be renamed, non-zero if it could not.

Example
This example renames a file.

;,W: 7

freopen 369

WRTED

finclude <stdio.h>
#include <osbind.h>

* for (ast error... */
extern int errno; /* globat

main(argc, srgv) int srgc; char **argv; {
int status;
if (arge <3 (.
printf("Ussge: Frename oldname newname\n");
pterm(1);

>

if ((status=Frename(0, argv(1], argv(21)) 1= 0) (
errno = -status;
perror(“Rename failed");
Pterm(1);

;Hnt{("ﬂle %s rensmed to Xs\n", argv{l], ergv(2]);
ptermi();

2

See Also

gemdos, TOS

freopen — STDIO function (libc)

Open file stream for standard I/O
#include <stdio.h>
FILE *freopen (name, type,)
char *name, *type; FILE *fp; .
initiali : tly associated with i
reinitializes the file stream fp. It closes t.hg file curren
g;i?ge; cereat,es the file name, and returns a pointer to the structure tf}?r éxse‘ctg
other STDIO routines. name may refer either to a real file or to one of the devi
auxs, con:, of pra:. -
: “ ** (for, respec-

is a string that consists of one or more 91' the characters “rwa o} -
857:1;8 :;ad, wgite, append, and binary) to indicate the mode of the streax;h’ ‘)ﬁ“orﬁi’:)x:;3
ther discussion of the type variable, see the entry for fopen. freopen l'e;:] om
fopen only in that fp specifies the stream to be used. Any stream pre\{:on ythe
sociated with fp is closed by fclose. freopen is usually used to change
meaning of stdin, stdout, or stderr.

Example '
i i ttern given by argvil].

h mple, called match.c, looks in arg'v[2] for the pa g
;It: tli:ae’;:ttzm is found, the line that contains the pattern is written into the file

argv[3] or to stdout.
#include <stdio.h>

#define MAXLINE 128
char buffer (MAXLINE);

A e T

R P

B R s e TR

fscanf 371

main(arge,argv)
int arge; char *argv(};

FILE *fpin, *fpout;

if Cargec 1= 3 &L ergc 1= &)
fatal("Usage: match pattern Infile [outfilel™);

1€ (arge >= 3 L& (fpin = fopen(argv(2), “r®))==NULL)
fatal("Cannot open Input file");

i ({fpout = freopen{argv(3), "w", stdout))=siULL)
fatal("Cannot open output file");

while (fgets(buffer, MAXLINE, fpin) 1= WULL)
(8

if (prnatch(butffer, argv(i], 1))
fputs(buffer, stdout);
b

{f (1feof(fpind)
fatal("read error");
exit(0);
>
fatal(s)
char *s;
¢
fprintf(stderr, "match: Xs\n", s);
exit(1);
)

See Also

fopen, STDIO

Diagnostics

freopen returns NULL if the fype string is nonsense or if the flle cannot be

opened. Currently, only 20 FILE structures can be allocated per program, in-
cluding stdin, stdout, and stderr.

frexp — General function (libc)

Separate fraction and exponent
double frexp(real, ep) double real; int *ep;

frexp breaks double-precision floating point numbers into fraction and exponent.
it returns the fraction m of its real argument, such that 0.5 <= m < 1 or m=0,
and stores the binary exponent ¢ in location ep. These numbers satisfy the equation
‘real = m * 2%.

Example .

This example prompts for a number, then uses frexp to break it into its fraction
and exponent.

#include <stdio.h>

main()
<

extern char *gets();

extern double frexp(), stof();
double real, fraction;

int *ep;

char string(64];

for (;3)
{
printf(“Enter number: ");
if (gets(string) == 0)
break;

real = stof(string);
fraction = frexp(real, ep);
printf("Xlf is the fraction of Xif\n",

fraction, real);
printf(*Xd is the binary exponent of XLf\n",
*ep, resl);
>

)
See Also

atof, ceil, fabs, floor, ldexp, modf

fscanf — STDIO function (libc)

Format input from a file stream
#lnclude <stdio.h>
fnt fscanf(fp, format, argl, ... argN)
FILE *fp; char *format;
[data type] *argl, ... *argN;
i the arguments
facanf reads the file stream /p, and uses the string format to format 3
argl through argN, each of which must point to a variable of the appropriate data
type.
fscanf returns either the number of arguments matched, or EOF if no arguments
matched.

For more information on fecanf’s conversion codes, see scanf.

Example . "
The following example uses fprintf to write some data into a file, and then reads it
back using fscanf.

372 fseek

#include <stdio.h>

main ()

(4
FILE *fp;
char let[4);

/* open file into write/resd mode ¢/
tf ((fp = fopen("tmpfile”, "wr")) == NULL)
<
printf("Cennot open ‘tmpfile’\n%);
exit(1);
2}
/* wurite » string of chars into file */
fprintf(fp, "1234");

/* move file pointer back to beginning of file */
rewind(fp);

/* read and print data from file */
fscanf(fp, "Xc %c Xc %c*,
Llet[0), &let(1), &let(2], Llet(3));
printf("Xc Xc Xc Xc\n¥,
let[3], let[2], let(1], let[0));
3 L
See Also
scanf, sscanf, STDIO
The C Programming Language, page 152

Notes
Because C does not perform type checking, it is essential that an argument match
its specification. For that reason, fscanf is best used only to process data that you 4

are certain are in the correct data format, such as data previously written out with
fprintf.

fseek — STDIO function (libe)
Seek on file stream
#Include <stdio.h>
int fseek(fp, where, how)
FILE *fp; long where; Int how;

fseek changes where the next read or write operation will occur within the file
stream fp. It handles any effects the seek routine might have had on the internal
buffering strategies of the system. The arguments where and how specify the
desired seek position. where indicates the new seek position in the file; it is
measured from the start of the file if how equals zero, from the current seek posi-
tion if how equals one, and from the end of the file if how equals two.

fseek differs from its cousin Iseek in that Iseek is a UNIX system call and takes a
file number, whereas fseek is a STDIO function and takes a FILE pointer.

Fseek 373

Example .
This efample opens file argvil] and prints its last argv(2] characters (default,

100). It demonstrates the functions fseek, ftell, and fclose.
#include <stdio.h>
extern long atol();

main(arge, argv)
int argc; chsr *argv(};

8
register FILE *ifp;
register int ¢}
long nchars, size;
if (arge <2 arge > 3)
@ qfatal(JJsage: tail file { nchars 1%);
nchars = (arge == 3} ? atol(argv(2]) : 100L;
if ((ifp = fopen(argv(ll, neny) o= NULL)
fatsl (*cannot open input f!le')i od */
1f (fseek(ifp, OL, 2) == -1) /* Seek to
wgeek error®);
gize = ffatteal‘l((‘gfepe); ¢) /* Find current size */
size = (size < nchars) 7 OL : size - nchars;
if (fseek(1fp, size, 0) == -1) /* Seek to point */
tatal("seek error®);
= if 1= EOF)
white ﬂ:;ch:::§;~ P /* Copy rest to stdout */
if (fclose(ifp) == EOF)
fatal("cannot close");
exit(0);
}
fatal(s)
char *s;
fprintf(stderr, wrails Xs\n%, 8);
exit(1);
)
See Also
ftell, lseek, STDIO
iagnostics .
e it returns zero. Note that if

diagnostic error, fseek returns -1; otherwise, b
f":éet;(n;'oes grelyond the end of the file, it will not return an error message until the

corresponding read or write is performed.

Fseek — gemdos function 66 (osbind.h)

Move a file pointer
#include <osbind.h>
long Fseek(n, handle, mode) long n; int handle, mode;

¥ "*% t;?!i?g)
Ay : '{. ‘) :

3 iy
P e
e el
ST RS) WS
RY ¥

e
5

o -
?s seat 3‘:%?*
3 k_f:.}!,? ‘(&:):.; ! (RS
5

2321

iy

2.
-4
Nty
S AR
L

L'i?\" 3:\‘:'

374 Fseek fsel_input 375 ‘

Fseek moves a file pointer. handle is the file’s handle, which was generated when
the file was opened; n is a signed long integer that indicates the number of bytes
the pointer is to be moved. mode contains an integer that encodes the manner in
which the pointer is to be moved, as follows: zero, move n bytes from beginning of
file; one, move n bytes from current location; and two, move n bytes from the end
of the file. Fseek returns the number of bytes that the file pointer is now located
from the beginning of the file.

Example
This example demonstrates Fseek. It copies one file into another.

#include <osbind.h>
#include <stat.h>
#inciude <errno.h>

char buffer(8192); /* BK buffer */

void reverse(buffer, len)

char *buffer; int len;

4
register char pisce, *forward, *backward;
forward = &buffer(0);
backward = Lbuffer{len];

while (forward < backward) {
plece = *-.backward;
*backward = *forwsrd;
*forward++ = place;

}

fatal(error, msg)
int error; char *msg;

(
errno = -error;
perror(msg);
exit(1);

M

main(arge, argv)

int argc; char *argv(};

<
int status, infc, outfd, size;
DMABUFFER dma;

if (arge <3) (
printf('usagr: Fseek source target\n®);
exit(1):

M

ff ((infd = Fopen(eraviil, 0)) < 0)
fatal{infa, aryv(11);
Fsetdta(ldma);

baii3 5

i ((status=Fsfirst(argvii}, OxF7)) 1= 0)
fatat(status, srgv(1]));
status = dma.d_fattr & 7;

if ((outfd = Fcreate(argv{2], status)) < 0)
fatal(outfd, srgvi2));
while (dma.d_fsize > 0) (
if (dma.d_fsize > sizeof(buffer))
size = sizeof(buffer);
else
size = dma.d_fsize;

Fseek(dma.d_fsize-size, infd, 0);

if ((status=Fread(infd, (long)size, buffer)) < 0)
Fdelete(argv(2]), fatel(status, argv(i}));

reverse(bufter, size);

tf ((status=Furite(outfd, (tong)size, buffer)) < 0)
Fdelete(argv(2]), fatal(status, srgv(2]);
dna.d_fsize -= size;

b
Fclogse(infd);
Felose(outfd);
printf("File Xs copied to file Xs.\n", ergv(i], argvi2});
return 0;
>
See Also
Fsnext, gemdos, TOS
Diagnostics :

.For any diagnostic error, Feeek returns -1; otherwise, it returns zero. Note that if
Fseek goes beyond the end of the file, it will not return an error message until the
corresponding read or write is performed.

fsel_input — AES function (libaes)
Select a file
#include <aesbind.h>
int fsel_input(directory, file, button) char *directory, *file; int *button;

fsel_input is an AES routine that allows the user to select a file in the current
directory, or create a new file. It displays a box on the screen; within the box is a
window that shows the contents of directory.

The user can use the mouse to scroll through the contents of directory and select
one; she can also move up or down within the directory tree, or specify a new direc-
tory. The box also contains two “exit buttons”, one marked “Cancel” and the
other marked “OK”.

directory, as noted above, points to a buffer that holds the name of the directory

being read. Note that directory must be large enough to hold the full path name
for any file selected, including those selected from subdirectories within the direc-

fsel_input

i 376

tory first displayed.

To avoid accidentally creating a C-language escape character, be sure to use two
backslashes ‘\\" to separate elements of the path name. The default directory is
named a:\\. The path name must end with a string that indicates which files you
wish to examine in the directory; for example, “*.*” displays all the files in a direc-
tory, whereas “*.c” displays only the C programs.

If the user clicks a directory, fsel_input alters the name in the buffer to which
directory points in order to reflect this change.

file is the name of the first file in directory. It is initialized by AES. If the user
selects a file other than the first one in the directory, what file points to is also al-
tered to reflect this change.

button points to a integer that indicates which exit button the user selected: zero
indicates that she selected the Cancel button, and one indicates that the OK button
was selected.

feel_input returns zero if an error occurred, and a number greater than zero if
one did not.

