CONTENTS
1 Technical Overview of Portfolio.........................._ 1-1

2 Hardware

2.1 System Description..............cooooveooo 2-1
2.2 SystemMemory...........ocooooimmioe 2-4
2.3 Memory Cards.............oocoomioeoe 2-6
2.4 Custom ASIC Chip......c.cooeieeeooo 2-8
2.5 Power Supply Unit.............cooooooioo 2-9
2.6 Portfolio Expansion Port...............cocooooo 2-11
2.7 Peripheral Design ISSUES.........cocoovovio 2-17
2.8 LCD DISPIAY.....cucumuiureiieeroeieieeoeeeeeeoooo 2-21
3 Software

3.1 General Description............coccovoovoo 3-1
3.2 Differences Between Portfolio BIOS and IBM PC BIOS...... . 3-4
3.3 System Specific BIOS..........ccooovoomoooo 3-6
3.4 Differences Between MS-DOS and Portfolio DOS....... . 3-23
3.5 Device Drivers and Peripheral Software....................__ 3-24
3.8 Memory CardS..........co.oooveeeiveoeeoo 3-28
3.7 Screen Handling..............ccccoooooiooo 3-30
3.8 Power Management..................... 3-31
3.9 Special File Formats...........ccococoooovioo 3-33
3.10 IBM PC Development System..................cooooiii 3-37
4 Peripherals

4.1 Portfolio Serial Communications...........................____ 4-1
4.2 Smart Parallel Interface File Transfer Protocol Description....... 4-3
4.3 IBMPC Card Drive...........ocococoouoiooo 4-4
4.4 EPROM Writer Adaptor Boards..................ccocooii 4-5
Appendixes

A Example .RUN Program...........coo.ooii A-1
B Diagram of Portfolio Character Set................ccoooo B-1
C Example Peripheral DesigN......ooi C-1

1 TECHNICAL OVERVIEW OF PORTFOLIO

The Atari Portfolio is the first product that provides the functionality of a standard
desktop PC in a package which can fit into a pocket.

The main requirements for the Portfolio technology are that the product should be
pocketable, compatible, have low power consumption and above all be inexpensive
to purchase.

The Portfolio is the size of a video cassette (VHS) and weighs less than one pound
(450 grams).

The Portfolio provides a high degree of software compatibility with the industry
standard desktop microcomputer, the IBM PC. This is achieved by supplying a PC-
compatible BIOS, MS-DOS-compatible operating system as well as Lotus 1-2-3 file-
compatible spreadsheet. The Portfolio also provides an expansion bus connector
which allows peripherals to be connected to the product.

The Portfolio is inexpensive to manufacture as the software is provided on and runs
from ROM and with the large scale integration of system logic, using an ASIC, the
overall component cost and size are reduced.

The Portfolio uses credit card-sized memory cards instead of magnetic disks, and a
LCD display. These components have a low power consumption and hence the
product can use the consumer standard AA batteries and achieve a long battery life.

This Technical Reference Guide describes the Portfolio technology in detail and
provides the necessary information for a third party to develop hardware and
software applications for the Portfolio. This document only provides information
specific to the Portfolio technology. If you want information on the standard IBM PC
hardware, BIOS, or MS-DOS then the following publications should provide the
required information:

IBM Personal Computer Publications:

Technical Reference (BIOS and Hardware)
Disk Operating System (PC-DOS)

Microsoft Press Publications ISBN Reference
Peter Norton Programmer’s Guide 0-914845-46-2
The MS-DOS Encyclopedia 1-556615-049-0

IBM ROM BIOS (Quick Reference Series) 1-55615-135-7
MS-DOS Functions (Quick Reference) 1-55615-128-4

1-1

2. HARDWARE

2.1. System Description

OSCILLATORS
POWER SUPPLY KEYBOARD
CONTROL
ON BOARD RAM
80cCss8 4KB MDA 124KB
SYSTEM COMPATIBLE SYSTEM
LOGIC
! INCLUDING !
CHARACTER | DEDICATED LCD
EXPANSION ASIC GENERATOR| VIDEO DRIVE
PORT ROM RAM
VIDEO CONTROLLER
TONE DIALLER 128KB ROM A
AND SOUNDS
CARD MEMORY 128KB ROM B

BLOCK DIAGRAM OF PORTFOLIO SYSTEM

2.1.1 Microprocessor Unit

The Portfolio uses an 80C88 MPU, the same processor as the original IBM PC. ltis
the CMOS static version which allows the MPU clock to be halted when no
processing is taking place and hence power consumption is kept to a minimum. The
Portfolio is faster than the original IBM PC, the clock running at 4.9152MHz instead
of 4. 77MHz. However, the Portfolio processor uses minimum mode, so bus lock
cannot be used. (See section 2.6 for more details.)

2.1.2 System RAM

The current Portfolio uses four 32 KByte Static RAM chips, giving a total of
128KBytes. These have a very low standby current which allows them to maintain
their contents for extended periods with minimal drain on batteries.(See section 2.2
for more details.)

2.1.3 System ROM

The current Portfolio has in total 256 KBytes of ROM which contains all of the BIOS,
DOS, command processor and application software. This ROM currently comprises
of two 128 KByte chips. (See section 2.2 for more details.)

2.1.4 LCD Display

The LCD is a 240 x 64 pixel display. It is driven by a set of LCD screen drivers which
are controlled by a graphics LCD controller. The screen behaves in the same way
as an IBM PC monochrome text screen (MDA). The controller also uses a dedicated
Video RAM chip and a character generator ROM. For graphics it is pixel compatible
provided the PC-compatible BIOS is used. (See sections 2.2.2, 2.8 and 3.7.)

2.1.5 Tone Dialler + Sound

The Portfolio speaker is driven by a Dual Tone Multiple Frequency (DTMF)
telephone dialler chip. This produces all the necessary dual tones required for tone
dialling plus a set of melody tones for musical applications. The keyboard click also
uses this circuit. (See section 3.3.1.)

2-2

2.1.6 ASIC

This circuit contains most of the system logic. (See section 2.4 for more details.)

2.1.7 Keyboard

The Portfolio uses a 63-key QWERTY ’switch-matrix’ keyboard. The ASIC
generates a set of physical scan-codes which are translated by the BIOS to IBM PC-
compatible scan-codes.

2.1.8 Memory Card Connector

The Portfolio contains a memory card connector on the side of the product. Credit
card-sized memory cards can be inserted into this connector, allowing for data and
programs to be accessed by the Portfolio software. (See section 2.2.4, 3.6.)

2.1.9 Expansion Port

On the right-hand side of the product there is a 60-pin connector which provides the
necessary signals for various peripherals. (See section 2.6, 2.7 and 3.5.)

2.1.10 Power Supply Unit

This supplies all the power required in the system. It produces various supply lines.

The circuit includes a switching regulator that steps up the voltage from 3 AA cells to
SV. The regulator may be switched off. (See section 2.5 and 3.8 for more details.)

2.2 SYSTEM MEMORY

2.2.1

FFFFF

E0000

C0000

B1000

B0000
A0000

SF000

3F000

00000

Memory Map

SYSTEM ROM A - (128K BYTES)

SYSTEM ROM B - (128K BYTES)

CREDIT CARD MEMORY

(EQUIVALENT TO
A: OR B:)

MIRROR OF VIDEO RAM (NOT USED)

VIDEO RAM MDA 4K BYTES

NOT USED

NOT USED

EXPANSION RAM AREA UP TO
512K BYTES

SYSTEM RAM - 124K BYTES
(INCLUDING C:)

Diagram of Portfolio Memory Map

(all addresses in hex)

2-4

2.2.2 RAM

There is a total of 128 KBytes of on-board RAM provided with the Portfolio.

4 KBytes of this RAM are mapped to BO0O0Oh to make up the video RAM which is
compatible with the IBM PC MDA screen. This gives a total system RAM of 124
KBytes.

The system RAM can be expanded up to 636 KBytes by use of memory expansion
peripheral(s).

The Portfolio allows the user to have an internal RAM disk (known as C:) which can
be user configured. This RAM disk uses the top of the system RAM.

2.2.3 System ROM A

This contains the BIOS, operating system and some of the application software. The
reset vector sits at FFFFOh. This ROM cannot be mapped out of the memory map.
2.2.4 System ROM B

This contains the rest of the application software. This ROM may be switched out of
the memory map and replaced by either the internal memory card or an external

memory card on a peripheral. The BIOS disk services would normally perform this
switching function. (See section 3.6.)

2.3 Memory Cards

The Portfolio uses credit card-sized memory cards which are specially designed for
the Portfolio. There are similar memory cards available from other vendors. DO
NOT use these cards with the Portfolio as they may harm the card and the Portfolio.

These come in three main types: RAM, OTPROM and Mask ROM. (See below for
explanation.)

The cards are formatted to look like MS-DQOS disks. It is possible to run a program
directly from a card and hence reduce the amount of system RAM required. (See
section 3.6.3 for more details.)

2.3.2 RAM cards
The RAM cards are currently available in three main sizes: 32, 64 and 128 KBytes.
The cards are made up of Static RAM and each card contains a lithium back-up

cell. This cell will maintain the data on a card when it is not in a Portfolio for a year
or more.

2.3.3 OTPROM cards

The One Time Programmable ROMs cards that are currently available are 64 and
128 KBytes. They are read-only cards and would typically be used for holding fixed
data or software. They can be programmed in a standard EPROM programmer like
a normal PROM (see section 4.4).

2.3.4 Mask ROM

These cards are "factory programmed" and have a low unit cost. This makes them
suitable for issuing mass production software. Currently available only as 128 KByte
option.

2.3.5 Future Card Sizes

The Portfolio BIOS contains support for ROM and RAM cards of greater than 128
KBytes. If these become available, they will be made up of 128 KByte pages with a

page register at offset 000Ah. It is imperative that NO application software uses this
memory card location, no matter what the card capacity.

2-6

2.3.6 Memory Card Pin-out

Below is a pin out of typical memory cards. Differences between the various card
types are highlighted. (Pin 1 is on the right with the connections up and pointing to
you.)

Pin COMMON RAM OTPROM Mask ROM
32k 64k 128k

1 A16

2 A15

3 VBB VPP NC VPP NC

4 Al12

5 A7

6 A6

7 A5

8 A4

2] A3

10 A2

11 A1

12 A0

13 Do

14 D1

15 D2

16 GND

17 D3

18 D4

19 D5

20 D6

21 D7

22 CE

23 A10

24 CE OE OE/VPP OE OE

25 Al1

26 A9

27 A8

28 A13

29 Al4

30 WE NC NC PGM NC

31 VCC

32 CDET

Notes: NC No internal connection.

VCC Operating supply: 5 Volts.
GND Signal ground
CDET This is the small pin (internally connected
to GND), used to detect presence of card.
Ax Card address line x.
Dx Card data line x.
vBB Card battery voltage.
PGM OTPROM program line. OV in program mode.
VPP OTPROM program voltage.
12.5V Program mode, 5V normally
OE Low to indicate a read cycle.
WE Low to indicate a write cycle.

2-7

2.4 Custom ASIC Chip

The Portfolio custom ASIC chip provides most of the necessary system logic. It is a
gate array implemented using silicon gate CMOS technology, which allows for very
low power and high speed operation.

This Application Specific Integrated Circuit (ASIC) is used to generate all the select
lines for the memory, memory cards and other system blocks. It also contains
several system control functions. These functions are controlled using a set of
registers which control the various parts of the system such as memory chip size.
2.4.1 System Clock

The clock is 4.9152MHz, with a 50% duty cycle produced by a crystal oscillator. The
clock can go in to a stop mode. A custom chip interrupt will cause the clock to
restart.

2.4.2 Timer

The system timer tick count is generated from a 32768Hz crystal oscillator which will
generate an interrupt every 1 second or every 128 seconds.

2.4.3 Keyboard Controller

The keyboard controller will scan an eight by eight push to make key-switch matrix.
A pressed or released key will cause an interrupt. The processor will obtain the scan
code from a control register.

2.4.4 Interrupt Handler

This controls the critical error for the memory cards, keyboard and tick count
interrupt. This is extended outside the ASIC to allow for external peripheral
interrupts.

2.4.5 Soft Contrast for LCD

A control register holds the contrast value for the LCD display.

2-8

2.5 Power Supply Unit

The Portfolio has several power supply lines and control lines. These are used for
various purposes and have different power characteristics as explained below. They
are all available on the expansion bus.

When batteries and a power supply are connected to the Portfolio simultaneously,
the Portfolio will be supplied by the higher voltage (“initial source").

(See section 3.8 for software issues.)

2.5.1 Power Modes

i) NO POWER MODE

This is the state when no initial source is connected to the Portfolio (e.g. changing
batteries). If an initial source has been supplied and then removed, the system RAM
will be backed up by an internal capacitor.

i) OFF MODE
This is the state the Portfolio goes into when the 'OFF’ command is used. The
custom chip and RAM are powered directly from the initial source.

i) STANDBY MODE

This is the state that the Portfolio will be in while waiting for a key press. The whole
system is powered from the output of the internal five volt regulator. However, the
system clock CCLK is halted in order to stop the processor and save power.

iv) RUN MODE

This the state in which the Portfolio is actually processing. The whole system is
powered from the output of the five volt regulator and the system clock CCLK is
running, thus causing maximum power usage.

2.5.3 VCC (Memory Card supply voltage)
This line follows 5VS. It is designed to be used by an external memory card so that

plugging in and pulling out a card will not cause spikes on 5VS. This line should not
be used for any other purpose.

2-9

2.5.2 5VS - Five VoIt switched supply line

This is the output of the five volt regulator. During STANDBY and RUN modes, this
line will supply five volts. At any other time this line will float low. Peripherals may be
designed that use this supply.

SVS is capable of supplying up to 40 mA at 5V +/- 5% to a peripheral. This assumes
that the main unit is taking maximum power. The Portfolio will run correctly outside
the 5% supply tolerance; however, this is not recommended.

Use of 5VS by a peripheral will decrease the unit’s battery life. Also, since alkaline
batteries develop a voltage drop (due to internal resistance) the low battery warning
will occur when the batteries are less depleted than if the peripheral was not
plugged in.

2.5.4 VRAM (Memory Power Supply)
This is the supply for the system RAM:

STANDBY and RUN 4.5V
OFF initial source voltage - 0.5V
NO POWER current voltage across a capacitor.

During NO POWER Mode the voltage will decay, so care should be taken that no
current is taken from this line or the system RAM could be corrupted. When the cold
reset switch is pressed this line is pulled to GND through a small resistor.

2.5.5 VEXT (External voltage)

This is the external power supply voltage connected directly to the external jack
socket. This enables peripherals with their own power source to make use of the
Portfolio external power supply. It is possible to supply the Portfolio via this
connection. However, care should be taken to avoid external power supply conflicts.

2.5.6 BATD (Battery detection signal)

This control signal is used to isolate system RAM from the rest of the circuit when
the batteries are removed. It would normally carry the initial source but when the
initial source is removed, it is pulled to GND. This line could be used by a peripheral
to access the initial source.

2-10

2.6 Portfolio Expansion Port

The Portfolio uses a 60-pin expansion connector which can take custom designed
peripherals. (See section 4 for more details on current range of peripherals.)
2.6.1 Expansion Port Connector Pin-out

Location of pin 1 - If you are looking into the Portfolio expansion port then the top
pin on the right is 1 and the bottom right is 2.

ABUF .1 2. 5VS
REDY .3 4. VCC
BCOM .5 6. NCCi1
NMD1 .7 8. WAKE
DTR .9 10. DEN
PDET .11 12. lINT
CCLK .13 14. MRST
HLDA .15 16. HLDO
IACK A7 18. CDET
IOM A9 20. A1S
A8 .21 22. A17
Al6 .23 24. A15
Al4 .25 26. A13
A12 27 28. ANl
A10 .29 30. A9

A8 .31 32. VRAM
HLDI .33 34. ALE
GND .35 36. NMIO
OA7 37 38. OA6
OA5 .39 40. OA4
OA3 41 42. OA2
OA1 43 44. OAO
ADO .45 46. AD1
AD2 47 48. AD3
AD4 .49 50. ADS
AD6 .51 52. AD7
EINT .53 54. NRDI
VEXT .55 56. EACK
BATD 57 58. NWRI

5VS .59 60. BBUF

2-11

2.6.2 Explanation of expansion pin names

This section explains the functions of the expansion port. It assumes a knowledge of
80C88 minimum mode. Detailed Timing for relevant signals can be found in a
microprocessor data sheet, ideally OKI MSM80C88ARS-2.

REDY

VCC

BCOM

NCCH

NMD1

DTR

DEN

PDET

[INT

output
This line indicates to the CPU that the custom chip is ready. This line is
active high.

output
This is the Credit Card power supply.

output

This is the communications select line, used for peripheral
implementations. It is low if I/O locations 807X are being accessed. This
signal is active within 100nS of I1/0O address being valid (see section 2.7).

output
This is the external credit card chip select line. It is low if the external
credit card is selected. See BCOM for timing.

input
This is the external credit card detect line. It goes low to indicate that a
card is plugged in.

input/output
This is the 80C88 data direction signal. During CPU HOLD this line may
be driven.

input/output
This is the 80C88 data enable signal. Low indicates a data cycle. During
CPU HOLD this line may be driven.

input
This is the peripheral detection line. It should be tied high on a terminating
peripheral that has a PID. (See section 2.7 for more details.)

output

This is the internal interrupt request line to the CPU (INTR). It goes high to
indicate an interrupt request.

2-12

IACK

EINT

EACK

CCLK

MRST

HLDI

HLDO

HLDA

input/output

This is the 80C88 interrupt acknowledge line (INTA). It goes low to
request an interrupt vector after an [INT. During CPU HOLD it may be
driven by external hardware.

input

This is the external interrupt request line. It may be driven high by external
hardware on a terminating peripheral to request an interrupt. This interrupt
line has lower priority than the on board interrupts. This signal is level
triggered.

output

This is the external interrupt acknowledge line from the Portfolio. It goes
low to request an interrupt vector after an EINT. It follows \INTA on the
processor, but is delayed by up to 40nS.

output

This is the main processor clock (4.9152MHz, 50% duty cycle). Since the
clock pauses when no processing is taking place, dynamic logic should
not use this line. It may be used for synchronising peripheral logic. During
halt mode this line is high. This signal is only available to terminating
peripherals.

output

This indicates system reset. MRST will noarmally be high, except when a
terminating peripheral is installed. The terminating peripheral will experi
ence a short reset when inserted. lf a terminating peripheral is installed
then MRST goes high to indicate system reset. MRST will remain high at
any time the reset key is pressed. It will also go high when the main
computer system powers up. Under these conditions MRST will remain
high for over 300mS.

input
This is the hold request line and will drive HOLD on the 88C88. It may be
driven high by external hardware to requisition the system bus.

output
This is the 80C88 hold request line (HOLD). HLDI should be used to
request a HOLD.

output
This is the 80C88 hold acknowledge line (HLDA). It goes high to indicate
that the bus is now free. This state will be called CPU HOLD.

WAKE input
This line is used by a peripheral to wake up the main computer when it is
powered down. This line is set low to request wake up. Wake up can be
confirmed by waiting for a falling edge on MRST. It will take 300-400mS
for wake-up to be confirmed. When wake up is confirmed, the wake input
should be released.

CDET input
This signal is tied low to indicate to the main computer that an external
credit card drive is present.

IOM input/output
This is the 80C88 memory access select line. If high then a /O cycle is
taking place, if low then a memory cycle. During CPU hold this line may
be driven.

VRAM output
This is the RAM power supply. It will backup RAM when the batteries are
removed, therefore any current taken from this line should be pAs.

5VS output
This is the switched 5V output. There are two 5VS lines.

GND output
Signal ground line.

VEXT output
This is the external power supply line.

ALE input/output
This is the address latch signal from the CPU. it latches the address bus
on its falling edge. During CPU HOLD this line may be driven.

A8-A19 input/output
These are the upper part of the address bus from the CPU. During CPU
HOLD these lines may be driven.

ADO-AD7 input/output
These are the multiplexed address/data bus from the CPU. During CPU
HOLD these lines may be driven.

OAOQ-OA7 output
These are the lower latched address lines.

2-14

NRDiI

input/output

This is the 80C88 \RD signal. It goes low to indicate a CPU read cycle.
During CPU HOLD this line may be driven.

This is the 80C88 \WR signal. It goes low to indicate a CPU write cycle.

NWRI input/output
During CPU HOLD this line may be driven.
BATD output

This is the detect line for the batteries. It goes low if the batteries are
removed without a power supply being present. This can be used to
prevent accidental corruption of RAM.

ABUF/BBUF input
These are insertion detection pins. A terminating peripheral should have
these lines connected to the adjacent 5VS line. (See section 2.7 on

NMIO

peripheral design.)

output

This is the 80C88 non-maskable interrupt request line.

2.6.3 Comparison between IBM and Portfolio expansion bus

The IBM PC and Portfolio expansion buses are analogous; however, the
implementation of these buses are very different. See the comparison below:

a)
b)

c)
d)
e)
f)
g)

h)
i)
)

k)

IBM PC
110 is partially decoded.
AO-A19 are latched address

D0-D7 are buftered data

IRQ2-IRQ7 are inputs to
the interrupt controller.

IOR/IIOWIMEMRIMEMW are
MAX mode bus control signals

DRQ1-DRQ3/DACKO-DACK3/AEN/TC
are DMA control signals

/O CH RDY inserts wait
states for slow /0.

ALE is address latch enable.
OSCis 14.31818 MHz Clock.

CLK is 4.77 MHz, 33% duty
cycle clock

[0 CH CK

Portfolio
110 MUST be fully decoded.

OAOQ-OA7 are latched address A8-A19 are
address lines DIRECT from the processor.

ADO-AD7 are multiplexed address/data lines
DIRECT from the processor.

EINT/EACK allow connection of peripheral
with an interrupt controller.

NRDI/NWRI/IOM are MIN mode bus control
signals.

No analogous signals, however, enough control
signals exist to allow DMA control on a peripheral.

No analogous signal.

ALE is address latch enable
No equivalent signal.
CCLK is 4.9152 MHz, 50% duty clock which halts.

No signal.

2-15

TYPICAL TERMINATING PERIPHERAL

BBUF

ABUF

v

5VS

5Vs

PDET

MRST

EINT
4

EACK

BCOM

DECODE

OAQ-OA3

LOGIC

v

READ AT
v 807F

PID REGISTER

ADO-AD7

MAIN

PERIPHERAL

LOGIC

NCC1

GND

v

EXPANSION BUS
(TOWARDS PORTFOLIO)

2-16

EXPANSION

ROM

2.7 PERIPHERAL DESIGN ISSUES

There are two types of peripheral that can be connected to the Portfolio. These
peripherals either continue the system bus ("Through Peripheral”) or not
("Terminating Peripheral”). Different considerations are required for designing these
types of peripherals. Appendix C illustrates an example peripheral design. (See
section 3.5 for software issues.)

2.7.1 Terminating Peripherals (see diagram)

A peripheral of this type signals its presence to the Portfolio by having PDET tied
high. If PDET is high then the Portfolio expects to see a Peripheral Identifier(PID).
This is read from 1/O location 807Fh. The returned number must be in the range
40h-7Fh. Please note that identifiers under 40h and over 7Fh are reserved for use
by DIP and must NOT be used by non-DIP applications.