Example

The following example demonstrates fselinput. It checks to see if the file you
select i3 present or not.

Rinclude <sesbind.h>
#include <gemdefs.h>
#include <osbind.h>

#define mssert(x) if (1(x)) alertf(1, "(3){assert] Xa |failedi”, #);

atertf(n, p) int n; char *p;

(4
static char buffer(512);
sprintf(buffer, "Xrv, &p);
return form_alert(n, buffer);

M

main()

4

register char *cp;
int result, button;

static cher prefix(128);

static char separator{} = "\\";

static char suffix{16] = #= *u,

static char filename([128);

static char nama{16); 1
extern char *strrchr(); |

/* open spplication */
appl_init();

fseL.input 377

/* build path for current directory */
cp = prefix;

*cp++ » Dgetdrv(YA

'Cp” - I:l:

Dgetpath(cp, 0);

/* ensure mouse pointer is an arrow */
graf_mouse(ARROM, (int *)0);

for (;;) (
/* bulld string of form #A:foo*.*" */
strcpy(filensme, prefix);
strcat(filensme, sepsrator);
strcat(filensme, suffix);

/* call fsel_input to select file */
result = feel_input(filename, name, thutton);
assert(filensme(0]) I= 0);

1 (result == 0 || name(0) == O || filename(0) == 0]
button == 0) (
if (alertf(2, "12) (Cancel|file|selection 1([Yes[Hol")
= 1)
break;
continue;
)

cp = strrchr(filename, '\\’);
assert{cp != 0);
*ep = 0;

strcpy(prefix, filename);
'cpN x I\\I’.
strepy(suffix, cp);

/* buitld query string */

if (strchr(name, ’*7) || strchr(name, '?’))
strcpy(suffix, name);
name (0] = G;
continue;

)

strcpy(cp, nome);
name (0} = 0;

/* check if file is present */
it (Fsfirst(filename, OxFF) >= 0) {
stertf(1, "0 (File] Xs [found JIOKI",

filename);
) else (
alertf(1, “[11[File] Xs [not found J[OKI",
filensme);
3

G LN g e S

TE et

T e e

ENAENI W

B

e

I

T TR

T

R 08 S AU MR e g TR R IR TR B D TR R ke

378

Fsetdta — Fsfirst

/* see if user wishes to continue */
if (alertf(1, "(2) (Try|another |[file]l(Yes|Ko]") == 2)
bresk;
)

/* tidy uvp, exit */
sppl_exit();
return 0;

)

See Also
AES, TOS

Fsetdta — gemdos function 26 (osbind.h)

Set disk transfer address

#include <osbind.h>

#include <stat.h>

void Fsetdta(c) DMABUFFER “c;

Fsetdta sets the pointer ¢ to the address of a DMA buffer, a 44-byte buffer that
can be subsequently used by the macro Fsflrst. It returns nothing.

Example
For an example of of this function, see the entry for Fgetdta.

See Also
Fgetdta, Fsfirst, gemdos, TOS

Fsfirst — gemdos function 78 (osbind.h)

Search for first occurrence of a file

#include <osbind.h>

#include <stat.h>

int Fsfirst(name, attrib) char ®*name; Int attrib;

Fsfirst searches for the first occurrence of a file name. name points to the file's
name, which must be a NUL-terminated string. attrib is an integer that encodes
the search’s attributes, as follows:

0x00 normal files only; no hidden files, subdirectories,
gystem files, or volume labels will match

0x01 include read-only files

0x02 include files hidden from directory search

0x04 include system files

0x08 include volume-label files)

0x10 include subdirectory files :

0x20 include files that have been written to and closed

If you specify volume label, no other type of file can be sought. The order in which
file matches are found depends on the order in which the files are arranged in the
directory, and is not governed by alphabetical order or creation date.

{

Fsnext — fstat 379

If the search is successful, Fsfirst takes the 44-byte DMA buffer that had been
created with Fsetdta, and fills it as follows: bytes zero through 20, reserved for
TOS; byte 21, file attributes; bytes 22-23, the file’s time stamp; bytes 24-25, the
file's date stamp; bytes 28-29, the file's size; and bytes 30-43, the file’s name. The
DMA buffer is declared in the header file stat.h.

Fsfirst returns AE_OK (success) if the search succeeded, and AEFILNF (file not
found) if it did not.

Example

For an example of this function, see the entry for Fgetdta.

See Also
Fsetdta, Fsnext, gemdos, stat.h, TOS

Fsnext — gemdos function 79 (osbind.h)

Search for next occurrence of file name

#include <osbind.h>

#include <stat.h>

int Fenext()

Fsnext continues the search for a file, by using the information that had been
written into the 44-byte file name buffer by Fsfirst or by a previous call to Fsnext.
If Fsnext finds another file with the given name, it updates the DMA buffer to ac-
commodate the name and attributes of the newly found file. The DMA buffer is
declared in the header file stat.h.

Fsnext returns E_LOK (success) if the search was successful, and ENMFIL (no
more files) if it was not.

Example
For an example of this function see the entry for Fgetdta.

See Also
Fsfirst, gemdos, stat.h, TOS

fstat — General function (libc)

Find file attributes
#include <stat.h>
fatat(descriptor, statptr) int descriptor; struct stat *statptr;

fstat returns a structure that contains the attributes of a file. descriptor points to
the file descriptor, as returned by the library function fopen, and statptr points to
a structure of the type stat, which is defined in the header file stat.h.

The following summarizes the structure stat and defines the permission and file
type bits.

.
ar moan "

-y

g E T S

w-‘{

™

e g n e
o
Fd

FE .

RO AL o TR

380 ftell — function

struct stat {
dev_t st_dev;
int_t st_ino;
unsigned short st_mode;
short st_niink;
short st_uid;
short st_gid;
dev _t st_rdev;
size_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

¥

#define S_IJRON 0Ox01 /* Read-only */

¥define S_IJHID Ox02 /* Ridden from search */

#define S_1JSYS Ox04 /* System, hidden from search */
#define S_lJvoL 0x08 /* Volume lebel in first 11 bytes */
#define S_IJDIR Ox10 /* Directory */

#define S_TJVAC 0x20 J¥ dritten to and closed %/

The majority of entries in the structure stat are there to preserve compatibility
with the COHERENT operating system. Most return meaningless values when
used on the Atari ST, with the following exceptions: st_atime, st_mtime, and
st_ctime all return the time that the file or directory was last modified.

See Also

18, msh, open, stat, stat.h

Diagnostics

fstat returns -1 if the file is not found or if statptr is invalid.

ftell — STDIO function (libc)
Return current position of file pointer
#include <stdio.h>
long ftell(fp) FILE */p;

ftell returns the current position of the seek pointer. Like its cousin fseek, ftell
takes into account any buffering that is associated with the stream fp.

Example

For an example of how to use this function, see the entry for fseek.

See Also
fseek, STDIO

function — Definition

A function is the C term for 4 portion of code that is named, can be invoked by
name, und that performs a task. Many functions can accept data in the form of ar-
guments, modify the data, and return a value to the statement that invoked it.

!

fwrite — Fwrite 381

e

See Also
data types, executable file, library, portabllity

fwrite — STDIO function (libc)
Write onto file stream
#include <stdle.h>
int fwrite(buffer, size, n, fp)
char *buffer; unsigned size, n; FILE *fp;
fwrite writes n items, each of size bytes, from buffer onto the file stream fp.

Example

For an example of how to use this function, see the entry for fopen.

See Also
fread, STDIO

Diagnostics
fwrite normally returns the number of iteras written. If an error occurs, the
returned value will not be the same as n. '

Fwrite — gemdos function 64 (osbind.h)
Write into a file
#include <osbind.h>
long Fwrite(handle, n, buffer) int handle; long n; char *buffer;

Fwrite writes n bytes into a file. handle is the file handle that was generated
when the file was opened by Fopen or Fecreate. buffer points to the material to be
writlen. Fwrite returns n if the material was written successfully, and an error
code if it was not.

Example
For examples of how to use this macro, see the entries for Feeek and Fereate.

See Also
gemdos, TOS

382

galaxy.a — gem

G

galaxy.a — Archive

gevt

gem

galaxy.a is an archive that holds the source files for galaxy, a program that allows.

you to simulate on your Atari ST the birth and evolution of spiral galaxies. The
source code is self-documenting, and is offered as an extended example of how to
manipulate the Atari ST's graphics.

If you wish to compile galaxy, you must first extract the source files from the ar-

chive. Use the command cd to move to the directory where you have stored this
archive, then give msh the following command:

ar xv galexy.a

See Also

ar

— General function (libc)
Convert floating point number to ASCII string
char *gevt(d, prec, buffer)
double d; int prec; char *buffer;
gevt converts a floating point number into an ASCII string. Its operation
resembles that of the %g operator to printf. gevt converts its argument d into &
NUL-terminated string of decimal numerals with a precision (i.e., the number of
numerals to the right of the decimal point) of prec. Unlike its cousins ecvt and
fevt, gevt uses a buffer that is defined by the caller. buffer must point to a buffer
large enough to hold the result; 64 characters will always be sufficient.

When generating its output, gevt will mimic fevt if possible; otherwise, it mimics
ecvt. gevt returns buffer.

Example

For an example of this function, see the entry for ecvt.

See Also
ecvt; fevt, frexp, ldexp, modf, printf

— Command

Run a GEM program
gem command args

gem allows you to run a GEM command under the micro-she{l msh. It resets file
handle 2 to the aux: device. Unlike its cousin, the tos command, gem enables the
mouse cursor.

gem reads the environment, and will properly use the environmental variables
PATH and SUFF. A GEM program will execute correctly if hoth the executable

!

gemdefs.h — gemdos 383

0x01 Cconin

and its associated resource file are located in a directory named in PATH.
Another way to use gem is with a cd command. For example,
set game=fcd c:\gemes; gem game.prg; cd’
allows you to run the GEM application game.prg by typing $game. When you exit
from game, you will be returned to your HOME directory.

When you are finished, just exit from the GEM program in the normal way, and
gem will return you to msh.

See Also

commands, msh

Notes

Some Atari GEM programs appear to depend on the GEM desktop to perform un-
gspecified clean-up after they rum, and thus cannot be run through the gem com-
mand. These programs include Atari Logo and Atari BASIC. Running these
programs under msh may damage memory-resident programs, such as RAM disks.

gemdefs.h — Header file

GEM structures and definitions
#include <gemdefs.h>

gemdefs.h is a header file that declares structures and definitions useful for
programming in the GEM environment. Many of the mnemonics used through
GEM programs are also defined in this file.

See Also
AES, header file, TOS, VDI

gemdos — TOS function

Call a routine from GEM-DOS
#include <osbind.h>
extern long gemdos(n, argl...argn);

gemdos allows you to call a GEM-DOS routine directly from your program. n is
the number of the routine, and argl through argn are the argument numbers to be
used with the routine. In most circumstances, it is unnecessary to use gemdos
directly, for a library of functions that use it are defined in the header file os-
bind.h.