A read at I/O location 807Fh should NOT be used by any peripheral in ANY way
other than as stated above.

A terminating peripheral can have an expansion ROM which contains support
software for the peripheral. This eliminates need for software to be supplied
separately. The chip select for this ROM should be connected to NCC1. At various
times during a boot sequence, the ROM will be checked for an identifier. If this is
present then the software contained on the ROM will be executed. (See section 3.5
for more details.)

The Portfolio has only limited expansion bus buffering. To make best use of this the
following rules should be obeyed.

i) ABUF and BBUF should be tied to the adjacent 5VS lines. This will cause the
processor to hold while a connector is half in.

ii) Only OA0-OA3 should be used. BCOM should be used for higher addressing on
peripherals.

iii) Peripherals using the external interrupt facility should be reset by MRST into a
state where interrupts are disabled until the vectors are set up correctly. This is to
prevent spurious interrupts occurring before the interrupt vector is set up.

TYPICAL THROUGH PERIPHERAL

BBUF
ABUF
5VS
5VS
PDET
OAO0-OA3 DRIVER
4= »
LINES ON EXPANSION BUS NOT EXPLICITLY MENTIONED
4= | 2
v
1 4
PERIPHERAL
| 4
— —p CIRCUIT
|
SIGNAL TO LATCH ADO ON WRITE
AT 807C. LATCHED VALUE CALLED 'D'.
v
NCC1 D=0 NCC1
-— —p NCC1(OUT)=NCC1 P
(IN) ADO B _88A0=5V (ouT)
d SMC=NCCT1
NCC1(OUT)=5V
CDET SMC SELECT LINE FOR
"DRIVE B:" MEMORY CARD
GND ¥
1 EXPANSION BUS EXPANSION BUS
(TOWARDS PORTFOLIO) (AWAY FROM PORTFOLIO)

2-18

2.7.2 Through peripherals (see diagram)

On these peripherals the system bus is continued so that further peripherals can be
connected to the system. For example, a memory expansion unit would be this type
of peripheral. In order that terminating peripherals will operate correctly the following
recommendations should be taken into account when designing “through”
peripherals.

i) ABUF and BBUF should not be connected to 5VS, but brought straight through
the peripheral.

i) If OAO-OA3 are used on the peripheral, they should be buffered before the
"through” connector.

iii) PDET should not be connected to 5VS, but brought straight through the
peripheral.

iv) The 1/O locations 8070-807F should not be used so as to provide compatibility
with terminating peripherals using these locations (such as DIP serial and parallel
peripherals). 807Ch can be used as stated in vi) below.

v) "Through” peripherals risk crashing the system bus as virtually no buffering exists.
It is therefore recommended that these peripherals are only inserted or removed
from the Portfolio when powered down.

vi) To ensure that ROM extensions on terminating peripherals function correctly,
through peripherals which contain a memory card interface must supply logic that
follows the following rules:

* A write of zero to /O 807Ch will cause NCC1 to be directed to the through
expansion port.

* A write of one to /O 807Ch will cause NCC1 to be directed to the peripheral
memory card interface.

2.7.3 Allocation of Peripheral ID (PID) bytes
The PIDs have currently been allocated as follows:
PID PERIPHERAL

00h Communication Card
O1h Serial Port
02h Parallel Port
03h Printer Peripheral
04h Modem
05-3Fh Reserved
40-7Fh User Peripherals
80h File-Transfer Interface
81-FFh Reserved

For custom user peripherals a specific PID can be allocated by contacting the Atari
Portfolio Product Manager in writing, describing the use of the peripheral.

2-20

2.8 LCD Display

The Portfolio uses a 240x64 pixel LCD display which uses the "Super-twist"
technology. This corresponds to 8 lines of 40 characters text display.

The circuit includes a graphics LCD screen controller with dedicated screen RAM
chip and character set ROM, used in such a way as to be compatible as possible
with an IBM Monochrome Display Adapter (MDA). (See section 3.7 for more
details.)

The LCD circuit has the following characteristics:

* Full IBM PC Extended character set (see Appendix B)

* Virtual 80x25 MDA screen page with various screen modes

* PC-BIOS compatible pixel Set/Reset for graphics

* Each character is implemented as an array of 6x8 pixels

* Software controlled contrast

* Block or underline cursor

Note: Screen text attributes and various cursor modes are not supported by the
Portfolio.

2-21

-l ————

3 SOFTWARE
3.1 General Description
3.1.1 Overview

The Atari Portfolio software is contained on ROM and predominantly executes from
ROM, and hence minimizes the use of RAM. This software provides as much PC
compatibility as possible given the hardware constraints. (See sections 3.2 and 3.4
for BIOS and DOS comparisons.)

This software also includes some more advanced features which enable the
Portfolio to be used more effectively in a portable environment than a standard PC.
Most of these software features are accessed using Interrupt 61H, the Atari Portfolio
specific functions. (See section 3.3.1.)

To aid development of application software for the Atari Portfolio which require the
use of these specific functions there is a TSR (Terminate and Stay Resident)
Emulator program for the IBM PC. This program emulates most of the functions.
(See section 3.10 for more information.)

3.1.2 Portfolio Programming

The Portfolio obeys IBM’s own programming guidelines for PC compatibility,
however these are a lot more flexible than the industry-standard definition of a
‘clone’ PC.

Most 'well-behaved’ PC programs run with no problem on the Portfolio, provided
that they do not go below the BIOS to directly use the hardware. The main
development issues are the screen size and memory capacity. Below are the
various points to take into consideration when developing a program for the
Portfolio.

SCREEN - (See also section 3.7.)

The Portfolio has a 40 column by 8 line text display which uses video RAM at the
same address as the PC Monochrome Display Adaptor (MDA) and uses the same
character set. However the Portfolio LCD controller does not support text attributes
such as bold, underline and reverse or the various cursor sizes. If you want to use
the Portfolio graphics facility then use the standard BIOS pixel read and write
interrupt.

MEMORY - (See also section 2.2.)

The Portfolio has an internal memory disk C: which can be configured in 8KB
intervals, minimum 8KB. This leaves a maximum of 116 KByte usable RAM of which
10 KBytes are used by the operating system and BIOS. Therefore it is recommended
that programs should not use more than 100KBytes of system RAM. If you want to
use the built-in 'pop-up’ applications with the external program then allow for some
free RAM (minimum of 17 KBytes).

MEMORY CARDS - (See also section 3.6.)

These memory cards appear to a DOS program like a standard floppy disk. The
Portfolio has DOS resident all of the time and therefore does not need to boot from
a disk. If you want to automatically boot into a program then you can put
AUTOEXEC.BAT on a memory card, overriding C\AUTOEXEC.

RS232/SERIAL - (See also section 4.1.)

The only compatible method for accessing the serial port is through the BIOS.
However most off-the-shelf serial programs go directly to the hardware.

KEYBOARD- (See also section 3.2.1.)

The Atari Portfolio supplies full IBM PC scan-code compatibility provided access is
through the BIOS. In other words it is possible to generate every keypress or
combination that a standard PC can generate (SHIFT, CTRL, ALT, NUM PAD). ltis
also possible to generate other non-PC key combinations necessary for functions
such as contrast and switching off.

POWER - (See also section 3.8.)

For power conservation, it is recommended that programs are designed which do
not poll the keyboard continuously.

ADVANCED

There are also more advanced features which enable custom programs for the

Portfolio to perform more sophisticated tasks, such as running programs directly
from the memory cards (section 3.6), peripherals with built-in software on ROM

(section 3.5), language information and access to the built-in tone dialler.

3-2

3.1.3 Troubleshooting
Running well-behaved standard off-the-shelf PC Programs:

* Make sure that the DISPLAY SETUP (see user manual) is set to Static PC for
External programs.

*If the program writes directly to Video RAM then ensure that DISPLAY REFRESH
is set to KEYBOARD or FAST TIMED, whichever is more appropriate.

* Endeavor to allocate enough system RAM.

Although many popular programs are 'well-behaved' there are also many programs
which directly address the hardware. This can cause a problem on the Portfolio as
the IO addresses are different. The most common of these incompatibilies occur
with the keyboard and hardware interrupts. The Portfolio does not have a
Programmable Interrupt Controller (PIC) or a dedicated keyboard controller,
therefore some programs which access these such as Basic and XTALK will not
function correctly. The Portfolio also uses a different Timer Tick than a PC which
affects some 'dirty’ programs such as Sidekick. Another hardware area that differs
on the Portfolio is the use of the speaker, which should be accessed using the
BIOS.

S~

3.2 Differences Between Portfolio BIOS and IBM PC BIOS

For the purposes of this document, Portfolio BIOS is defined as the program which
communicates between the DOS and the hardware. (See recommended books in
section 1 for more information on the standard PC BIOS.)

There are a few differences between Portfolio BIOS and the standard IBM PC
BIOS. These are generally in areas where the hardware differs to such an extent
that complete compatibility is unobtainable. For example, in the Video Services (Int
10H) the Portfolio only has two screen modes; 80 by 25 Text and 240 by 64
Graphics.

3.2.1 Interrupt differences

The following list highlights the main differences between the DIP BIOS and IBM PC
BIOS:

Int09H Keyboard
The Portfolio keyboard is not at the same |O address as a standard IBM
PC, therefore any program which requires the keyboard to be at port 60H
will not work correctly.

Int 10H Video Services
Service 00H, Mode 07 to 0AH are supported, but only in Text or Graphics
mode. Service 01H, Cursor size is set to either block or u/line. (See
section 3.7.)

Int 13H Disk
The Portfolio has modified Memory Card/Disk services 0 to 05H and 83H.
(See section 3.3.2 for more details.)

Int 15H Extended
No Extended services are available.

Int 16H Keyboard
Only service 0, 1, 2, 4 are supported.

Int 18H BASIC
Not supported.
int 1AH Clock

Only services 0-07H supported.

Int 1CH Timer tick
Invoked less frequently than IBM PC (see section 3.3.1).

3-4

3.2.2 Portfolio BOOT procedure

On a COLD boot (batteries removed, COLD Reset switch pressed, then batteries
replaced), the BIOS executes a limited Power On Self Test (POST) to verify system
integrity. This will destroy data in system memory (both programs in the Transient
Program Area and those on internal drive C:). The Portfolio system then performs
BIOS and DOS initialization before jumping to the COMMAND processor. This will
always reset the machine unless there is a hardware fault.

On a Hardware WARM boot (WARM Reset switch pressed or batteries replaced
without pressing the COLD Restart switch), the Portfolio performs BIOS and DOS
initialization before jumping to the COMMAND processor.

On a Software WARM boot (Ctrl-Alt-Del on keyboard), the sequence of operations
is similar to those for a Hardware warm boot. The difference between the two is that
a Hardware warm boot also resets the ASIC and Processor which may be
necessary if the interrupts have been disabled because the keyboard will not
recognize user key presses.

3-5

3.3 System Specific BIOS

3.3.1 Int 61H - DIP extended BIOS services

Function Description

OH Service Initialization

7H Format Credit Card Memory (CCM)
8H Get size of Internal disk

aH Format Internal disk

BH Determine if CCM present
DH Get Screen size

EH Get/Set Screen mode

FH Get/Set Cursor mode

10H Get/Set virtual screen position
11H Move virtual screen position
12H Screen refresh

15H Sound generation

16H Melody tone

17H Dial number

18H Mute states

19H Get Serial port parameters
1AH Get Peripheral ID byte

1BH Set Peripheral ID byte

1CH Preset Peripheral 10 data
1EH Get/Set Clock tick speed
1FH Get-key/Tick Screen refresh
20H Disable revectoring of Int 9H
24H Get/Set ROM space state
26H Get/Set Power State

28H Get/Set Language

2CH Get BIOS version number
2DH Turn system off

2EH Enable/Disable status line
30H File transfer via smart cable

Note: There are other reserved Int 6 1H services which are used internally by the
Operating system. It is not recommended that these services are invoked by
applications software, as they may be modified or deleted in future versions of the
software.