The following functions use gemdos:

0x03 Cauxin Read character from serial port
0x12 Cauxis Return serial port input status
0x13 Cauxos Return serial port output status
0x04 Cauxout Write character to serial port
Read character from console

gemout.h — Getbpb 386

884 gemdos
0x0B Cconis Return console input status
0x02 Cconout Write character to console
0x10 Cconos Return console output status
0x0A Cconrs Read and edit string from console
0x09 Cconws Write a string to the console
0x08 Cnecin Read character from console, no echo
0x11 Cprunos Check parallel port output status
0x06 Cprnout Write character to parsallel port
0x07 Crawein Read raw character from console
0x06 Crawlo Perform raw I/O with console
0x39 Dcreate Create a subdirectory
0x3A Ddelete Remove a subdirectory
0x36 Dfree Find free space on disk
0x19 Dgetdrv Return current disk drive
0x47 Dgetpath Return current directory
0x0E Dsetdrv Set the default drive
0x3B Dsetpath Set the current directory
0x43 Fattrib Get/set file attributes
0x3E Felose Close a file
0x3C Fereate Create a file
0x57 Fdatime Geot/set file’s date stamp
0x41 Fdelete Delete a file
0x46 Fdup Duplicate a file’s handle
0x48 Fforce Force a file handle
0x2F Fgetdta Get a disk transfer address
0x3D Fopen Open a file
0x3F Fread Read a file
0xb6 Frename Rename a file
0x42 Freek Move a file pointer
0x1A Feetdta Set disk transfer address
Ox4E Fsfirst Search for first occurrence of file
O0x4F Fanext Search for next occurrence of file
0x40 Fwrite Write into a file
0x48 Mzalloc Allocate dynamic memory
0x49 Mfree Free dynamic memory
Ox4A Msghrink Shrink amount of allocated memory
0x4B Pexec Load or execute a process
0x4C Pterm Terminate a process
0x00 Pterm0 Terminate a TOS process
0x31 Ptermres Terminate a process but keep in memory
0x20 . Super Enter supervisor mode
0x30 Sversion Get current version of TOS
0x2A Tgetdate Get date
0x2C Tgettime Get time
0x2B Tsetdate Set date
0x2D Tsettime Set tine

See Also
osbind.h, TOS

Notes
No gemdos function will support a recursive call. Attempting to use a recursive
call with a gemdos function will crash the system.

Note that all gemdos functions are unbuffered. Combining them with buffered
1/O routines, such as those in the STDIO library, will lead at best to unpredictable

results.

gemout.h — IHeader file
GEM-DOS file formats and magic numbers
#include <gemout.h>

gemout.h is a header file that declares formats for the GEM-DOS executable files
and archives. It also includes @ number of “magic numbers” used in handiing
these formats.

See Also
header file, TOS

Getbpb — bios function 7 (osbind.h)
Get pointer to BIOS parameter block for a disk drive
#include <osbind.h>
#include <bios.h>
(struct bpb *)Getbpb(device);
int device;

Getbpb returns a pointer to the BIOS parameter block for a given disk drive. This
structure is described in the header file bios.h. device is an integer that indicates
which drive you wish to examine: zero, drive A; one, drive B; etc. If the BIOS
parameter block cannot be determined for whatever reason, Getbpb returns
NULL.

Note that in the DRI bindings, Getbpb is declared as returning a long. The cast
shown in the declaration is necessary to avoid an integer-pointer pun.

Example
The following example dumps the BIOS parameter block for the disk in drive B:.

#include <osbind.h>
¥include <bios.h>

main() (
struct bpb *bp;
bp » (struct bpb *) Getbpb(1);
printf("Disk In drive B:\n");
printf("\tSector Size:\tX5d bytes\n", bp->bp_recsiz);
printf("\tCluster Size:\tX5d bytes (Xd nctan)\n", !

bp->bp_clsizb, bp->bp_cisiz);

printf("\t0{rectory:\tX5d sectors\n", bp->bp_rdlen);
printf("\tFAT:\t\tX5d sectors\n", bp->bp f2iy); ’
printf("\tbuta Clusters:\tX5d\n", bp->bp_rumct);

) printf(*\tFlags:\t\t X4x\n", bp->bp_ﬂ|g;);

See Also
bios, TOS

gete — STDIO macro (stdio.h)

Read character from file stream
#include <stdio.h>
int gete(fp) FILE */p;

gete is a macro that reads a character from the file stream /p, and returns an int.

Example

The following eg:ample creates & simple copy utility. It opens the first file named on
tnlll:nfiol?mand line and copies its contents into the second file named on the com-
ne. ,.

Minclude <stdio.h>

main(arge, argv)
int arge; char *argv(l;

{nt foo;
FILE *source, *dest;

if (--argc 1= 2)
error(*Ussge: copy [source] [destination]");

if ((source = fopen(argv{l], *rb")) == NULL)
error("Cannot open source file");

if ((dest = fopen(argv{2], “wb")) == KULL)
error("Cannot open destination file");

while ((foo = getc(source)) i= EOF)
putc(foo, dest);

TR T

getchar — getcol 387

error(string)
char *string;

4
printf("Xs\n", string);

exit (1);
)
See Also
fgetc, getchar, pute, STDIO
The C Programming Language, page 152

Diagnostics
getc returns EOF at end of file or on read error.

Notes
Because getc is a macro, arguments with side e

this.

getchar — STDIO macro (stdio.h)
Read character from standard input
#include <stdio.h>
int getchar()

getchar is a macro that reads a character from the standard input. Itis equivalent

to getc(stdin).
Example

The following example gets one or more characters from
them on the screen.

#include <stdio.h>

main()
(.
int foo;
while ((foo = getchar()) = FOF)
putchar(foo);
>
See Also

getc, putchar, STDIO

The C Programming Language, page 144, 162
Diagnostics

getchar returns EOF at end of file or on read error.

getcol — Command
Get a color value

R i e

ffects probably will not work as ex-

pected. Also, because getc is a complex macro, its use in expressions of too great &
complexity may cause unforeseen difficulties. Use of the function fgetc may avoid

the keyboard, and echoes

.

Rt

e iy

388

getenv — Getmpb

getcol position

getcol is a command that uses the xblos function Setcolor to read the color for a
position on the current color palette. position is the palette position in question,
from zero through 15.

See Also

commands, setcolor, Setcolor, TOS

getenv — General function (libc)

Read environmental variable
char *getenv(VARIABLE) char *VARIABLE;

A program may read variables from its environment. This allows the program to ac-
cept information that is specific to it. The environment consists of an array of
strings, each having the form VARIABLE=VALUE. When called with the string

“;AIE{]/}EBLE, getenv reads the environment, and returns a pointer to the string
A .

Example
This example prints the environmental variable PATH.
#include <stdio.h>

main()
¢
chsr *env;
extern char “getenv();

tf ((env = getenv("PATH")) == NULL)
¢

printf("Sorry, cannot find PATH\n");

exit(1);
)
printf("PATH = Xa\n",6 env);
)
See Also
cc, environment, envp, msh
Diagnostics

When VARIABLE is not found or has no value, getenv returns NULL.

Getmpb — bios function 0 (osbind.h)

Copy memory parameter block

#include <osbind.h>

#include <bios.h>

void Getmpb(pointer); struct mpb *pointer;

thmpb tells TOS to copy its memory parameter block into the mpb structure
pointed to by pointer. This structure is described in the header file bios.h.

getpal 389

The useful portions of the memory parameter block are described in the example;
as of this writing, the memory parameter block does not appear to be utilized by
TOS. Note, too, that the lists returned are in gystem-protected memory; unless the
uger is in supervisor mode, accessing these lists will generate a bus error.

Example
The following example demonstrates Getmpb. It prints out the amount of memory
free and memory used.

#include <osbind.h>
#include <bios.h>

tong chase(cp, mp)
char *cp; register struct mdb *mp;

(
register long save, total;
struct mdb mdb;
printf("Xs:\n", cp);
totsl = 9;
while (mp 1= (struct mdb *)0L) (
save = Super{0L); mdb = *mp; Super(save);
total += mdb.md_size;
printf("\tX06ix: Xid bytes owned by Xix\n*,
mdb.md_base, mdb.md_size, mdb.md_proc);
mp = mdb.md_next;
>
printf("%ld bytes totsl.\n", total);
)
main() (
struct mpb mpb;
Getmpb(&mpb);
chase("Free Memory", mpb.mp_free);
chase("Used Memory*, mpb.mp_used);
return 0;
)
See Also
bios, TOS

getpal — Command

Get the color palette settings
getpal

getpal uses the xbios furction Setcolor to read and return the current settings of
the color palette.

See Also

commands, Setcolor, setpal, TOS

890 getphys — Getrez

getphys — Command
Get the base of the physical screen’s display
getphys
getphys is a command that uses the xblos function Physbase to obtain the base
of the screen display's physical memory. The address of the base is returned to the
standard output.
See Also
commands, Physbase, setphys, TOS

getrez — Command

Get screen’s current resolution
getrez

getrez is a command that uses the xbios function Getrez to read the screen’s cur-
rent resolution. It returns to the standard output a code that indicates the current
resolution, as follows: zero indicates low resolution; one, medium resolution; and
two, high resolution.

See Also

commands, Getrez, setrez, TOS

Getrez — xbios function 4 (osbind.h)
Read the current screen resolution
#Include <osbind.h>
#include <xbios.h>
int Getrez()

Getrez reads the current screen resolution, and returns the following:

0 low resolution

1 medium resolution

2 high resolution
Example

This program prints out the current resolution of the video display. For another
example, see the entry for Priblk

#include <osbind.h>
#include <xblios.h>

struct reztab { int r_rez; char *r_nsme;) rextab(] = (
GR_tow, "low", H
GR_MED, “medium", i
GR_HIGH, "high®,
=1, “unknown”

gets 391

main()
register struct reztab *rp;
register int rex;
‘rer = Getrez();

for (rp = reztab; rp->r_rez |= rez L& rp->r_rez tx -1; rp += 1)
printf("'Your ST ias in Xs resolution mode.\n", rp->r_name);

>

See Also

TOS, xbios

gets — STDIO function (libc)

Read string from standard input
#include <stdio.h>
char *gets(buffer) char *buffer;

gets reads characters from the standard input into a buffer pointed at by buffer. It
stops reading as soon as it detects a newline character or EOF. gets discards the
newline or EOF, appends a NUL character onto the string it has built, and returns
another copy of buffer.

Example

The following example uses gets to get a string from the console; the string is
echoed twice to demonstrate what gets returns.

#include <stdio.h>

main()
¢
char buffer(80];

printf("Type something: ");

fflush(stdout);

printf("Xs\nXs\n", gets(buffer), buffer);
>

See Also
buffer, fgets, getc, STDIO
Diagnostics

gets returns NULL if an error occurs or if EOF is seen before any characters are
read.

Notes

Note that gets stops reading the input string as soon as it detects a newline
character. If a previous input routine left a newline character in the standard input
buffer, gets will read it and immediately stop accepting characters; to the user, it
will appear as if gets is not working at all.

For example, if getchar is followed by gets, the first character gets will receive is

T

L

N %

53
kel

783, gt iy
pRe e &

% s

:, ;

w
]
!
£

392 Getshift

the newline character left behind by getchar. A simple statement will remedy
this:

white (getchar{) t= ‘\n’}
This throws away the newline character left behind by getchar; gets will now
work correctly.

Getshift — bios function 11 (osbind.h)

Get or set the status flag for shift/alt/control keys
#include <osbind.h>

#include <blos.h>

long Getshift(flag) int flag;

Getshift gets or sets the status flag for the shift, alt, and control keys. If flag is -1,
then the status flags of the keys are read and a map returned; if flag is any number
other than -1, then the flags are set to flag, and a map of their previous settings
returned. The map is laid out as follows: bit 0, right shift key; bit 1, left shift key;
bit 2, control key; bit 3, alt key; and bit 4, caps lock key. If a bit is set to zero, the
key Is not depressed; if it is set to one, the key is depressed.

Example
This example displays characters, scan codes, and shift states until you type <ctrl-
D>.

#include <osbind.h>
#include <bios.h>
#include <ctype.h>

struct shift { Int s_bit; char *s_name;) shift{l = (
GS_LSH, "left shift",
GS_RSH, “right shifty,
GS_CTRL, "control®,

GS_ALT, “slternste”,
GS_CAPS, "caps lock",
GS_RMB, vright mouse”,
GS_LMB, "left mouse®,
0

H

main()

register int ¢, s;
register long cc;
register struct shift *sp;

do (
cc = Beonin(BC_CON); 1
s = Getshift(-1);
¢ ® cc; /* get low word */
cc >»>= 16; /* get scan code */
Beconout(BC_RAW, ¢);

VTR

Gettime 393

if (isascii(c) && 1 {isprint(c))
printf(*: “Xc: ", c+'d');
else
printf(": Xc: “, ¢);
printf("X021x:%02x:X02x", c¢, ¢, 8);
for (sp = shift; sp->s_bit > 0; sp ¢= 1)
if (s & sp->s_bit)
printf("(Xs]", sp->s_name);
printf(*\n");
) while (c I= (/D' L (' *-1)));

)
See Also
bios, TOS

Gettime — xbios function 23 (osbind.h)

Read the current time
#include <osbind.h>
#include <xbios.h>
long Gettime()

Gettime reads and returns the intelligent keyhoard’s setting of the current time.
It returns a 32-bit value whose bits indicate the following:

0-4 seconds, in two-second increments (0-29)
5-10 minutes (0-59)
11-15 hours (0-23)
16-20 day of the month (1-31)
21-24 month (1-12)
25-31 year (0-118, C indicates 1980}
Example

This example gets the keyboard time. If you have not set the keyboard time since
you booted your computer, the time returned by this example will not be correct.

#include <osbind.h>

main()

{
register unsigned long time;
int seconds;
int minutes;

int hours;

int dey;

int month;

int year;

time = Gettime(); /* Get system time */
gseconds = (time & Ox001F) << 1; /* Bits 0:4 */
minutes = (time >> 5) & Ox3F; /* Bits 5:10 */
hours = (time >> 11) & Oxif; /* Bits 11:15 */

VST S AR

Lo owtasne
I T RENTRAA

394 getw - Giaccess

day = (time >> 16) & OxiF; /* Bits 16:20 */
month = (time >> 21) & OxOF; /* Bits 21:24 */
yesr = ((time >> 25) & Ox7F)+1980; /* Bite 25:31 */

printf(“"The ATARI ST thinks it {s Xd sec past Xd min\n",
seconds, minutes);
printf("psst the hour of Xd", hours);
printf(" on Xd/Xd/Xd\n", month, day, year);
M

For another example of this function, see the entry for time.
See Also
Kgettime, Settime, time, TOS, xbios

Notes

The time data in the bit map returned by Gettime is in exactly the reverse order
of the data returned by the gemdos functions.

getw — STDIO function (libc)

Read word from file stream
#include <stdio.h>
int getw(fp) FILE */p;

getw reads a word (an int) from the file stream fp.

getw differs from getc in that getw gets and returns an int, whereas getc
returns either a char promoted to an int, or EOF. To detect EOF while using
getw, you must use feof.

See Also

gete, STDIO

Notes

getw returns EOF on errors. A call to feof or ferror may be necessary to distin-
guish this value from a valid end-of-file signal.

fge'tw assumes that the bytes of the word it receives are in the natural byte or-
dering of the machine; see the entry on byte ordering for more information., This
means that such files might not be portable between machines.

Giaccess — xbios function 28 (osbind.h)

Access a register on the GI sound chip

#include <osbind.h>

#include <xbios.h>

char Giaccess(data, register) char data; int registers

Glaccess accesses a register on the GI sound chip. register is the name of the
reglster.bemg' accessed, zcoro through 15, Bit 7 of this variabie indicates whether
this register is to be read or written to: zero indicates read, one indicates write.

Giaccess 3956

i aadeni a4

data is the eight-bit value being passed to the register when this macro is in write
mode; if Giaccess is in read mode, this value is ignored.

Giaccess returns the value read if in read mode, and a meaningless value if in
write mode.

The Atari ST's sound generator is controlled by 16 eight-bit registers. The sound
generator itself has three channels, named A, B, and C. Each can be programmed
independently. Note that the contents of the address register remain unaltered un-
til reprogrammed, which allows you to use the same data repeatedly without
having to resend them. What each register does is listed in the following:

0,1 Set pitch and period length for channel A. The eight bits of register 0 set
the pitch, and the first four bits of register 1 control the period length; the
iower the number formed by the 12 significant bits of these registers, the
higher the pitch of the tone generated.

2,3 Set. the pitch and period length for channel B.
4,5 Set the pitch and period length for channel C.

6 The low five bits of this register control the generation of “white noise”;
the smaller the value to which these bits are set, the higher the pitch of the
noise generated.

7 This register holds an eight-bit map whose bits toggle various aspects of
sound generation; for each bit, zero indicates on and one indicates off. The
bits control the following functions:

Channel A tone

Channel B tone

Channel C tone

Channel A white noise
Channel B white noise
Channel C white noise
Port A; O=input, 1=output
Port B; O=input, 1=output

SO AR WN =-O

8 Bits 0 through 3 set the signal volume for channel A; the settings can be
zero through 15, with zero being the softest setting and 15 the loudest.
Setting bit 4 indicates that the “envelope’ generator, register 13, should be
used; in this case, the contents of bits 0 through 3 are ignored.

9 Same as register 8, only for channel B.
10 Same as register 8, only for channel C.

11,12 Control tone gereration. A tone is constructed of four aspects: attack,
decay, sustain, and release. Aftack defines how long a tone takes to reach
is loudest point; decay defines how long that loudest point is held before it
softens to the volume that is sustained; sustain defines how long the sus-

396 GMT

i3

14,15

tained level is held; and release defines how long it takes a tone to decay
into silence. These registers govern the four aspects of tone generation;
register 11 holds the low byte, register 12 the high byte.

Bits 0 through 3 set envelope generator's waveform. A tone's “envelope” is
the “shape” of the tone generated, which is best studied by experimental
listening.

Control the Atari ST's I/O ports. Register 14 controls port A, and register
15 port B. If set to output by register 7, the contents of these registers can
be exported. Note that these ports have nothing to do with sound genera-
tion, and are used on the Atari ST to control the floppy disk drives.

Example
This example uses Glaccess to set the select lines for the floppy disk drives. It is
not recommended that this be done from user programs in general.

#include <osbind.h>

prompt{strng)

~

* Write prompt; wait for key to be typed */

char *strng;

4

main()

>

Cconws(strng); /* Write the string */
Crawcin(); /* Mait for a key */
Cconws("\r\n"); /* CR-LF to console */

<

prompt("Let drives stop; then press sny key to continue”);
Giaccess((Giasccess(0,14) & OxF8),14|0x80);
prompt(“Both Lights on... Hit sny key");
Giaccess((Giaccess(0,14) & OxF8)|2,14]0x80);
prompt("Drive 8 selected... Hit any key");
Giaccess((Ginccess(0,14) & OxFB)|4,14]0x80);
prompt("Drive A selected... Hit sny key");
Giaccess((Ginccess(0,14) & OxFB)|6,14]|0xB0);
prompt("Neither drive selected... Hit any key");
Prerm0();

See Also

Offgibit, Ongibit, TOS, xbios

Programmable Sound Generator Data Manual
GMT — Definition

QMT is an abbreviation of Greenwich Mean Time, the time recorded at the Green-
wich Observatory in England, where by international convention the Earth’s zero
meridian is fixed. ‘

gmtime — goto 397

See Also
gmtime, localtime, time, time.h, TIMEZONE

gmtime — Time function (libc)
Convert system time to calendar structure
#include <time.h>
tm *gmtime(timep) time_t *timep;

gmtime converts the internal time from geconds since midnight January 1, 1970
GMT, into fields that give integer years since 1900, the month, day of the month,
the hour, the minute, the second, the day of the week, and yearday. It returns a
pointer to the structure tm, which defines these fields, and which is itself defined
in the header file time.h. Unlike its cousin, localtime, gmtime returns Green-

wich Mean Time (GMT).
Example

For an example of how to use this function, see the entry for asctime.

See Also
GMT, localtime, time (overview), TIMEZONE

Notes

gmtime is useful only on a system whose time is set to GMT rather than to local
time. The Mark Williams C time routines read the environmental variable
TIMEZONE to translate GMT automatically into your local time, should you wigh.
See the entry on TIMEZONE for more information on how this works.

gmtime returns a pointer to a statically allocated data area that is overwritten by

successive calls.

goto - C keyword
Unconditionally jump within a function

A gote command jumps to the area of the program introduced by a label. Note

that a goto cannot cross a function boundary.

In the context of C programming, the most common use for goto is to exit from a
control block or go to the top of a control block. It is used most often to write “rip-
cord” routines, i.e., routines that are executed when an major error occurs too
deeply within a program for the program to disentangle itself correctly.

Example

The following example demonstrates how to use goto.

#include <stdio.h>

main() (
char ine(80];

o is

Gt
E
R
7

i

398

LA §T§§§g%{ R
j *,}@?L) @; ! ’%‘ﬁ%’%
LupiT e ;

“ 5 ok
% g 24
TR RAI I 7y
S

graf_dragbox

getline: '
printf("Enter line: ");
fflush(stdout);
gets(line);

/* 8 series of tests often is best done with goto’s */
if (*line == 'x*)
¢
printf("Bad line\n");
goto getline;

else if (*line == ’y’)

printf("Try again\n");
goto getline;
)

else if (*line == 'q’)
goto goodbye;

else
goto getline;

goodbye:
printf("Goodbye.\n");
exit(0);
)
See Also
C keywords, C language
The C Programming Language, page 62

Notes

The C Programming Language describes goto as “infinitely-abusable”: caveat
utilitor.

graf_dragbox — AES function (libaes)

Draw a dragable box

#include <aesbind.h>

int graf_dragbox(width, height, stx, sty, bx, by, bw, bh, finx, finy)
int width, height, stx, sty, bx, by, bw, bh, *finx, *finy;

graf.dragbox is an AES routine that allows the user to drag a box around the
screen. It also sets a boundary rectangle that limits how far the box can be
dragged. The boundary can be set to the entire screen, to a window, or to some
other delimiter. :

width and height give, respectively the width and height of the box being dragged,
in rasters. Note that the number of raster on the screen varies with the degree of
screen resolution; the following gives the dimensions of the screen in rasters, by

{

s

Sl

{ead

(g
?5;1:1'%?55 R

3

graf_growbox 399

resolution:
Resolution ~ Width Height
High 640 400
Medium 640 200
Low 320 200

stx and sty give, respectively, the starting X and Y coordinates for the box. finx and
finy point to the coordinates to which the box has been dragged; these values are
set by the function.

bx, by, bw, and bh set, respectively, the X coordinate of the boundary rectangle, its
Y coordinate, its width, and its height.

graf_dragbox returns zero if an error occurred, and a number greater than zero if
one did not.

Example

For an example of this function, see the entry for vro_cpyfm.

See Also

AES, TOS

Notes

graf_dragbox returns when the mouse button is released. If it is called while the
mouse button is up, it returns immediately.

graf_growbox — AES function (libaes)

Draw a growing box

#include <aesbind.h>

int graf_growbox(stx, sty, stw, sth, finx, finy, finw, finh)
int stx, sty, stw, sth, finx, finy, finw, finh;

graf_growbox is an AES routine that draws a growing box on the screen. The
box drawn by graf_growbox does not stay on the screen. This routine is designed
merely to add a “star wars”-style flourish to GEM programs.

stx, sty, stw, and sth set, respectively, the X coordinate of the origin box (the box
from which the growing box starts to grow), its Y coordinate, its width, and its
height. finx, finy, finw, and finh set in the same way the dimensions of the finish
box (the box toward which the growing box grows). The unit of measure for all
eight arguments is the number of rasters for the screen. The number rasters on
the screen varies with the degree of resolution, as follows:

Resolution Width Height

High 640 400
Medium 640 200
Low 320 200

graf_handle — graf_mbox

s S

graf_growbox returns zero if an error occurred, and a number greater than zero if
one did not.

Example

For an example of this routine, see the entry for window.