Fn O0OH Service Initialization 3.10

Parameters:

AH 00H
Returns:

None

Note: This service should be called once only as part of its initialization by any
application program that intends to use any Int 61H function calls.

Fn 07H Format Credit Card Memory 2.3, 3.6, 3.32
Parameters:

AH 07H

AL Drive number (0 or 1)
Returns:

CF Set if error during format

AH Error code (See INT 13H)

Note: Drive number 0 selects drive A:, and drive number 1 selects drive B:. This
service should not be used to format the internal disk (drive number 2).

Fn 08H Get size of Internal disk 33.2
Parameters:

AH 08H
Returns:

AX Segment Address of disk

BX Size of disk in Kbytes
Fn 09H Format Internal disk 3.3.2
Parameters:

AH 09H

BX Size of disk in Kbytes
Returns:

If CF=1

BX Maximum size possible (K)

Note: The system is rebooted if successful. All files on drive C: will be lost.

3-7

Fn OBH Determine if CCM present and valid 2.3, 3.3.2, 3.6

Parameters:

AH OBH

AL Drive number (0 or 1)
Returns:

CF=0 Card present and correct

If CF=1
AH Error code (See Int 13H)

Note: This can be used to determine if a valid CCM is in the specified drive. Drive
number O selects drive A:, and drive number 1 selects physical drive B..

Fn ODH Get screen size 2.8,37,21.4
Parameters:
AH ODH
Returns:
AX Physical screen size
DX Logical screen size
Note:

AH/IDH Row number
AL/DL Column number

Fn OEH Get/Set screen mode 2.14,28, 3.7
Parameters:
AH OEH

AL=0 Get mode

AL=1 Set mode

DL New mode
Returns:

If AL=0

DL Mode

If AL=1

DL Old mode

Note: The mode is changed by setting one of the following mode bits in DL:

Clear bits (00H)80 by 25 mode
bit 0 (01H) 40 by 8 mode

bit 1 (02H) Tracked mode

bit 7 (80H) Graphics

These bits are mutually exclusive. When changing to 40 by 8 mode, if the
cursor position or virtual screen origin is off the screen, then the virtual
screen origin will be set to (0.0), the Screen cleared and cursor homed.

Fn OFH Get/Set Cursor mode 2.1.4,2.8,37
Parameters:
AH OFH

AL=0 Get mode

AL=1 Set mode

BL New Cursor mode

AL=2 Force mode
Returns: If AL=0

BL Cursor mode

if AL> 0

BL Old Cursor mode

Note: Cursor mode is as follows:

0 Cursor off
1 Underline
2 Block

Force mode automatically sets the BIOS cursor size to reflect the Keyboard
Numlock state.

3-9

Fn 10H Get/Set virtual screen position 2.1.4, 2.8, 3.7

Parameters:
AH 10H
AL 0 Get position
AL 1 Set position
It AL=1
DH Row number
DL Column number
Returns:
If AL=0
DH Row number
DL Column number

Note: The virtual screen position is the top left origin of the 40 by 8 window on the
logical screen.

Fn 11H Move virtual screen position 2.1.4, 3.7
Parameters:
AH 11H
AL Number of lines to move cursor
DL Direction to move cursor
1 Up
2 Down
3 Left
4 Right
Returns:
None

Note: This moves the origin of the virtual screen within scroll margins. It only works
if in Static or tracked mode, and has a similar effect to pressing the Alt-
Cursor keys.

Fn 12H Screen refresh 2.1.4,6 2.8, 3.7
Parameters:
AH 12H

Returns: None

Note: This service copies the contents of the Video RAM to the LCD controller,
and is slightly faster than invoking Int 10H service O.

Fn 15H Sound generation

Parameters;
AH
AL

Returns;:
None

15H

Sub service:

0 Key-click
1 Beep

2 Alarm

Fn 16H Melody tone generator

Parameters:
AH
CX
DL

30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
29H
3BH
3CH
3DH
OEH
3EH
2CH
3FH
04H
05H
25H
2FH
06H
07H
Returns:
None

16H

Length of tone in 10 mSecs intervals
Tone code (See below)

D#5
ES
F5
F#5
G5
G#*5
AS
A#*5
BS
C6
C#*6
D6
D#6
E6
F6
F*#6
G6
G*6
AB
A*6
B6
C7
C#7
D7
D#7

622.3 Hz
659.3 Hz
698.5 Hz
740.0 Hz
784.0 Hz
830.6 Hz
880.0 Hz
932.3 Hz
987.8 Hz
1046.5 Hz
1108.7 Hz
1174.7 Hz
1244.5 Hz
1318.5 Hz
1396.9 Hz
1480.0 Hz
1568.0 Hz
1661.2 Hz
1760.0 Hz
1864.7 Hz
19755 Hz
2093.0 Hz
2217.5 Hz
2349.3 Hz
2489.0 Hz

3-11

2.15

2.1.5

Fn 17H Dial humber 2.1.5

Parameters:
AH 17H
DS:S|I String of characters
CX Length of string
Returns:
None

Note: String to be in ASCII. Valid charactersare: 0123456789 ABCD*#,
Letters must be in upper case.

Fn 18H Mute states 2.15
Parameters:
AH 18H
AL 00 Get mute state
01 Set mute state

02 Get key click state
03 Set key click state
04 Get bleep state

05 Set bleep state

06 Get alarm state

07 Set alarm state

08 Get DTMF duration
09 Set DTMF duration

IfAL= 1,3,5,70r9
DL 0 Off (Muted)

1 On
Returns:
IfAL= 0,2,4,60r8
DL 0 Off (Muted)
1 On
Fn 19H Get Serial port parameters 2.7,4.1,35
Parameters:
AH 19H
DX Serial port number
Returns:

If AH=0, Composite parameters in AL
If AH<>Q, Error

Note: This service returns composite parameters identical to those used by Int 14H
Service 0 (Initialize).

3-12

Fn 1AH Get Peripheral ID byte 2.7, 35

Parameters:

None

Returns:

Note;

AH Peripheral ID byte
AL 0 if no peripheral installed

This returns the peripheral ID code for the current terminating peripheral.
(See Fn 1BH.)

Fn 1BH Set Peripheral ID byte 2.7, 3.5
Parameters:
AH 1BH

AL=0 Set Serial ID
AL=1 Set Parallel ID
DL Current peripheral ID

Returns;

Note:

None

There may be peripherals designed that contain circuitry that is similar to the
Serial or Parallel peripherals. In order that these peripherals may use existing
BIOS services they must identify themselves as being software compatible.
DL should be set to the Peripheral ID code. (See Fn 1AH.)

Fn 1CH Preset/Return Peripheral data 2.7, 3.5, 4.1
Parameters:
AH 1CH

AL=0 Preset Data values
AL=1 Return Data values

BH Table entry number
It AL=0

BL Data value

DX IO address

Returns:

It AL=1

BL Data value

DX O address

Note: This service is used to preset peripheral IO data in a table associating an 10
address with a data value. Service 0 will actually output the data to the
specified 1O locations. On Power-up, the table entries will be scanned for
non-zero |0 address values, and the associated data will be written out. This
would typically be used to restore Interrupt numbers following Power-up. The
first four table entries out of 10 max are reserved.

Fn 1EH Get/Set Clock tick speed 2.4, 3.8
Parameters:
AH 1EH
AL Subservice
0 Get speed
1 Set speed
If AL =1
BX Clock tick speed
0 Tick every 128 seconds
1 Tick every second
Returns:
ifAL=0
BX Clock tick speed
0 Tick every 128 seconds
1 Tick every second

Note: 1 sec speed uses much more power.

3-14

Fn 1FH Get-key/NMI invoked screen refresh 2.8, 37,38

Parameters:
AH 1FH
AL=0 Get refresh state
AL=1 Set refresh state

It AL=1
DX New state
Returns:
If AL=0
DX Current state
If AL=1
DX Old state
Note:
DH Refresh on NMls state
DL Refresh on keys state

DH/DL=0 Revectoring disabled
DH/DL=1 Revectoring enabled

If bit 7 of the state is set, then the state is unchanged.

Fn 20H Disable revectoring of Int 9H 3.2
Parameters:
AH 20H

AL=0 Get revectoring of Int 9H state
AlL=1 Set revectoring of Int 9H state

If AL=1

DL=0 Disable revectoring

DL=1 Enable revectoring
Returns:

If AL=0

DL=0 Revectoring disabled

DL=1 Revectoring enabled

Note: This is used to automatically revector Int 9H to the BIOS. This prevents
applications software from setting up its own Int 9H. Note that the Portfolio
keyboard 10 address is not IBM compatible. This service is automatically
invoked on a boot.

3-15

Fn 24H Get/Set ROM/CCM space state 2.2.4

Parameters:
AH 24H
AL=0 Get ROM state
AL=1 Set ROM state

If AL=1

DL New ROM state

DH New CCM state
Returns:

If AL=0

DL Current ROM state

DH Current CCM state

if AL=1

DL Old ROM state

DH Old CCM state

Note: ROM state in DL is as follows:

DL=0 Normal applications ROM
DL=1 CCM Drive A:

DL=2 CCM Drive B:

DL=3 Expansion ROM

CCM state in DH is as follows:

DH=0 CCM Drives Disable(d)
DH=1 CCM Drive A: Permanently enable(d)
DH=2 CCM Drive B: Permanently enabie(d)

CF=0 No error
CF=1 invalid option or error

Note: This service should be used with care, as it can swap either Memory cards
or an extension ROM into the C000:0 to ODFFF:F address range. This range
is normally used by the internal applications ROM. lts primary use is to allow
advanced users direct access to extension ROMs and Memory cards.

Fn 26H Get/Set Power control 2.1.10, 2.5, 3.8

Parameters:
AH 26H
AL=0 Get Power control state
AL=1 Set Power control state

If AL=1

DL New state
Returns:

If AL=0

DL Current state

it AL=1

DL Old state

Note:
DL=0 Normal Power-down on low battery
DL=1 Prevent Power-down but display warning
DL=2 Prevent Power-down with no warning

This is used to prevent the Portfolio from powering down on a low battery.
It is not recommended for use except for conditions in which a power down
might be critical to an application or peripheral.

Fn 28H Get/Set Text/Keyboard language

Parameters:
AH 28H
AL=0 Get Languages
AL=1 Set Languages
AL=3 Language table pointers

If AL=1

DX New languages
Returns:

If AL=0

DX Current languages

If AL=1
DX Old languages

If AL=3
ES:CX Keyboard table pointer
ES:DX Language table pointer

Note: DH Text language
DL Keyboard language

Both DH and DL will be 0, 1 or 2, corresponding to the language in the
ROM.

If bit 7 of the language/keyboard code is set, then it remains unchanged.

The tables consist of a count byte, followed by the language identification
codes for the resident languages. These are as follows:

ENGLISH
FRENCH
GERMAN
SPANISH
ITALIAN
SWEDISH
DANISH

oW =0

Fn 2CH Get BIOS version number

Parameters:
AH 2CH
Returns:
DS:BX Address of BIOS version number

Note: The version number consists of a Major and Minor version number, followed
by a '$' terminator. A typical example is: '1.050%'

Fn 2DH Turn system off 2.1.10, 2.5, 3.8
Parameters:

AH 2DH
Returns:

None

Note: This is similar to typing OFF at the command line.

Fn 2EH Enable/Disable system status line

Parameters:
AH 2EH
AL=0H Disable status line
AL=1H Enable status line
DH Row number
DL Column number
Returns:
None

Note: This is similar to invoking the status line using the LOCK key.