See Also
AES, graf_shrinkbox, window AES, gem, graf_shrinkbox, TOS, window

graf_handle — AES function (libaes)

Get a VDI handle

#include <aesbind.h>

int graf_handle(chwidth, chheight, bwidth, bheight)
int *chiwidth, *chheight, *bwidth, *bheight;

The AES routine graf handle returns the handle for the physical workstation
open for the desktop. It also returns the size of the default system font.

chwidth and chheight point, respectively, to the width and height of the default
character cell. bwidth and bheight point, respectively, to the width and height of a
square box (corrected for aspect ratio) that contains a character. This is the size of
the window boxes. These values are set by GEM.

See Also
AES, TOS

Notes

A desk accessory that does not call graf_handle will not have its desk menu item
displayed, and the desktop’s desk menu item will fail to function, even though it is
displayed.

The VDI handle that graf handle returns is the handle that AES uses to im-
plement all of its graphics library routines. You should not use this handle unless
you wish to alter the AES graphics. For example, if you reset the fill pattern using
the handle returned by graf handle, you may or may not find the window
manager using your fill pattecn to fill the title bars of windows as it redraws them.

graf_mbox — AES function (libaes)

Move a box

#include <aesbind.h>

int graf_mbox(width, height, fromx, fromy, tox, toy)
int width, height, fromx, fromy, lox, toy;

graf_mbox is an AES routine that moves a box without changing its size. width
and height are the dimensions of the box. fromx and fromy give the original posi-
tion of the box; fox and toy the destination position of the box. Note that both of
these pairs of coordinates refer to the upper left-hand corner of the box being
moved. graf_mbox returns zero if an error occurred, and a number greater than

graf_mkstate — graf_mouse 40

zero if one did not.

See Also
AES, TOS

graf mkstate — AES function (libaes)

Get the current mouse state
#include <aesbind.h>
int graf_mkstate(xptr, yptr, bptr, kptr) int *xptr, *yptr, *bptr, *kptrs

graf_mkstate is an AES routine that returns the current mouse state. xptr point
to an integer that holds the X coordinate of the mouse pointer. yptr points to a
integer that holds the Y coordinate of the mouse pointer. bptr points to an intege
that indicates the button state when the event occurred: zero indicates up and on
indicates down. Finally, kptr points to an integer that represents the states of th
control, alt, and shift keys OR’d together, as follows:

0x0 all keys up

Ox1 right shift key down
0x2 left shift key down
0Ox4 control key down
0x8 alt key down

These values are set by GEM.

graf_mkstate always returns one.

See Also
AES AES, TOS

graf_mouse — AES function (libaes)

Change the shape of the mouse pointer
#include <aesbind.h>
int graf_mouse(form, shape) int form; int shape{37];

graf_mouse is an AES routine that changes the mouse pointer from the defaul
arrow to another shape. form is an integer that indicates what new shape yo
want, ag follows:

0 ARROW arrow (default)

1 TEXT_.CRSR vertical line (text cursor)

2 BUSY_BEE bee

3 POINT_HAND hand with pointing finger
4 FLAT_-HAND hand with extended fingers
& THIN_CROSS thin cross hairs

6 THICK_CROSS thick cross hairs

7 OUTLN_.CROSS outlined cross hairs

256 USR_DEF user-described shape
256 M_OFF hide mouse pointer

. S

o

ST

Ania e

[ealgatious

et eniidad o

e — e S Sy e Y

5L

graf_mouse

257 M_ON show mouse pointer

shape is & 37-word array that specifies a new shape for the pointer. This argument
is ignored if form has any value other than 255.

giaf_mouse returns zero if an error occurred, and a number greater than zero if
one did not.

Example -
The following example cycles through the preset shapes for the mouse pointer.

Zinclude <sesbind.h>

#include <gemdefs. h>

/‘

* orray used to build unique mouse-pointer shepe.
* ANS! C standard states that it’s OK to end srrey
* {nitistization with s *, .

OXTEFE, Ox7007, OXTBOF, OXSCID, OX4E39, Ox4TT1,
0x4361, Dx4001, 0x6361, Ox&771, OxLE39, OxSCID,
OXTBOF. OxT007, OxTFEF, 0x0000, OX7EFF, Ox7007,
OXTBOF, OX5CID, OxGE3P. O0x6771, Oxé361, Ox4001,
0x6361, OxATT1, OXGE3Q, Ox5C1D, OXTBOF, Ox7007,
OxTFFF, O0xD000,

int counter;

sppt_init();

/* draw “cenned” mouse pointer shapes */

for (counter = ARROM; counter <= OUTLN_CROSS; counter+s) (
graf_mouse(counter, (int *)0);
evnt_keybd();

)

/* drow user-defined pointer shape */
graf_mouse(USER_DEF, mouse);
evnt_keybd();

sppl_exit();

return(0);

>
For further examples, seo the entries evat_multl, object, window.

See Also ‘
AES, object, vac_form, window AES, ohject, TOS, vsc_form, window

graf_rubbox — graf_shrinkbox 408

Notes
Mixing AES mouse calls with VDI mouse calls can produce unpredictable results.

graf_mouse and vec_form use the same 37-word mouse form descriptor., The call
grnf.moust(USER__DEF, form);

is exactly equivalent to:
int handle;

handle = graf_handle(thandle, thandie, thondle, Lhendle);
vsc_form(handle, form);

This is an instance of how the AES uses the VDI to implement the higher-level
functions that it provides.

graf_rubbox — AES function (libaes)
Draw a rubber box
#include <aesbind.h>
int gral_rubbox(x, y, w, h, newwidth, newheight)
Int x, y, w, A, *newwidth, *newheight;

graf_rubbox is an AES routine that draws a “rubber box" on the screen. A rub.
ber box is one whose dimensions can be altered by the user. x, y, w, and A define
the initial dimensions of the rubber box: respectively, they define its X coordinate,
its Y coordinate, its width, and its height. All dimensions are in rasters.

newwidth and newheight point to the values for width and height to be set by the
user's manipulation of the box.

This routine can be used to define a block of screen area that can be copied else-
where. For example, the GEM desktop routine that allows you to select a group of
files at once uses graf_rubbox.

graf_rubbox returns zero if an error occurred, and a number greater than zero if
one did not.

Example

For an example of this routine, see the entry for v_bar.

See Also

AES, TOS

Notes

This routine is often called graf_rubberbox in other bindings.

graf_shrinkbox — AES function (libaes)
Draw a shrinking box
#Include <aesbind.h>
int grafl_shrinkbox(beginx, beginy, beginw, beginh, endx, endy, endw, endh)
int beginx, beginy, beginw, beginh, endx, endy, endw, endh;

1
|
{
i
g
§

404 graf slidebox

grafshrinkbox is an AES routine that draws a shrinking box on the screen. The
box drawn by graf_shrinkbox does not stay on the screen; this routine is designed
merely to add a “star wars-style flourish to GEM programs. The arguments
beginx, beginy, beginw, and beginh define the initial dimensions of the shrinking
box: respectively, they set its X coordinate, Y coordinate, width, and height. endx,
endy, endw, and endh set the same dimensions for the rectangle toward which the
shrinking box shrinks. The unit of measure is the number of rasters for the
screen, as follows:

Resolution ~ Width Height

High 640 400
Medium 640 200
Low 320 200

graf_shrinkbox returns zero if an error occurred, and a number greater than zero
if one did not.

Example

For an example of how to use this routine, see the entry for window.

See Also
AES, graf growbox AES, gem, graf_growbox, TOS

graf._slidebox — AES function (libaes)
Track the slider within a box
#include <aesbind.h>
#include <obdefs.h>
int graf_slidebox(tree, parent, slider, direction)
char *tree; Int parent, slider, direction;

graf_slidebox is an AES routine that tracks the movement of the “slider”. A
slider is a box that the user can click to scroll through the contents of the file or
directory being displayed.

This function is not usable for the window sliders, because the window manager is
the only entity that knows where the object that defines those sliders is kept.

All that is needed to define a slider is a box with another box within it. A more
complex slider can be made by making the primary boxes invisible and drawing
icons within the slider and parent boxes.

tree points to the address of the object tree that contains the slider. parent is the
index of the parent object within the object, tree, and slider is the index of the
slider object. direction is the direction of movement relative to the position of the
parent object: zero indicates horizontal movement and one indicates vertical
movement.

graf_slidebox returns the position of the center of the slider relative to the parent
object. If movement is vertical, then zero indicates the topmost position and 1,000

graf_slidebox 405

the.l?otwm~moet; and if movement is horizonui, then zero indicates the leftmost
position and 1,000 the rightmost.

Example'
The following example draws a slider on the screen. By clicking it, you can move

t{fg agde bar back and forth; the program informs you of the new position of the
slide bar.

#include <gemdefs.h>
#include <obdefs.h>

/* The slider is simply one box inside snother */
#define PARENT O
#define SLIDER 1
OBJECT object{] = (
€ -1, 1, 1, G_BOX, NONE, NORMAL,
(C- 1WLOXFF)<<16) [(BLACK<<12) | (BLACK<<8) | (1<<4) |BLACK, 0, 0, 20, 1)
€0, -1, -1, G_BOX, LASTOB, NORMAL, ’
, (1L<<16) [(BLACK<<12) | (BLACK<<8) |BLACK, 10, 0, 1, 1 3,

#define NOBJECT (sizeof object / sizeof *cbject)

typedef struct (int x, y, w, h;) Rectengle;
#detine elements(r) r.x, r.y, r.w, r.h
#define pointers(r) &r.x, &r.y, &r.w, &r.h

typedef struct (int x, y, b, k;) Mouse_state;
#define melements(rim.x, m.y, m.b, m.k
fdefine mpointers(r)tm.x, tm.y, Lm.b, &m.k

slertf(n, p) int n; char *p;

static char buffer(512};

sprintf(buffer, "Xr*, ip);

return form_alert(n, buffer);
b3 .

/* Recompute slider position using oraf_siidebox return */
stid_repos(op, np, ne, d, s)
register OBJECT *op;
int np, ns, d, s;
[§

if (d == 0)

oplns}.ob_x = ((long)(oplnp).ob width -
oplns].ob_width)*s)/1000;

else
op(nsl.ob y = ((long)(oplnp) .ob_helipht -
opins}.ob_height)*s)/1000;

4068 graf _watchbox

main()

<
int s; /* Stide poaition */
Rectangle d; /* Desktop rectengle */
Rectangle r;

Mouse_state m;

sppl_init();
for (s = 0; s < HOBJECT; s += 1)
rarc_obfix(object, 8);

/* Get desktop rectangle snd center slider */

wind_get(0, WF_FULLXYWH, pointers(d));

object [PARENT] .ob_x = d.x + d.w 7 2 - object (PARENT] .ob_width / 2;
ocbject [PARENT) .0b_y += d.y + d.h / &;

/* Loop untii the alert‘ed user quite */

do ¢
/* Redrew the slider */
objc_draw(object, R00T, 8, slements(d));

/* Find the slider rectangle */
objc_offset(object, SLIDER, kr.x, &r.y);
r.w = object{SLIDER] .ob_width;
r.h = object[SLIDER].ob_height;

/* uaft for the slider to be seiected */
do

evnt_mouse(0, elements(r), mpointers(m));
white ((m.b & 1) == 0);

/* Let the AES track the siider */
s = graf_slidebox(object, PARENT, SLIDER, 0);

/* Compute the new slider position */
slid_repos(object, PARENT, SLIDER, O, 8);
) while (alertf(1, *[0] (slider ot Xd }[Ok|Ouit)®, 8) == 1);

sppl_exit();
return 0;
>

See Also
AES, TOS

graf_watchbox — AES function (libaes)

Draw a watched box

#include <aesbind.h>

#lnclude <obdefs.h> :

int graf_watchbox(tree, object, insidepattern, outsidepattern)
OBJECT *tree; Int object, insidepattern, outsidepattern;

graf_watchbox is an AES routine that draws a ‘“watchable box”, that is, a box
that the screen mansager can poll to see if the mouse pointer is inside it or outside
it. The user must hold down the leftmost mouse button while moving the pointer;

graf_watchbox 407

gf_vn?tchbox returns the position the pointer was at when the button was

tree points to ol?ject tree tha!: produoee the box in question. object is the index of
this object within the tree. insidepattern and outsidepattern indicate, respectively,
the pattern used to fill the area within the box and outside the box, as follows:

normal
selected
crosged
checked
outlined
shadowed

grafl_watchbox returns a value that indicates whether the mouse pointer was in-

side or outside the box when the button was rel : indi i
one e o released: zero indicates outmde,Aand

See Also
AES, TOS

DT D LN

408 handle — help

H

handle — Dgfinition

A bandle is a generic term for a unique identifier used by TOS and GEM. Three
types of handles are commonly used: file handles, workstation handles, and process
handles.