3-19

Fn 30H File Transfer services 4.2

Parameters:
AH 30H
AL 0 Transmit block
1 Receive block
2 Open ports
3 Close ports
4 Wait 500mS
DS:DX Start of Data buffer
It AL=0
CX Bytes to Send
If AL=1
CX Maximum buffer size
Returns:
It AL=1

CX Bytes Received

DL Error Code

No error

Buffer size too small
Timeout on transmission
Checksum failure

Invalid sub-service
Peripheral not installed

NP WN -0

Note: This is used by the File Transfer utility built into System Setup.

3.3.2 Disk services

The Portfolio Credit Card Memory (CCM)/Disk services are provided at the BIOS
level by Int 13H.

There are six standard diskette sub-services, plus one special service. These are as
below:

OH Reset CCM/Disk system
1H Get CCM/Disk status

2H Read CCM/Disk sectors
3H Write CCM/Disk sectors
4H Verify CCM/Disk sectors

5H Format CCM/Disk track
83H Write CCM/Disk boot sector

3-20

Services 0 to 4 are similar to standard IBM PC BIOS disk services. They can access
the three internally supported disk drives A, B and C (referred to as drives 0, 1 and
2 respectively).

Int 13H uses the BIOS Parameter Block (BPB) on the Boot sector (first sector) of
the drive to determine the drive characteristics. During formatting, it is necessary to
use a Format BPB, which is supported by service 83H. This service is used instead
of service 5H to format the first track of a CCM/Disk.

The parameters to service 5 are unlike those on a normal PC as detailed below:

Int 13H Fn 5H
Parameters:

AH 5H

DL Drive number

DH Side/Head

CH Track number
Returns:

CF=1 Error code in AH

Note: Writes defined byte onto one track of CCM. Byte is
specified in the Disk base table.

The Disk base table is similar to that used by an IBM PC. The table for both CCMs
is pointed to by interrupt 1EH, and the table for the internal disk is pointed to by
interrupt 41H. The format of both disk base tables is as below:

Ofiset 03H Bytes per sector code (0=80H, 1=100H, 2=200H)
Offset 0AH Format data bytes (Normally F6H)

During formatting using Interrupt 6 1H (see section 3.3.1), the CCM/Disk sector size
is dynamically set according to the disk size. See below:

Disk size Sector size

0 to <=32 Kbytes 80H/128 bytes per sector
>32 to <=64 Kbytes 100H/256 bytes per sector
>64 Kbytes 200H/512 bytes per sector

This ensures that a small disk size allows a reasonable number of sectors. Since
Portfolio DOS allocates one sector per data cluster, this allows the same number of
small data files on a 32K CCM as a 128K CCM.

3-21

There are various Int 61H services that provide extended disk services (see section
3.3.1.):

Int 61H Fn 7H Format a CCM

int61H Fn 8H Get the size of the Internal Disk

Int 61H Fn 9H Format the Internal disk

Int 61H Fn OBH Determine if a valid CCM is present.

Note: A CCM may also contain a BIOS extension which does not affect the
operation of the CCM, but can modify the Operating system or Power-down/Power-
up sequence. (See section 3.5.)

3-22

3.4 Differences Between Portfolio DOS and MS-DOS

For the purposes of this manual, Portfolio DOS is defined as the program which
communicates between the Command processor or User application, and the BIOS.
It does NOT include the Command processor. (See recommended books in section
1 for more information on the standard MS/PC-DOS.)

There are a few differences between Portfolio DOS and MS-DOS. These are mainly
enhancements to Portfolio DOS 2.11 to make it more DOS 3.XX compatible:

Int 21H Fn 37H Get/Set Country
Portfolio DOS is DOS 3.XX compatible

Int 21H Fn 4BH Execute program
As well as providing standard EXEC services it also allows a program to be
RUN directly off a CCM (section 3.6.3).

int 28H Keyboard busy
Not supported. This would normally be called during console |0 polling,
however Portfolio DOS does not poll the console, but actually waits for a
key using Int 16H Fn OH. (See section 3.8 on power management.)

Int 2AH Internal MS-DOS function not fully supported

3-23

3.5 Device Drivers and Peripheral Software

3.5.1 Device Drivers

Device drivers are used by DOS to communicate with the BIOS. They provide a
standard interface which isolates the DOS from the device specific BIOS. The

Portfolio has the following resident device drivers in ROM:

CON, CLOCKS, PRN, LPT1, AUX, COM1 and Disk driver

CON performs all Console IO

PRN/LPT1 perform all Parallel (Printer) 10
AUX/COM1 perform all Serial 10

CLOCK$ special driver to access the BIOS Clock

These are all character devices that process strings of characters one character at a
time. They are all identified by their names.

The Disk device driver is a Block device which requires all IO to be done in blocks. It
addresses all the normal Portfolio disk drives (A, B and C). It has no name.

It is possible to replace these resident device drivers (and add new ones) by the use
of installable device drivers. These may be loaded by DOS using the 'DEVICE=’
command in CONFIG.SYS. If a character device is loaded that has the same name
as one of the above device drivers, then it replaces it. This mechanism is used by
programs such as ANSI.SYS which is actually a CONsole device driver with added
features.

If a Block device driver is added, it supplements the existing Disk device driver. An
example of this is the Virtual disk driver VDISK.SYS, which would add drive D:.

The structure of an installable device driver is compatible with any MS-DOS 2.11
device driver.

3-24

3.5.2 Peripheral Design

There is a special design issue associated with Portfolio peripherals, due to the
Portfolio auto power-down power conservation feature. This means that most
peripheral devices will need to be re-initialized on power-up. (See Appendix C for
more information.)

There are two methods provided to fulfill this requirement:

1) Int61H Fn 1CH

This service stores a list of |O addresses and associated data values, which will be
output on a power-up. If all initialization specific 10 writes are made via this service,
then they will automatically be repeated on all power-up sequences.

A typical use for this service might be to restore an interrupt number in an interrupt
driven serial peripheral.

2) Use a ROM extension. This would generally be required when the sequence of
operations during power-up could not be supported by the Int 61H service. This will
require the peripheral to contain an extension ROM. (See 3.5.3.)

There are two exceptions to the above. The serial port parameters are read during
the power-down sequence and correctly re-programmed on the subsequent power-
up. The Parallel port is also initialized on Power up.

Each peripheral is identified to the Portfolio by its Peripheral ID code (PID) (see
section 2.7). This is actually a hardware 1O location on the peripheral which may be
read using Int 61H Fn 1AH.

The other software issue associated with custom peripheral design concerns the
Serial or Parallel peripherals. If the custom peripheral wants to use existing BIOS
services then they must identify themselves as being hardware compatible:

Int 61H Fn 1BH configures the BIOS to recognize a peripheral to be Serial or
Parallel compatible.

3-25

3.5.3 ROM Extensions

ROM extensions are sections of code that can be executed at various stages during
the BOOT sequence, and during Power Up and Power Down. They may be on a

Credit Card Memory (CCM) or on a extension ROM on a peripheral. A typical use of
such an extension is to modify the operating system or initialize custom peripherals.

There are three main types of extensions: A Specific BIOS extension, a Specific
DOS extension, and Common extensions:

* The Specific BIOS extension is invoked after BIOS initialization.

* The Specific DOS extension is invoked after DOS initialization.

* The Common extension is invoked before and after both BIOS and DOS
initialization, before Command processor initialization and during Power-Down and
Power-Up.

The ROM extensions are searched for on Drive A, then the extension ROM and
then Drive B. If a valid extension is found and executed, then the search for that
particular type of extension is terminated.

The format of a ROM/ICCM extension is as follows:

Offset Size

00H dw ? .Identification code

02H db ? :Number of 512 byte
:blocks(unused)

03H db 5 dup (?) :Specific BIOS/DOS exten.

40H db 'DIP ROMIY ;OEM user text

50H db 5 dup (?) :Pre-bios jmp vector

55H db 5 dup (7) :Bios-ext jmp vector

5AH db 5 dup (7) :Pre-dos jmp vector

5fH db 5 dup (?) :Dos-ext jmp vector

64H db 5 dup (?) :Post-dos jmp vector

69H db 5 dup (7) ;Power-Down jmp vector

BeH db 5 dup (?) :Power-Up jmp vector

The extension vectors occupy the first 128 bytes of the CCM/ROM. The vectors are
positioned so as to allow a valid BIOS Parameter Block (BPB) on a CCM so that it
can be used both as an extension CCM and as normal. The Identification code at
Oftset 0 determines the main extension type as below:

AA55H :Specific BIOS extension
55AAH :Specific DOS extension
5555H ;Common extensions

3-26

Thus, if the word at Offset 0 is AA55H, then after BIOS initialization a FAR CALL will
be made to Offset 3. The 5 bytes following this offset allow for a short/normal/far
jump to the extension code. If the word was 55AAH, the call would be made after
DOS initialization. If the word is 5555H, then all the common extensions would be
called at the appropriate times.

Note: All the jump vectors must be set up to a suitable return when using a
common extension, even if they are not used.

All ROM extensions must preserve the processor registers. Extreme care must be
taken when using extensions, especially those which are invoked half way through
the boot sequence, as these may adversely affect the operation of the Portfolio. The
Pre-BIOS extension is called almost immediately on jumping from the Reset vector,
and so has no stack set up. It must return via a FAR JUMP to OFFFE:OH. All the
other extensions must return via a FAR RET. It is recommended that the Post-DOS
extension is used in preference to those preceding it.

The OEM user text field at Offset 40H is to allow an OEM to identify the ROM.

See Appendix C for examples of using an Extension ROM.

3-27

3.6 Memory Cards
3.6.1 Format

Each credit card memory (CCM) must be formatted before use, this program
creates a format analogous with a standard floppy disk format.

All formatted memory cards contain only 1 sector per cluster as opposed to the 2 or
more found in larger systems. (See section 3.3.2 for more details.)

The Atari Portfolio BIOS has been written to handle future paged Credit Card
Memories (CCM). The BIOS assumes that the page register, is one byte located at
offset 10 (OAH) within the Boot sector (First sector) of the Memory card. For this
reason DO NOT use this memory location in programs.

3.6.2 Autoboot Mechanism

The Portfolio has the ability to invoke AUTOEXEC.BAT from drives other than drive
C..

If a memory card is in drive A: or B: and AUTOEXEC.BAT file exists, it is executed

in preference to autoexec on C:. B: will have priority over A: if an AUTOEXEC.BAT
exists on both A: and B:.

If it is required that the AUTOEXEC.BAT on drive C: is always executed, terminate
the batch file on drive A: with the command:

C:AUTOEXEC

The CONFIG.SYS file is always loaded from drive C: and cannot be overridden.

3.6.3 Run

A RUN file is a specially written program that can be directly executed from a Credit
Card Memory (CCM) without having to be loaded into the Transient Program Area
(TPA). An obvious advantage of this method of execution is that it minimizes system
memory usage.

A RUN file can be executed from the Command processor by typing RUN

<filename>, or by invoking Int 21H Fn 4BH at the DOS level as for a normal
program, but with AL set to 80H.

3-28

There are several requirements for the programs which can use the RUN command:

* The program needs to be specially written to be used with the RUN command.

* The program needs to be on drive A: or drive B: and it needs to occupy
consecutive clusters on the disk. This situation cannot be guaranteed if a file is
simply copied to the drive.

* The file needs to have a .RUN extension.

Writing .RUN Programs

Almost all standard programs assume either that their data is in system RAM, or that
they can store data in their code segment. Although a .RUN file is similar to a .COM
file, care should be taken when dealing with data.

The initialization code of the .RUN program has to perform the following (these
points are illustrated in Appendix A):

* Reduce the system memory usage down to the minimum requirement. There must
be at least 10h paragraphs, i.e. the size of the PSP.