A file handle identifies a source of bits; it can refer either to a file on disk or to a
character device. File handles are returned by fopen, fcreat, and‘ fdup, apd are
used by fwrite, fread, and fseek. See the entry for FILE for more information.

A workstation handle is used by the GEM VDI to identify a v-ir‘tual device. It is
returned by the routines graf_handle, v_opnwk, v_opnvwk It is always the first
argument acceptad by a VDI routine.

A process handle identifies a process that runs under the AES. At present, these
handles have only limited use because the AES currently can run only one process
at a time.

A window handle identifies each handle as it is created, to distinguish it from all
other created windows. It is returned by the routine wind_create.

See Also’

AES, VDI, UNIX routines

header file — Overview

A header file is a file of C code that contains definitions, declarations, and struc-
tures commonly used in a given situation. By tradition, a header file always has
the suffix “h”. Header files are invoked within a C program by the command
#include, which is read by cpp, the C preprocessor; for this reason, they are also
called “include files”. ’

Header files are one of the most useful tools available to a C programmer. They
allow you to put into one place all of the information that the different modu}es of
your program share. Proper use of header files will make your programs easier to
maintain and to port to other environments.

See Also
#include, portability, stdio.h

help — Command :

Print concise des:ription of command
help command
belp ‘prints a concise description of the options available for each specifed com-

mand. If the command is omitted, help prints a simple description of itself. The
primary purpise of help is to refresh the memory of a user who has forgotten a

hidemouse — horizontal tab 409

command option.

Information used by belp is kept in the file named helpflle. This file must be kept
in a directory that is named in the environmental variable LIBPATH, or help will
not be able to find it. Information about a command begins with a line

#command
and ends with the next line beginning with ‘#’,

If you wish, you can edit this file and add new descriptions for commands that you
want to run under msh. Be sure to use the ‘#’, as described above. Once you have
edited helpfile, you must rebuild its index; otherwise, help will no longer work.
To rebuild the helpfile, use the following command:

help -R foo
where foo is the name of any entry within helpfile.

See Also

commands, msh

hidemouse — Command

Hide the mouse pointer
hidemouse

hidemouse is a command that uses the function lineaa to hide the mouse
pointer. Note that if hidemouse is used when the mouse pointer is already hid-
den, the mouse pointer will need to be called twice before it reappears.

See Also

commands, Line A, mousehidden, showmouse, TOS

HOME -— Environmental variable

HOME names where the micro-shell msh should look for a file when no other
directory is specified. For example, if you type the ¢d command without an argu-
ment, msh will change the directory to the one you named as the HOME direc-
tory.

It is set with the setenv command.

See Also

msh, setenv

horizontal tab — Character constant

Mark Williams C recognizes the literal character ‘\t' as representing the ASCII
horizontal tab character HT (octal 011). This character may be used as a character
constant or in a string constant.

A ke A
N 3
RS SUARY e X

RARY
o
A

’:;;g‘vzi.;,
t
B inb¥cien:

ety

,‘
el 141

e :'ﬁ >

o
AR

4
AT o

410 htom — hypot

See Also
ASCII, character constant

htom — Command ')
Redraw screen from high to medium resolution
htom .
htom is a command that redraws the screen, moving from high to medium resolu-
tion.
See Also
commands, ltom, mtoh, mtol, TOS

hypot — Mathematics function (libm)
Compute hypotenuse of right triangle
#Include <math.h>
double hypot(x, y) double x, y3
i igi { its arguments x
hypot computes the hypotenuse, or distance from the origin, o
myg; The \?emlt is the square root of the sum of the squares of x and y.

Example

For an example of this function, see the entry for mcos. For an example of its use
in a GEM-DOS epplication, see the entry for v.circle.

See Also
cabs, mathematics library

if — #if 411

if — Command

if — C keyword

#if — Preprocessor instruction

Execute a command conditionally
if wordl word2 [word3]

If is a command built into the microshell msh. It governs the conditional execution
of commands: If wordl executes successfully, then word?2 is executed; otherwise,
the word3, if present, is executed. Each of the words may be a list of commands
that is enclosed within parentheses.

Example

The command

R A .
e g Sacindod
% AT

.

B I
YA
".‘.K_..«

4
o~

EREALS w". : -
e I =

.§,
4

)

if (cc -V foo.c >tbar) (cp foo.c b:\src) (me foo.c bar)

compiles the program foo.c. If the compilation proceeded correctly, then foo.c is
copied into the directory src; however, if something went wrong, then the editor
would be invoked to display both foo.c and the file into which all error messages
had been redirected. This is useful if you keep your source files on a RAM disk.
See Also

commands, equal, ia_set, msh, not, while

Introduce a conditional statement

if is a C keyword that introduces a conditional statement. For example,
if (ixe10)
dosomething();
will dosomething only if | equals ten.

if statemnents can be used with the statements else If and else to create a chain of
conditional statements. Such a chain can include any number of else if
statements, but only one else statement.

See Also

C keywords, C language, else
The C Programming Language, page 61

Include code conditionally
#1f (expression)

#1f is the initiator for a conditional statement that is processed by the C preproces-
sor epp. This command tells cpp that if the following condition is met, then in-
clude the following lines of code in the program until it meets the next #elif,
#else, or #endif statement.

414 INCDIR — #include

Ikbdws writes a string of characters to the intelligent keyboard. number is the
number of characters to write, minus one, and buffer points to the buffer where
these characters are kept.

The Atari ST’s intelligent keyboard can accept many commands that affect t‘he
keyboard itself, the mouse, and the joystick. For more information on how the in-
telligent keyboard manipulates these devices, see the entry for Kbdvbase.

See Also
Gettime, Kbdvbase, Settime, TOS, xbios

INCDIR — Environmental variable

INCDIR names the default directory within which the C preprocessor cpp seeks
its header files. For example, the command

setenv INCDIR=a:\{include
tells cpp to look for header files in directory fnclude on drive A. :I‘his d‘irecun'y is
searched, as is the directory that holds the C source files and the directories named
with -I options to the ¢c command, if any.
It is recommended that you set INCDIR in your profile to ensure that it is always
set correctly.
See Also

cc, environment, environmental variable

#include — Preprocessor instruction

Copy a header file into a program
#include <file.h>
#include “file.h"

#include is a statement processed by the C preprocessor cpp. Its operation is
simple: cpp replaces the #include statement with the contents of file.h.

The name of the file can be enclosed within angle brackets (<file.h>) or quotation
marks ("file.h"). Angle brackets tell cpp to look for file.h in the directories named
with the -I options to the cc command line, and then in the directory named by
the environmental variable INCDIR. Quotation marks tell epp to look for file.h in
the source file’s directory, then in directories named with the -I options, and then
in the directory named by the environmental variable INCDIR.

Files that are called with #Include statements are called header files or include
files.
See Also

cpp, header file, msh
The C Programming Language, page 207

index — Initmous 415

index — String function (libc)
Find a character in a string
char *index(string, ¢) char *string; char ¢;

{ndex scans the given string for the first occurrence of the character c. If ¢ is
found, index returns a pointer to it. If it is not found, Index returns NULL.

Note that having Index search for NUL will always produce a pointer to the end of
a string. For example,

char *string;
assert(index(string, 0)==string+strien(string));

will never fail.

Example

For an example of this function, see the entry for stranepy.

See Also

memchr, pnmatch, rindex, string, strchr, strpbrk

The C Programming Language, page 87

Notes

This function is identical to the function strchr, which is described in the ANSI
standard. Mark Williams C includes strchr in its libraries. It is recommended

that it be used instead of Index =0 that programs more closely approach strict con-
formity with the ANSI standard.

inherit — Command
Pass varisble to child shell
inherit variable ...

The command Inherit allows a sub-shell to inherit a variable set in its parent
shell. variable must be a variable that had been set with the set command.
See Also

commands, msh, set, setenv

Initmous — xbios function 0 (osbind.h)
Initialize the mouse
#include <osbind.h>
#include <xbios.h>
void Initmous(type, parameter, vector)
int type; char ®parameter; long vector;

Initmous initializes the mouse, and returns nothing.
type indicates the mode into which the mouse is to be set, as follows:

0 turn mouse off

416 int— interrupt

enable in relative mode

ensble in absolute mode
unused

enable in keycode mode

paramefer is the address of the 14-byte parameter block. Bytes 0 through 3 are
used under all modes; bytes 4 through 11 are used only if the mouse is initialized
into absolute mode. The parameter block’s bytes indicate the following:

pon-zero, set Y axis 0 at bottom; zero, set Y axis O at top
set the parameter for command to set mouse buttons

set parameter for X axis threshhold-scale-delta

set parameter for Y axjs threshhold-scale-delta

moet gignificant byte (MSB) for mouse's absolute maximum
position on X axis

least significant byte (LSB) for mouse's absolute maximum
position on X axis

MSB for mouse’s absolute maximum position on Y axis
LSB for mouse's absolute maximum position on Y axis
MSB for mouse’s initial position on X axis

LSB for mouse’s initial position on X axis

MSB for mouse’s initial position on Y axis

LSB for mouse's initial position on Y axis

LR

-] WO

WHPORIAR

Finally, vector gives the mouse’s interrupt vector routine,

See Also
TOS, xblos

int — C keyword
Data type
An Int is the most commonly used numeric data type, and is normally used to en-
code integers. On the 68000, as on most mieroprocessors, sizeof int equals 2, that
is, two chars (15 bits plus a sign bit); therefore, an int can contain values from
.32768 to +32767. An int normally is sign extonded when cast to a larger data
type; an unsigned Int, however, will be zero extended.

See Also
C keywords, C language, data formats, data types, declarations, long

intexrrupt — Definition :
An Interrupt is an interruption of the sequential flow of a program. It can be
generated by the hardware, from within the program itself, or from the operating
system.
The functions bios, gemdos, and xblos all employ traps, a form of interrupt, to
perform their respective tasks.

Iorec 417

Torec — xbios function 14 (osbind.h)

See Also
blos, gemdos, xbios

Set the 1/O record

#include <osbind.h>
#include <xblos.h>

forec *lorec(device) Int device;

Iorec returns a pointer to a serial device's in ice i i

. put buffer record. device is an integer
that encodes the serlal dqvwe: the legal settings are 0, 1, or 2, for the RS-232 t;grt,
the keyboard, or the inusical instrument device interface (MIDI) port, respectively.

As noted, Jorec returns a poiuter to the device’s input buffer record. Th i
& structure that is laid out as follows: P . © record fs

AN

S0

struct forec (

char *io_buff; /* Buffer */

short fo_bufsiz; /* Buffer size in bytes */

short fo_head; /* Current write pointer */

short fo_tail; /* Current read pointer */

short fo_tow; /* Low water mark, unatop line */
short {o_high; /* High water mark, stop line */

>

buﬁ'er:'pomm to the device’s buffer. size is the buffer's size; high is its “high water
mark”, or w'here an XOFF is sent to the transmitting device; and low is its “low
water max:k’ , or the point where an XON is sent to the transmitting device. Fin-
ally, head is the head index and tail the tail index. Note that for the R8-232 port,
the input-buffer record is followed by an output-buffer record that is structured ex-
actly the same.