* Allocate data and stack using DOS interrupt 21h fn 48h and set ss:sp to point to
this block.

* Copy all initialized variable data from the memory card to the allocated data block
in system RAM.

* The program can then perform most functions it wishes to, including any DOS
calls. The program MUST terminate with DOS interrupt 21h function 4Ch
"terminate process".

* The program does not need to copy the non-variable (constant) data from the
ROM card into RAM before using it. This data can be used directly from the card.
This means prompts or text messages need not take up any RAM.

The built-in applications can be invoked while a program is being RUN using the hot
keys as usual.

If during execution of a RUN file the Credit Card Memory (CCM) is removed from
the drive, the next instruction to be executed on the card will be interrupted by an
error handler. This displays the error message: 'ERROR: Card Access’ and
terminates the process. A RUN file may not EXEC another file from within itself.

Appendix A provides an example of a RUN program which illustrates how to
program a typical RUN program.

3-29

3.7 Screen Handling

The Portfolio BIOS supports two main Video modes, Text and Graphics. The BIOS
Video Interrupt 10H may be used to set the screen mode:

Mode Type PC Resolution Partfolio
Mode 7 Text (80,25) <80,25>
Mode 8 Graphics (160,200) <160,64>
Mode 9 Graphics (320,200) <240,64>
Mode A Graphics (640,200) <240,64>

As can been seen, the Portfolio interpretations of these modes is fairly simple.

The Text modes are actually viewed using a 40x8 window. There are 3 sub-modes:
Static PC, 40x8 and Tracked.

Static PC mode is where the physical screen area acts as a window onto the larger
80x25 text screen. The window may be moved using the Alt-Cursor keys, or Int 6 1H
Fn 11H.

40x8 mode actually sets the logical screen size to 40 columns by 8 rows. This mode
is intended for use by software written specifically for the Portfolio, such as the the
Command processor and the Internal applications.

Tracked mode is similar to static mode, except that the Screen window positions
itself at the cursor.

This mode can be set using Int 61H Fn OEH.
The Video RAM (VRAM) for the text screen is at segment 0BOOOH therefore it is
possible to write directly to the Video RAM, but any screen refreshing must be

invoked by the application. There is only one text page.

There are other Int 61H Video services:

Int 61H Fn ODH get the logical and physical screen sizes
Int 61H Fn OFH Set cursor size
Int61H Fn 10H Set the virtual screen window origin
on the 80 by 25 screen
Int61H Fn 12H Force a screen refresh.

In Graphics mode, the Graphics screen has a 240 by 64 pixel resolution and can be
written to or read from using BIOS pixel read/write Int 10H Fn OCH or Fn ODH

respectively. The Atari Portfolio has three cursor modes: Block, Underline and Off. I
the cursor size is set in the BIOS then either Block or underline mode will be set up.

3-30

3.8 Power Management

The Porttolio is designed to minimize power consumption and hence maximize
battery life. This is reflected in the hardware design, but is enhanced by various
software features.

The main power wasting operation in most computers is waiting for user entry at the
keyboard. Once the Portfolio Keyboard BIOS Getkey ready service (Int 16H Fn 0)
has detected keyboard inactivity, it will start to decrement a timeout counter. On
timeout, the Portfolio will enter its power-down sequence. Once powered-down, any
hardware interrupt will initiate a power-up sequence.

This timeout is dependent on whether the machine is set to fast or slow timer ticks
(Int 61H Fn 1FH), but is always between 128 and 256 seconds.

It is important that all keyboard input is done via a DOS or BIOS keyboard service
that waits for a key press. Polling the keyboard continuously will quickly wear out the
batteries. This will be obvious as the Portfolio will never power down.

Another power wasting operation is refreshing the LCD controller from the Video
RAM. If an application writes directly to the Video RAM, then it must be refreshed at
appropriate intervals using Int 61H Fn 12H. It is possible to force a screen refresh
on a keypress or on a timer-tick using Int 61H Fn 1FH. Many applications which run
on the Portfolio, but are designed for the IBM PC require this refresh on keys as
they assume automatic screen refreshing. Refresh on timer ticks is dependent on
the tick speed. This can be set using int 61H Fn 1EH.

Note: The timer tick (Int 8H and Int 1CH) is not the same as the IBM PC timer tick
which occurs 18.2 times a second. It is either generated once every 128 seconds, or
once per second.

As a general rule, an application should avoid refreshing the screen except where
necessary. With refresh on both keys and timer ticks, and with timer ticks set to fast
(i.e. 1 tick per second), the processor spends a lot of its time refreshing the screen.

Generating sounds using Sound generation, Melody tone generation or Tone
dialling (Int 61H Fn 15H, 16H or 17H respectively) can draw a high current from the
Portfolio batteries.

The Alarm will timeout after about 15 seconds to prevent the batteries from being
overly strained.

3-31

All peripherals will add to the power consumption, unless they have their own power
source. It is recommended that an external power supply is used wherever practical
when using peripherals.

During Disk access, Tone generation, Timer tick and on each press of the return
key. the Portfolio checks to see if its batteries are running low. If a low battery is
detected, the Portfolio automatically powers down after displaying a low battery
message. On power up, it will display the same message to indicate to a user the
reason why it powered down.

It is possible to prevent the Portfolio from powering down using Int 61H Fn 26H. This
service must ONLY be used if absolutely necessary, because this may force the
Portfolio to operate outside its electrical specification with possible damage to the
hardware.

3raz

3.9 Special File Formats
3.9.1 Diary saved file format

The built in diary saves its data in a standard ASCI file format. To eliminate different
date formats for different countries, the Diary stores the information in English
format.

Certain information, such as repeat entries and alarm information is saved along
with the diary entries.

The following is an example diary file:

6/07/89
14:14 Technical reference
20:00 Go home

It an entry is a repeating entry, the time is preceded by a code letter indicating the
repeat period. The following table lists the code letters and their associated repeat
periods:

d Daily

w Weekly

n Non weekend, i.e. Mon-Fri
m Monthly

y Yearly

If an alarm is associated with an entry, the '@’ symbol is placed on the line before
the time.

If an entry has an alarm and it is a repeating entry, the repeat symbol preceeds the
alarm symbol.

For example:
6/07/89
@ 20:00 Go home
7/07/89

d 14:48 Hello therel
w@ 18:10 Goto tennis

The first entry is a non repeating entry with an alarm. The second is a daily repeat
and the third is a weekly repeat which will sound the Portfolio’s alarm.

The diary sorts the entries chronologically when it loads any given file.

3-33

3.9.2 System File Formats

There are three files used by the system which obey a standard file format. These
are:

Clipboard (C\SYSTEM\CLIPBORD.DAT)
Undelete (CASYSTEM\UNDELETE.DAT)
Permanent data (CA\SYSTEM\PERMDATA.DAT)

All three files are loaded into RAM when the applications are invoked. Operations
affecting any of the information stored in these files only change the RAM copy. All
three files are written out when the user quits all the applications, i.e. presses
<ESC?> at the top level menu.

3.9.2.1 CLIPBORD.DAT

This is the file which the applications use as the clipboard. It is a single block of data
ending with a zero byte (00h). Carriage returns are stored as 0Dh without the trailing
0Ah Line feed. The maximum size of the clipboard is 8K characters. This must
include the 0 terminator.

If the file does not contain a 00h termination byte, then the file is not loaded into the
clipboard. Similarly, if the file is greater than the maximum number of aliowed
characters, it isn't loaded. In both cases when the file is not loaded, it will be
overwritten with a fresh file upon exit from the application.

If the clipboard has the normal text format of 0Dh,0Ah the file will only load correctly
into the Editor and the Diary.

3.9.2.2 UNDELETE.DAT

The undelete file is used to store all the characters or blocks of data deleted from all
the applications. It is made up of a number of "blocks” of data. Each block
represents a group of characters deleted with one command. The format of a block
is as follows:

<DATA> <00nh> <DIR>

The <DATA> is the character or characters which are deleted. |f a block of data is
deleted containing carriage returns, these are stored as <ODh>, not <ODh><0Ah>.

The 00h byte is used to determine the length of the deleted block.

3-34

The <DIR> is a one byte code indicating in which direction the deletion was made. If
the data was deleted to the left, i.e. using the BACKSPACE key, then this byte will
contain <00h>. If the data was deleted from the right, i.e. using , this byte will
be <01h>.

The maximum number of characters which the undeletion file can contain is 2000. If
the file contains more than this number of bytes, then it will be ignored and replaced
with a new file upon exiting from the application.

If the UNDELETE.DAT file doesn't have the correct format, the effects are
unpredictable. It is likely the data in the file will be inaccessable.

3.9.2.3 PERMDATA.DAT

The format of the system data file is as follows:

Byte(s) Function
in Hex
0 Non zero: undelete buffer enabled.
1 Non zero: undelete buf is saved on exit
2 Non zero: clipboard is enabled.
3 Non zero: clipboard is saved on exit
4.6 Reserved.

Worksheet:
7 Non zero: frame on upon entry.
8..56 Drivel/Path/Name of last used file.
57 0: Autoload last spreadsheet, 0Ofth don’t
58..5b 3 character 0 terminated currency string.
5¢ Initial decimal point, *.’(2eh) or ',’(2dh)
5d Printer default paper width.
5e..60 Reserved.

Diary:
61 Non zero: frame on upon entry.
62..b0 Drive/Path/Name of last used file.
b1..b4 Reserved.

Editor:
b5 Non zero: frame on upon entry.
b6..104 Drive/Path/Name of last used file.
105..106 Top line on screen 0 is first line in file
107..108 Current cursor line no, 0 is first line.
109..10a Cursor: number of bytes into current line.
10b Right margin.
10¢ Non zero: word wrap on.
b0d..10e Reserved.

S35

10f

110.

.15e

151..168

169.

170

171..

1c0

1ct.
1c3..
1cb..
1d6.
1el..
1ec..

17
118
119
ifa

1fb

161

1bf

1c2

ica
1d5

.1e0

ieb
116

{fc..24a

24b.

241
250
251

252.

2d2

2d3
2d4
2d5
2d6

2d7

2d8

2d9

24e

.2d1

Address book:

Non zero: frame on upon entry.
Drive/Path/Name of last used file.
Dial prefix in ASCII, zero terminated.
Reserved.

Calculator:

Non zero: frame on upon entry.

Reserved.

M1 sign: Bit 7 set for negative number.
M1 exp: sighed word, 0:1.000<=mani<2.000
M1 mantissa.

Memory 2.

Memory 3.

Memory 4.

Memory 5.

Format: 0-General, 1-Fixed, 2-Sci., 3-Eng.
Number of decimal places

Separators: 0 - none, non-zero-separators
Decimal point: 0 - '.’, non-zero’,’

Setup:

Reserved.

Drive/Path/Name of printer file destination
Reserved.

Printer dest, O:Parallel, 1:Serial, 2:file.
Lines per printer page.

Printer setup code length.

Setup codes, ASCIl chars, i.e. ESC=1Bh.

End of line code 0 <CR>
1 <CR><LF>
2 <CR><LF><LF>

Number of top paper margin lines.
Bottom paper margin lines.

Left paper margin character indent.
Baud rate 0 110

1560

300

600

1200
2400
4800
9600
None
Odd
Even

7 bits.

8 bits.

1 stop bit.
2 siop bits.

Parity

Data bits

Stop bits

2 O WLUNW=0NOOOPHLWN =

The PERMDATA.DAT file currently contains 730 bytes.

3-36

3.10 IBM PC Development system

The Portfolio contains a few system specific extended BIOS functions which are
accessed using interrupt 61H. If you want to emulate these functions when
developing programs on a standard IBM PC then this is possible by running the
program |6 1.EXE on a PC. This program will remain Terminate and Stay Resident
(TSR) and hence enable you easily develop custom programs. To ensure upward
compatibility of your programs, if you plan to use any 161 functions then make sure
that you use |61 Fn OH first. (See section 3.3.1.)

Int 61H Services supported by IBM hosted version:

Fn No Function description Supported
oH Service Initialization v
7H Format Credit Card Memory X
8H Get size of Internal disk v
9H Format Internal disk X
BH Determine it CCM present X
DH Get/Set Screen size v
EH Get/Set Screen mode v
FH Get/Set Cursor mode S
10H Gel/Set virtual screen position v
11H Move virtual screen position X
12H Screen refresh X
15H Sound generation v
16H Melody tone v
17H Dial number J
18H Mute states v
19H Get Serial port parameters v
1AH Get Peripheral ID byte X
1BH Set Peripheral ID byte X
1CH Preset Peripheral 1O data X
1EH Get/Set Clock tick speed J
1FH Get-key/Tick Screen refresh Ya
20H Disable revectoring of Int 9H V2
24H Get/Set ROM space state X
26H Get/Set Power State X
28H Get/Set Language J
2CH Get BIOS version number v
2DH Turn system off X
2EH Enable/Disable status line v
30H File transier via smart cable J
Key: J Service supported
X Service not supported
2] Service partly supported

8-87

4 PERIPHERALS

4.1 Portfolio Serial Communications

4.1.1 Hardware Specification

Standard:
Line Voltages:
Current Loop:
Connector:

Connector Pin out:

Interface IC:

Base Address of 82¢50:
Interrupt Support:
Divisor Clock:

4.1.2 10 Registers

EIA RS232C compatible

+/- 9V

Not Supported
9 Pin D-Shell Plug (AT compatible)

Pin

OCONdOO & WN —

82C50A

Name

CcD
RD
TD
DTR
GND
DSR
RTS
CTS
Rl

Carrier Detect
Receive Data
Transmit Data

Data Terminal Ready
Signhal Ground

Data Set Ready
Request To Send
Clear To Send

Ring Indicator

Stored at Memory Location 400h
Yes (see below)
1.8432 MHz

Since the same computer interface (with the exception of interrupt handling) is used
on the Portfolio as on the IBM PC/AT, the 10 registers have the same function. The
base address for the serial port may be found by reading memory location 400h in
the BIOS data area. If the value at this address is XXXXh, then the |O registers are

thus:

10 Address
XXXX+0

XXXX+1
XXXX+2
XXXX+3
XXXX+4
XXXX+5
XXXX+6
XXXX+7

R

RIW
RIW
RIW
RIW
RIW
RIW
RIW

Register of 82¢50A

RBR
THR
IER
IR
LCR
MCR
LSR
MSR
SCR

Receiver Buffer Register
Transmitter Buffer Register
Interrupt Enable Register
Interrupt Identification

Line Control Register
Modem Control Register
Line Status Register
Modem Status Register
Scratch Register

4.1.3 Interrupt Support

Since the Portfolio does not contain an 8259 compatible Peripheral Interrupt
Controller, interrupts are handled in a different way than on an IBM PC/AT.

The serial port has register called the Serial Interrupt Vector Register (SIVR). An
eight bit number can be written to this register. This number is the interrupt number
that is to be used with the serial port. For example, writing 10 to SIVR will cause a
call to the double word pointer held at memory address 10*4.

SIVR is at I/O location 807Fh and is write only. It should be set up before 82c50A
interrupts are enabled.

When an interrupt is generated by the 82¢50A, it is passed on to the CPU. If no
other interrupts are pending then the CPU will read the contents of SIVR and
service that interrupt number.

Interrupts are acknowledged by accessing the 82c50A and reading IIR. This will ‘
allow the operation required to service and acknowledge the interrupt to be
determined.

4.1.4 Other Useful Information

To determine whether a serial port is installed, it is recommended that use is made
of BIOS Interrupt 11h - Get Equipment List.

Since the Portfolio will attempt to power down while waiting for a key stroke (INT
16h service 00h), it is recommended that terminal emulation software polls the
keyboard until a key is waiting in the buffer (INT 16h service 01h).

To set up SIVR itis recommended that INT 61h service 1Ch is used:

AH = 1Ch
AL=0 ;set up 1O address
BH=5 10 table entry 5

BL = Byte to write
DX =10 address

Use of this function will ensure that SIVR is always set up correctly (unless table
entry 5 is reused for a different address).

In order to maintain future compatibility it is recommended that on exit from the

program, the table entry used above have its address set to zero. This should be
followed by a write of 2Ah to 1/O 807Fh.

4-2

4.2 Smart Parallel Interface
File Transfer Protocol Description

The IBM PC and many compatibles have uni-directional centronics parallel ports. In
order to allow an inexpensive but useful peripheral it was decided that the Portfolio
parallel centronics port would allow programs to be sent to and from IBM PCs as
well as to a printer. This is accomplished by using a synchronous serial transfer
protocol. Status lines on the IBM PC which can be accessed through the BIOS are
used as inputs on the IBM. The Portfolio parallel port is fully bi-directional.

The file transfer BIOS should be used with the following considerations (see section
3.3.1):

* Before sending or receiving the ports should be opened.
* Sending a block expects the other end to be receiving a block, and visa versa.
* A timeout will occur if there is no answer within 500mS.

* Sending a block will automatically transfer the length of the block. The receiver will
return an error if the buffer is too small.

* On any failure, wait 500mS (to allow the other end to timeout) and attempt to re-
transmit/receive the block.

* A error at one end will normally cause an error at the other, so block order should
not be lost.

* A checksum will be sent with each block to provide simple error detection.

* At the end of the transfer the ports should be closed.

4-3

4.3 IBM PC Card Drive

The IBM PC card drive consists of an expansion bus card and plastic box with a
cable. The expansion card can be used in a IBM PC/AT or compatible. The cable is
used to connect the card to the plastic box. There is a slot in the front of the box that
allows the insertion of a Credit-card memory, as used on the Portfolio.

By running the appropriate block device driver software, the card drive can access
the card in the same way as a normal disk.

The card uses a block of four I/O locations. These are located at a start address

indicated by optional links on the board. When these are changed from the default
setting, the device drive driver must be told of the change in the CONFIG.SYS file.

4-4

4.4 EPROM Writer Adaptor Boards

PROM programming adaptors are available which allow PROM (OTP) memory
cards to be programmed using a standard PROM programmer. The adaptors
convert the PROM card to the same outline as a standard DIL PROM. Use model
HPC-501 to program 512 KBit cards and model HPC-502 for 1 Mbit cards.

When programming the PROM card the PROM programmer should be set up as a
Fujitsu PROM. If however, Fuijitsu settings are not available, some of the other
12.5V PROM programming specifications will also work. The ideal programming
specification is:

VPP 12.5V
64 KByte use 27C512 (Ideally Fujitsu CMOS)
128 KByte use 27C1001 (Ideally NEC CMOS)

Once the correct ROM type has been chosen use the following procedure to make a
copy of a RAM card:

i) Select a PROM card with the same capacity as the RAM card and use the correct
adaptor for the card capacity

ii) Place adaptor in PROM socket of the programmer, ensure that it is inserted the
correct way.

iii) Place RAM card in to adaptor and LOAD the contents in to the programmer
using the relevant option.

iv) Place PROM card in to the adaptor and program as for a normal PROM chip.

WARNING:
1) DO NOT ATTEMPT TO PROGRAM THE RAM CARD

2) Some PROM programmers do not like the power being turned ON and OFF so
remove the cards before switching ON or OFF.

APPENDIX A: EXAMPLE .RUN PROGRAM

Section 3.6 highlights the main design issues to take into account when creating a
.RUN program.

Included on the Portfolio Emulator Disk are the following files:

RNRN.ASM Assembler .RUN program

MAIN.C Example C .RUN Program
RU_C.ASM C Header

BUILD.BAT Creates program using Turbo C tools

The above files illustrate two programs which use the Atari Portfolio .RUN function.

RNRN is an assembler program which prints out the original calling parameters and
then three numbers.

MAIN is a program which illustrates a .RUN program written in C. RU_C.ASM is the
C Header necessary for Borland's Turbo C compiler and BUILD.BAT illustrates how
to create the program using Turbo C tools.

Notes on interfacing ""C” files to the RUN command

For “C” files, several more segments need to be declared to ensure “C” gets the
data and code in the correct positions in the .RUN file. The .COM file is converted
into a .RUN file by renaming.

RU_C.ASM is the header which can be used to interface to a “C” program. If “C”
source files are being used without any provided “C” libraries then the file RU C
can be used as the header directly. If library code is required the header will need to
be enhanced to perform the necessary library initialization.

The RU_C.ASM header works with Turbo C and can be used as a guide to
modifying other "C” headers used by different “C” compiler libraries.

Most “C"” headers supplied with "C" compilers can be assembled for different

memory models. The example code in RU_C.ASM needs to be placed in the “C”
startup header and assembled for the SMALL model.

Run Files Greater than 64K

To build a .RUN file with a code size greater than 64K it is necessary to have more
than one code segment. One way to achieve this is to build the program using the

A-1

TITLE RNRN.ASM

comment *
(c) Copyright DIP, 1989

Example .RUN program

*

DGROUP group _text, data, cdata

STACKSIZE equ 400

; code segment.

_text segment public byte 'CODE'
assume cs:_text,ds: data

org 0

; byte in stack.

; IP is 0 on entry.

*K\KH"X‘S**‘x’_********ﬁtl’l***?*‘t*’Ii‘l*l*it*tttiﬂt**tﬂl*“*l‘l‘ Ekhhkkkkhk kR Wk o

; rnrn_main

RUN command test routine.

On entry, DS, SS and ES all point to the PSP in RAM.
: CS is a ptr into the credit card, so may actually be in ROM!

: process.

Parameters:

- None
Returns:

None

l'\l'l'l-de***t****t*****y***li*tit***V(****\I*\lx*kk*i*tl*i’*t***t\lttxk**\itt**i*-

; when this routine is executed, the whole of RAM is allocated to the

10h paras to keep the PSP.
modify memory.

; error reducing memory.
: alloc for initialised data,
; uninitialised data and a
: stack.
; calc paras in init data area.
; add in paras in stack.
; allocate memory.
; allocate stack and data.
; na memory.

; set stack to point to RAM.
; preserve PSP pointer.

: bytes in initialised data.
copy from here.
: source is on memory card.

: target is allocated RAM.

: copy init data from card to RAM.

; restore PSP ptr.

rorn_main proc near
mov bx, 10h :
mov ah,04ah i
int 21h
jc rorn_err :
mov bx,0FFSET rnrn_uend
sub bx,0FFSET rnrn_dstart
add bx,0fh
mov cl.4
shr bx,cl
add bx,STACKSIZE/16
mov ah,48h
int 21h
Jc rorn_err
mov 55, ax
mov sp,OFFSET rarn_uend+STACKSIZE
push es
mov cx,0FFSET rnrn_dend
sub cx,0FFSET rnrn_dstart
mov $i,0FFSET DGROUP:vrnrn_dstart i
push cs
pop ds
xor di,di
mov es,ax
cld
rep movsb
pop es
mov si,5dh
mov cx, 11

A-2

rarn_fcbl:
mov
inc
mov
int
lToop

mov
mov

rorn_fcb2:
mov
inc
mov
int
loop

push
pop

mov
call

inc

mov
call

nov
mov
call

xor
Jmp

rarn_err:
mov
push
pop
nov
int
mov

rarn_end:
push

mov
int
pop
mov
int

rnrp_main

o ok R ok o R e e o e

rarn_disp

; Parameters:
: AL

: Returns:
) None

.
-***-
'

proc near

rarn_disp
aam
add
push

moy
mov
int

dl,es:[si]
si

ah,2

21h
rarn_fcbl

si,6dh
cx,11

dl,es:[si]
si

ah,?