Example

This example examines all of the input devices and dis i
) 1 . plays their buffers. For an
example of using this function from the \auto directory, see the entry for \aute.

#include <osbind.h>
#include <xbios.h>

fodump(ptr)
register struct forec *ptr; (
int ccount;

if ((ccount = ptr->io_tail - ptr->io_hesd) < 0)
ccount += ptr->io bufsiz; -

printf(Buffer at Xix hes Xd out of Xd chsracters in ft.\n"
ptr->io_buff, ccount, ptr->io_bufsiz); ’

printf("LWt st Xd characters, HWM at Xd characters\n®
ptr->io_tum, ptr->i{o_high); ’

418 is_set — isalnum

main()
struct jorec *bp;

bp » lorec(0); /* get 1/0 buffer for serisl port */
printf("serial port input buffer:\n¥);
fodump(bp);
printf("serial port output buffer:\n*);
bp++;
Todump(bp);
bp = lorec(l); /* Mow for the keyboard */
printf(*Keyboard fnput buffer:\n*);
fodump(bp);
bp = lorec(2); /* W10l input buffer */
printf(*MID! input buffer:\n");
fodump(bp);
>
See Also

TOS, xbios

is_set — Command

Check if an environmental variable is set
ia_set [in dir] name
is_set is a test command that is built into the microshell, msh, lt. tests to see if the
environmental variable name is set; ls_set returns zero if name is set, and a value
other than zero if it is not.
Example '
The following command checks to see if the environmental variable CMQ is set. }f
it is, the RAM-disk utility rdy is invoked in command-line mode; otherwise, rdy is
invoked under the command gem, in graphics mode.

if (is_set O) rdy (gem rdy)

See Also

commands, equal, if, msh, not, while

isalnum — ctype macro (ctype.h)

‘Check if a character is a number or letter
#include <ctype.h>
int isalnum(c) int ¢;

fsalnum tests whether the argument c is alphanumeric (0-9, A-Z, or .a-.Z). It
returns a number other than zero if ¢ is of the desired type, and zero if it is not.
isalnum assumes that ¢ is an ASCII character or EOF. :

isalpha — isatty 419

Example

For an example of how to use this macro, see the entry for ctype.
See Also

ASCII, ctype

isalpha — ctype macro (ctype.h)

Check if a character is a letter
#Include <ctype.h>
int isalpha(c) int c;

isalpha tests whether the argument ¢ is a letter (A-Z or a-z). It returns a number
other than zero if ¢ is an alphabetic character, and zero if it is not. isalpha as-
sumes that ¢ is an ASCII character or EOF.

Example

For an example of this macro, see the entry for ctype.

See Also
ASCII, ctype

isascii — ctype macro (ctype.h)

Check if a character is an ASCII character
#include <ctype.h>
int isascli(c) int c;

Isascll tests whether the argument ¢ is an ASCII character (0 <= ¢ <= 0177). It
returns a number other than zero If ¢ is an ASCII character, and zero if it is not.
Many other ctype macros will fail if passed a non-ASCII value other than EOF.
Example

For an example of how to use this macro, see the entry for ctype. For an example
of its use in a TOS application, see the entry for Fgetdta.

See Also

ASCII, ctype

isatty — General function (libe.a/isatty)

Check if a device is a terminal
isatty(/d); int [d;

Isatty checks to see if a device is a terminel. Given the file descriptor fd, Isatty
returns non-zero if fd is attached to a terminal, and 0 if it is not.

See Also
FILE, flleno

o

)
. {;}'_
e

420 iscntrl — islower

isentrl — ctype macro (ctype.h)

Check if a character is a control character

#Include <ctype.h>

int iscntrl(c) int ¢c;

fscntrl tests whether the argument ¢ is a control character (includmlg a‘newlme
character) or a delete character. It returns a number other than zero if ¢ is a con-
trol character, and zero if it is not. iscntrl assumes that ¢ is an ASCII character or

EOF.

Example

For an example of how to use this macro, see the entry for ctype.
See Also

ctype

isdigit — ctype macro (ctype.h)

Check if a character is 8 numeral
#include <ctype.h>
int isdigit(c) int c;

{sdigit tests whether the argument c is a numeral (0-9). It returns a nur‘nber
other than zero if ¢ is a numeral, and zero if it is not. isdigit assumes that ¢ is an
ASCH character or EOF.

Example

For an example of how to use this macro, see the entry for ctype.

See Also

ASCII, ctype

isleapyear — Time function (libc)

Indicate if a year was a leap year

#include <time.h>

int isleapyear(year) int year;

isleapyear indicates whether a given year A.D. is a leap year or not. year i3 the
year A.D. in which you are interested. isleapyear returns zero if year was not a
leap year, and a number greater than zero if it was.

See Also
dayspermonth, time, time.h

‘

islower — ctype macro (ctype.h)

Check if a character is a lower-case letter
#include <ctype.h>
int Islower(c) int c;

isprint — isspace 421

Islower tests whether the argument ¢ is a lower-case letter (a-z). It returns a
number other than zero if ¢ is i8 a lower-case letter, and zero if it is not. islower
assumes that ¢ is an ASCII character or EOF.

Example

For an example of how to use this macro, see the entry for ctype.

See Also

ASClI, ctype

isprint — ctype macro (ctype.h)

Check if a character is printable
#Iinclude <ctype.h>
int lsprint(c) int 3

feprint is a macro that tests if ¢ is printable, i.e, if it is neither a delete nor & con-
trol character. It returns a number other than zero if ¢ is a printable character,
and zero if it is not. Isprint assumes that ¢ is an ASCII character or EOF.
Example

For an example of how to use this macro, see the entry for ctype.

See Also

ASCII, ctype

ispunct — ctype macro (ctype.h)

Check if a character is a punctuation mark
#include <ctype.h>
int lspunct(c) int c;

ispunct tests whether the argument ¢ is & punctuation mark, i.e., neither an al-
phanumeric character nor a control character. It returns a number other than zero
if the character tested is a punctuation mark, and zero if it is not. ispunct as-
sumes that ¢ is an ASCII character or EOF.

Example

For an example of how to use this macro, see the entry for ctype.

See Also

ASCII, ctype

isspace — ctype macro (ctype.h)

Check if a character prints white space
#include <ctype.h>
int isspace(c) int ¢;

isspace tests whether the argument c is a space, tab, newline, carriage return, or
form-feed character. It returns a number other than zero if ¢ is a white-space

T

FiL
Y-;“ﬁ
.

o ae!
Py

e
o
:

>

Fasni
SRR

422

isupper

character, and zero if it is not. isspace assumes that ¢ is an ASCII character or

EOF.
Example

For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

isupper — ctype macro (ctype.h)

Check if a character is an upper-case letter
#include <ctype.h>
int Isupper(c) int ¢;
argu . It returns a
tests whether the ment ¢ is an upper-case letter (A Z).
in.:xgg: other ‘;_vhnn zero if ¢ is an upper-case letter, and zero if it is not. Isupper
assumes that ¢ is an ASCI character or EOF.

Example
For an exsinple of how to use this macro, seé the entry for ctype. For an example

of its use in a TOS application, see the entry for Fgetdta.
See Also
ASCII, ctype

jo 423

JjO — Mathematics function (libm)

Compute Bessel function
#include <math.h>
double jO(z) double z;

JO computes the Beasel function of the first kind for order 0, for its argument z.

Example
This example, called bessel.c, demonstrates the Bessel functions j0, j1, and jn.
Compile it with the following command line

cc -f bessel.c -la
to include floating-point functions and the mathematics library.
#include <math.h>

dodisplay(vatue, neme)
double value; char *name;

¢
if (errno)
perror{name);
else
printf(*X10g Xs\n*, velue, name);
errno = 0;
>
ddefine display(x) dodisplay((double)(x), #x)
main() (
extern char *gets();
double x;

chear stringl6k);

for(;:)
printf(“Enter number: *);
{f(pats(string) == 0)
break;
x = otof(string);

display(x);
display(jO(x));
display(J1(x));
display(jn(0,x));

display(Jn(1,x));
display(jn(2,x));
display()n(3,x));

4

a>e

<3
e

S,

)é"' ¢

i’g
$
Y
¢
¢

5

R Tt

e

-

424 j1 — jday.to_tm

See Also
L jn, mathematics library

j1 — Mathematics function (libm)

Compute Bessel function
#include <math.h>
double j1(z) double z;

J1 takes the argument z and computes the Bessel function of the first kind for or-
der 1.

Example

For an example of this function, see the entry for jO.

See Also
jO, jn, mathematics library

jday.-to_time — Time function (libc)

Convert Julian date to system time

#lnclude <time.h>

time_t jday_to_time(time) jday._t time;

jday_to_time converts Julian time to system time. time is the Julian time to be
converted. It is of type jday_t, which is defined in the header file time.h. jday_t
is a structure that consists of two unsigned longs. The first gives the number of
the Julian day, which is the number of days since the beginning of the Julian
calendar (January 1, 4718 B.C). The second gives the number of seconds since
midnight of the given Julian day.

jday.to_time returns the Julian time as converted to type time_t; this type is
defined in the header file time.h as being equivalent to & long. Mark Williams C
defines the current system time as being the number of seconds from January 1,
1970, 0h00OmO00s GMT, which is equivalent to the Julian day 2,440,587.5.

See Also
jday_to_tm, time (overview), time.h, time_to_jday, tm_to_jday

Note

This function is of use mainly to astronomers, geographers, and historians.

jday-to_tm — Time function (libc)

Convert Julian date to system calendar format
#include <time.h>
tm_t *jday_to_tm(tire) jday_t time;

jday.to.tm converts Julian time to the system calendar format. time is the Julian
time to be converted. It is of type jday._t, which is defined in the header file
time.h. jday_t is a structure that consists of two unsigned longs. The first gives

Jdisint — jn 4256

the number of the Julian day, which is the number of d i inni

) g ays since the nning of
the Julm.n calendar (Januuary 1, 4713 B.C.). The second gives t.hob?t]xmﬁg of
seconds since midnight of the given Julian day.

jday_to_tm returns a pointer to a copy of the structure tm_t, which is defined in
the header file time.h. For more information on this structure, see the Lexicon
entry for time. '

See Also

Jday_to_time, time (overview), time.h, time._to_jday, tm_to_jday
Note

This function is of use mainly to astronomers, geographers, and historians.

Jdisint — xbios function 26 (osbind.h)

Disable interrupt on muli-function peripheral devi
#lnclude <osbind.h> penip oviee
#loclude <xbloa.h>

vold Jdlsint(number) Int number;

Jdisint d]&ﬂblﬁﬂ an mtarrupt on the m\ﬂb-funmon penphela] devnce, and returns
ﬂoth.lng. number is the nulnber of the interrupt to dl bl F nterrupt
p sabie. or a table of i p

See Also
Jenabint, Mfpint, TOS, xbios

Jenabint — xbios function 27 (osbind.h)

Epable & multi-function peripheral port inte
#include <oabind.h> perip port Interrupt
#include <xblos.h>

void Jenabint(number) int number;

Jenabint enables the multi-function periph

? y] pheral (MFP) interrupt, and returns
nothing. number is the number of the interrupt to disabl i
o oo the ortry for Mfolas p sable. For a table of inter-

See Also
Jdisiut, Mfpint, TOS, xbios

jn — Mathematics function (libm)

Compute Bessel function
#Include <math.h>
double jn(n, z) int n; double 3

in takes an argument z and computes the Bessel function of the first kind for order

S TRy

[EEALIVIN

426 jn Kbdvbase 427

Example ! E K : 3‘
For an example of this function, see the entry for jO. : ! «ﬁg
See Also Kbdvbase — xbios function 34 (osbind.h) g

b
o
<

i
j0, j1, mathematics library | Return a pointer to the keyboard vectors
i #include <osbind.h>
#include <xbios.h>
' kbdvbase *Kbdvbase()

%

..,‘,
Fros

Kbdvbase returns a pointer to a structure that holds the following elements; "‘%

. =y
| struct kbdvbase L “.ji
H . vold (*kb_midivec)(); /* RIDI input datas vector */ 3

void (*kb_vkbderr)(); /* keyboard error vector */ 4
! void (*kb_wmiderr)(); /* MIDL error vector */

void (*kb_statvec)(); /* keyboard status pecket */

void (*kb_mousevec)(); /* keyboard mouse packet */
! vald (*kb_clockvec)(); /* keyboard clock packet ¥/
! void (*kb_Joyvec)(); /* keyboard joystick packet */

void (*kb_midisys)(); /* system midl vector */

void (*kb_kbdsys)(); /* system keyboard vector */

|)
| kb_midivec points to a routine that moves data from the musical instrument digi-
' tal interface (MIDI) into the MIDI buffer.

kb_vkbderr and kb_vmiderr point to routines that are called whenever an error
condition is detected, respectively, on the intelligent keyboard or on the MIDL

:, kb_statvec, kb_mousevec, kb_clockvec, and kb_joyvec point to routines that
process data received from, respectively, the intelligent keyboard status handler, the
mouse, the clock, and the joystick.

Finally, kb_midisys and kb_ikbdsys point to routines that call handlers when
characters become available for, respectively, the MIDI and the intelligent keyboard.

Manipulating peripheral devices

By default, the keyboard reports each make/break contact on the joystick port, each
make/break contact on the mouse buttons, and each movement of the mouse that
exceeds a preset threshold. Each report consists of a “packet” of three bytes that
indicate which device is changing and what change took place. Note that the
packet for the joystick has been documented elsewhere as consisting of two bytes;
this is incorrect.

The joystick packets consist of three bytes: The first is always 0xFF, which in-
dicates joystick event on port 1; the second is filler, and is always 0x00; and the
third records the closed switches on the joystick as set bits in the low nybble.
Technically, the high bit of the third byte should encode the state of the joystick
fire button. In the default set-up, the fire button is set to the left mouse button.
This will change if you instruct the keyboard to adopt some other reporting mode.

428 Kbdvbase kbrate — Kbrate 429

?)
1

The mouse packets consist of three bytes: The first is 0xF8, which indicates relative i Beofrin(RC_CON); /7 clear keystroke */

mouse event and encodes the state of the mouse buttons and joystick fire button in | kbp->kb_joyvee = xx_Joyvec; /' IRESTORE VECTORS| */ .

the low bits of the low nybble. The second and third encode, respectively, the rela- ! :t.:;t:;::ba?amm = XX_mousevec; /* [OR YOU BOMB ON THE WEXT EVENTI */

tive X-.and Y-axis motion as signed characters. ' N ;

If you do not have & joystick, you can simulate one by plugging your mouse into the ! See Also

joystick port. The mouse quadrature signals show up aa the north south east west TOS, xbios

switch closure bits in the joystick packet. In addition, Lhe‘ left mouse button still

shows up as a mouse event, but the righ_t button is inoperative. kbrate — Command

Example Reset the keyboard's repeat rate

kbrate start, delay

The following example monitors the keyboard’s mouse and joystick vectors. :
kbrate uses the xbios function Kbrate to reset the keyboard's repeat rate. start

#include <osbind.h> l

Finclude <blos ho b is the amount of time to pass before repeating begins, and delay is the time interval
Zinclude <xblos.h> between repeats. Both are measured in “system ticks”, each tick being 20
oo ¢ , milliseconds long. For example, the command i

o cher k_cl4]; /* trenalote four-charecter packet ... */ ! kbrete 50 §

tong k_s; /* ... into a long */
) kst; - /* one for joystick and mouse %/ ' tells the systen that a key must be held down half a second before repeating
long ktm; /* pecket time wtawp */ ' begins, and then repeating will occur ten times a second thereafter.
I(tbdwc(p) char *p; ! See Also

kat.k_c(0) = *pra; /* store four byte packet */ commands, TOS

kst.k_c(1) » *pre; /* ¥B: 'p’ could be en odd eddress */ .

:-:.::c g; - *pre; Kbrate — xbios function 35 (0sbind.h)

st.kchal = T . . Get or set the keyboard's repeat rate
, ktm = *((long *)Ox4BA); /* system 200hz clock tick */ #include <osbind.h>

! #Include <xbios.h>

:“"" ! int Kbrate(start, delay) Int start, delay;

register struct kbdvbase *kbp; |
register volid (*xx_joyvec)(), (*xx_mousevec)(); ‘

Kbrate gets or sets the keyboard's repeat rate. Rates are set as multiples of “sys-
tem ticks”; each tick is 20 milliseconds long. first sets the number of ticks to wait

AN

register long ke, kt;

. sble ¢/ before a key begins to repeat; delay sets the number of ticks to wait between A
kbp = xbdv?.;;'()?ikb Joyvec: ;' :m:g }:;::;c; vector o repeats. If either variable is set to OXFFFF (-1), that value is not changed. Kbrate H%‘gi
:ﬁajm'foym = kbdvec;) /* fretall nex joystick vector */ returns an int that holds the previous sotting of the keyboard rate: the value of R
Xx_mousevec = kbp->kb_mousevec; /* ditto for mouse */ first is written as the high byte, and the value of delay as the low byte. ke
kbp->kb_mousevec = kbdvec;
kt:p-’kl;.k_n; /% initistize state record */ Example

while (Bconstat(BC_CON) == 0) (/* i.e., until a key is struck %/ This example displays the keyboard repeat. rate and delay period; it then sets them

If (ke 1» kit.k_8) € 7* new swent? */ to unreasonable values, lets the user try them out, and finally resets the previous
ks = kst k_s; /* then report new stete ... */ values. For an example of using this function from the \auto directory, see the
Kt = ktm; /* ... and timestemp */ entry for \auto.

printf("X08ix Xtu\n”, ks, kt):

430

keyboard

#include <oebind.h»
#define DEL 10
tdefine RT 1

main() (-
int old_rate;
int old_delay;
char ¢;

old_rate = Kbrate(DEL,RT); /* Set the new rate. */
old_delay = (old_rate>>8)LOxFF;
old_rate &= OxFF;
printf{("The repeat delay is Xd/50 seconds\r, old _delay);
printf(“snd repest rate is once every Xd/50 uconat\n",
old_rate);
printf("Retes are chonged to delay=Xd, rete=Xd\n*,6 DEL, RT);
printf(*Try typing something--end with “C.\n\n*);
while((c = Crawcin()) t= 7\03') (
Crewio(c);
>
Kbrate(old_delmy,old_rate);
printf{ “\rRetes restored.\n");
>

See Also
TOS, xblos

keyboard — Technical information

The Atari keyboard is table-driven. The keyboard tables are vectors of byte values
that are indexed by the scan code passed from the intelligent keyboard (IKBD).
The table is zero-based, so the first entry is always NULL. The following display
shows the layout of the keyboard, with the scan code each key generates being
given in hexadecimal: Note that some keys produce different scan codes when used
with the <shift> or <alt> key.

Keytbl 431

function keys

JBI3CI3D|3EI3F|40]41142143 (64
54155{56{57}58[59{5A15B{5C|5D

<shifted>

keyboard keypad

78|79{7a78|7¢| 70| 7E]| 7F|80]81]82[83 <alt>

01{02|03{04105[06]07{08[09{0A{0B|0OC|{0OD|29]|0OE 62 |61 631646566
OF|10{11}12}13({14{15}/16{17{18|19{1A[1B|1C{53 52148(47)167|68169|4A
1DJ1E|1F{20]21]22(23]|24]25]26[27 |28 _2; 4B|50|4D) |6A|6B|6C4E
2A160(2C|2D|2E|2F|30{31{32|33}34135]|36 6D|6E|6F |72
38

39 3A 70 |71

The keyboard sold in North America does not have the key with scan code 80.
This key is sometimes called the “ISO Key”, and is only on European models.

See Also
ASCI], evnt_keyboard, Keytbl, TOS

Keytbl — xbios function 16 (osbind.h)

Set the keyboard’s translation table

#include <osbind.h>

#include <xbios.h>

keytbl *Keytbl(unshifted, shifted, caplock) char *unshifted, *shifted, *caplock;

Keytbl sets the keyboard's translation tables.

On the Atari ST, each key generates a unique scan code. (See the entry for
keyboard to find the code for each key.) The scan code is looked up in one of three
translation tables. The table used depends upon the states of the shift keys: one
table is used when no shift key is pressed, a second is used when the shift key is
depressed, and a third is used when the caps-lock key is depressed. The scan code
is then translated into the character found in the appropriate table.

The variables shifted, unshifted, and capslock each point to a translation table that
you wish to load in place of a default table. Each table must be 128 bytes long.
Setting one or more of these arguments to -1L tells Keytbl not to load a new key
table.

Keytbl returns a pointer to the following structure:

432

Kgettime

struct keytbl (
cher *unshifted;
char ®*shifted;
char *cepalock;
)

These point to the areas where Keytbl has written the current key tables.
Example

This example prints out the default keyboard map in the form of a C source ﬁl.?.
This example also demonstrates a good method of obtaining data from the Atari's

memory.

#include <osbind.h>
#include <xbioe.h>

shoumep(mep, p)
register char *map, *p;
C

register int §, J;
printf("char Xe{128] = (XD6lx\n*, ®ap, p);

for (1 =0; 1 <8; 1 +s1)(
putchar(’\t’);
for (J = 0;] <16;] += V)
1t (*p <’ || *p>= 0177 || *p w= /\'* || *p w= '*)
printf(*X3d,%, *p+s L OxFF);

else
printf(*’Xc’ ", *p++ L OxFF);

putchar(’\n');

>
printf(*);\n");

)

main()
struct keytbi *kp;
kp = Keytbl(-iL, -1, -10);
showmep(“normal®, kp->kt_normal);
showmap(“shifted”, kp->kt_shifted);
showmep("cepalock®, kp-rkt_cepelock);
return 0;

)

See Also

Bloskeys, TOS, xbios

Kgettime — Time function (libc)

Read time from intelligent keyboard's clock
#Include <time.h>
tm *Kgettime();

kick — Ksettime 433

Kgettime is a function that reads the time from the intelligent keyboard's clock.
This clock is maintained apart from the other clocks on the Atari ST. Kgettime
returns a pointer to the structure tm, which it initializes. tm is defined in the
header file time.h. For more information about it, see the entry for time.

See Also

Ksettime, Sgettime, time (overview), time.h

Notes
Unlike the function Gettime, which deals in two-second increments, Kgettime
allows the programmer to work with clock ticks.

This function does not work properly on the Mega ST. To read the clock on the
Mega ST, use the function Sgettime.

kick — Command

Force TOS to reread the disk cache
kick drive

kick forces TOS to read a disk cache. drive is the name of the disk drive whose
cache is to be read. kick should be used when disks are switched in a drive, to en-
sure that TOS has the correct form of the disk’s root directory in memory.

See Also

commands, TOS

ime — Time function (libc)

Set time in intelligent keyboard's clock
#Include <thne.h>

Int Ksettime(time) tm *time;

Ksettime is a function that sets the time on the intelligent keyboard's clock. This
clock is maintained apart from the other clocks on the Atari ST. time points to a
copy of the structure tm, which is filled by the functions gmtime or localtime.
This structure is defined in the header file time.h. For more information about it,
see the entry for time.

See Also
Kgettime, time (overview), time.h

Notes

Unlike the function Settime, which deals with two-second increments, Ksettime
works directly with seconds.

P

b
¢
e

e
el

]

P g™