21h
rnrn_fcb2

ss
ds

al,_rnrn_val
rarn_disp

_rorn_val

al, rorn_val
rnrn_disp
rnarn_unin, 44
al,rnrn_unin
rorn_disp

al,al

short rnrn_end

dx,0FFSET DGROUP:rnrn_mem

cs
ds
ah,9
21h
al,1

ax

ah,1
21h

ax
ah, 4ch
21h

endp

Vatue to print, less than 100.

ax,3030h
ax

dl,ah
ah,?
21h

.
.
.
.
'

-

get char from fCB built into PSP.

print name of first parsed FCB.

print name of second parsed FCB.

DS is ptr to data in RAM.

get initialised data.
display the value.

get changed data.
display the value.

set a piece of uninitialised data.
get uninitialised data.
display the value.

return errorlevel of 0.

; write directly from ROM card!
; write string.
; tell user there was memory error.

terminate with error code of 1.

save errorlevel code in al.

wait for a key,

get errorlevel code back.
terminate process.

L T Y T Tttt it

A-3

Display the value in AL with a trailing space.

.

'
.
'

"

s me ms ome ome oaa

convert to two numbers.

; convert to ASCII digits '0'..'9".

save to print 2nd char.

; print 1st digit.

pop dx

mov ah,?2 ; print 2nd digit.
int 21h
mov dl,' '
mov ah,? ; print a space.
int 21h
ret

rorn_disp endp

_text ends

initialised and uninitialised RAM data.

: this is para since the segment will start at zero when it is copied
; over into RAM

~data segment public para 'data’

rorn_dstart fabel byte
public rnrn_val
_rnrn_val db 42
rorn_dend label byte
rorn_ustart label byte ; uninitialised data start.
rarn_unin db ?
rorn_uend label byte ; uninitialised data end.

. the stack is added on here, after initialised and uninitialised data.
_data ends
_cdata segment public byte ‘data’

: initialised data which doesn't get transferred to RAM.
rorn mem db "Qut of memory$"

cdata ends
end rorn_main

b MAIN.C
Copyright DIP Ltd, 1989

RUN file 'C' interface main program.

*/
char buf[2]; /* this is BSS, unitialised. */
char *str="Hello world"; /* this is DATA, initialised. */
unsigned int _ brkivl; /% required by Turboc library. */
int main()
puts(str); /% print initialised hello. */
buf[0]="1"; /% initialise uninitialised data. */
buf[1]=0;
puts(&buf[0]); /% print uninitialised data. */
return(0);

void exit()

/x0T

Dumny exit function required for the Turboc libraries.
ol

{}

A-5

TITLE

comment

RU_C.ASM

*

Copyright DIP Ltd., 1989
'C' header for creation of .RUN files.

Memory usage:

Segment and Group declarations

; code and fixed data (less than 64k).

_TEXT
_TEXT

SEGMENT BYTE PUBLIC 'CODE'
ENDS

; code ends (marker segment)

_TEXTEND
“TEXTEND

SEGMENT BYTE PUBLIC 'CEND'
ENDS

; initialised data transferred into RAM.

_DATA
DATA

SEGMENT PARA PUBLIC 'DATA'
ENDS

: uninitialised data which is allocated space in RAM.

'BSS
“BSS

SEGMENT WORD PUBLIC 'BSS’
ENDS

; uninitialised data end (marker segment).

_BSSEND
“BSSEND

SEGMENT BYTE PUBLIC 'STACK'
ENDS

DGROUP GROUP _DATA, BSS, BSSEND : dgroup is all data segments.

ASSUME CS: TEXT, DS:DGROUP

extrn _main:near ; main 'C" routine.
STACKSIZE equ 128 ; stack size in bytes.
: At the start, SS, DS and ES all point to the program segment prefix.
: CS is a ptr into the memory card.
_TEXT SEGMENT
org 0 ; ip is zero on entry.
start proc near ; near is irrelevant, use fn 4c to
; terminate.
mov dx,ds : ensure DS:0 is ptr to Ist data byte.
add dx, 10h
mov ds,dx

mov bx, STACKSIZE
add bx,of fset DGROUP:edata ; bx has bytes of reqd RAM.

push bx : this will be stack ptr.

shr bx, 1

shr bx, 1

shr bx,1

shr bx,1

add bx,11h : 10h for PSP, 1 for rounding.

A-6

mov ah, 4ah
int 21h ; reduce RAM to required RAM,
ic abort ; can't reduce.
pop bx ; get calc'd p back.
mov ax,ds
mov SS,ax ; stack is in RAM.
mov sp, bx
push ds
pop es ; target is allocated RAM after PSP.
push cs
pop ds ; source is memory card.
mov si, offset TEXT:etext ; get ptr to last byte in code.
add si, OFh ; round up to 1st byte in data.
and si, OFFFOh : data is para aligned on the card.
: ds:si is ptr to start of init data.
xor di,di . put data at 0 offs into alloc'd RAM.
: es:di is ptr to alloc'd RAM target.
mov cx, offset DGROUP:bdata ; get bytes in initialised data.
inc cx : round up: ensure last byte is copied.
shr cx,1
cld
rep movSw ; copy init data from memory card.
push es
pop ds ; DS back to ptr to RAM.
mov di,offset DGROUP:bdata ; ptr to where uninit data goes in RAM.
mov cx,offset DGROUP:edata ; ptr to end of all data.
sub cx, di ; calc bytes in BSS.
xor atl,al ; clear to zero.
rep stosb
call _main ; invoke program.
moyv ah, 4ch ; terminate with main's return code.
int 21h
abort:
mov ax,4c01h ; abort with error.
int 21h
start endp
_TEXT ENDS
_TEXTEND SEGMENT BYTE PUBLIC 'CEND'
etext label byte ;Last byte of text segment
_TEXTEND ENDS
~DATA SEGMENT
public _errno
_errno dw
"DATA ENDS
_BSS SEGMENT
bdata label byte
_BSS ENDS
_BSSEND SEGMENT
edata label hyte
_BSSEND ENDS
end start

A-7

APPENDIX B DIAGRAM OF PORTFOLIO CHARACTER SET

(all numbers in decimal)

0

=1

APPENDIX C Example peripheral design

As an illustration of a typical Atari Portfolio peripheral we have designed a
peripheral which flashes an LED in time with the system tick. In order that this
peripheral operates transparently to the user we have used a ROM extension.

Peripheral Specification

i) have a single LED which will toggle on a timer tick.
ii) have a PID of 64h,.

iii) have all software on an extension ROM.

iv) only operate with the machine powered on.

v) be a terminating peripheral.

vi) the peripheral will power up with the LED off.

Hardware Design (see schematic)
See section 2.6 & 2.7 for more information.

* There is decode logic to read the PID from 807Fh. (Since there is no need find out
it the LED is on or off, the latch will be decoded for a write at 807Fh, to save
decoding logic.)

* Each successive write to 807Fh will toggle the LED

*If the latch is set, the LED will be ON

*1If the latch is reset, the LED will be OFF

* The circuit will be powered from 5VS

* The buffering signals ABUF/BBUF and PDET are also used

Software Design (see listing of file PDEM.ASM)

* A ROM extension will be used to hook a TSR onto INT 1Ch
*Each call to INT 1Ch will toggle the LED by writing to I/0 807Fh.
* If the peripheral is removed, the TSR will de-install itself.

* On power up, the LED is assumed to be reset.

ROM Extensions (see listing of XROM.ASM)
This example program illustrates how to design a simple ROM extension. It can
either function as a specific BIOS, specific DOS., or Common extension, according

to the ID code at 0C000:0. Each extension module identifies itself, and where it was
invoked from. It is a good demonstration of the potential power of ROM extensions.

C-1

DTS2
I Talsl

¢-0

+5V8

+5Vs ————<qCLR
4 ck @
ABUF D 0
e | L drR
e 11
L e | 774
svs . ———CLR
PDET ck @ 2
.. : 4
GND —PR)
NHR1
— Ic1 LED
BCOM] 3300
+5VS
0AB - |
oAl
e
0A3
4HC?4 —ﬂ\
anC244
15 74KC32
£ 1S 74RC20
CMES ROM NRD1
ECTIONS T0 /
NSION PORT +585
y
r244 a7
at Yt
A2 yp Ale
Al a
ag Y3 -
de va AD4
2725k
ae D8
Al Ll _— AD3
f5 25 o AD2
0R4 =3 az
0as e 28 a2 anl
NAé ‘ i 3
0n? g Lg ad ¥
aa (274 n7 va RDB
A3 ng 18
ale 070 1c2
Al —
AlL2
[Ee]
fld
CS OFE
L
NCC1L

SCHEMATIC FOR EXAMPLE PERIPHERAL

-*************k****‘k******k****'k******’k*******‘k*‘k****************-

Module: PDEM.ASM
Copyright: DIP Ltd, 1989

Peripheral ROM Extension

s ms ms ows ome owa

- ms e s me mE .

-*******k***.

name XROM

assume cs:cseq,ds:dseg

DOSX equ 055aaH
cseg segment
org OH
xrom _main Tabel near
bixt_type dw DOSX
bixt size db 0
org 3H
bixt gdos label byte
Jjmp genx_vect
org 40H
bixt _user label byte
db 'Crt Plant Periph’

;Specific DOS extension

;Extension Vector table
;Start label for MASM
:Identification code
;Num 512 byte blocks in ROM

;Specific DOS extension
:Specific extension vector

;0EM user text

;The plan is to allocate some memory, Copy a section
; of code to memory, and then point the Specified

i vector to that code.

Xrom proc proc FAR

INTR_NUMB equ 1cH

genx_vect label near
push ax
push bx
push ds

:TIMER TICK

;Preserve registers
; required to set up
; Tocal stack

;Allocate User RAM. Note that this can ONLY be done

; after DOS initialisation.

mov bx, (ALOC_SI1ZE+0fH)/10H

mov ah, 48H

int 21H

mov ds,ax

mov stak_save,ss
mov stak_save+2,sp
shl bx,1

shl bx,1

shl bx, |

shi bx,1

:Set up User stack.

mov SS,ax
mov sp.bx
push CX
push dx
push si
push di
push bp
push es

C-3

;Paras to allocate
;Allocate memory

;Set DS to allocated RAM
;Preserve Caller stack

;Convert size to bytes

;Set up stack at top
; of allocated memory

;Preserve registers
; YOU MUST ALWAYS PRESERVE
; ALL USER REGS

;Copy the ISR to the allocated area

push ds ;Preserve DS
push cs ;Set up Source
pop ds

mov si,offset tick code

push ss ;Set up destination
pop es

mov di,offset load base

nov cx,CODE_S1ZC ;Bytes to copy
cld ;Initialise flag
rep movsh ;Copy TSR to RAM
pop ds ;Restore DS

;Get the specified vector, and set it to the ISR

mov ax, 3500H+ INTR_NUMB :Get current Int 1CH

int 21H

mov tick_vect,bx ;Preserve vector

mov tick vect+2,es

mov ax,2500H+ INTR_NUMB ;Set interrupt vector

mov dx,offset load_base

int 21H

mov ax, 1501H ;Generate Confidence BEEP

int 61H

pop es ;Restore registers

pop hp

pop di

pop si

pop dx

pop cx

mov ss,stak_save ;Restore Caller STACK

mov sp,stak save+2

pop ds ;Restore remaining regs

pop bx

pop ax

ret sFAR return to caller
Xrom proc endp

:Interrupt Service Routine (1SR)

PID_CODE equ 64H ;Peripheral PID code
LEDS_PORT equ 807 fH :LEDs 1/0 address
tick code label byte ;TSR code
push ax ;Preserve registers
push dx
push bx
push ds
push es
mov ah, laH :Get Peripheral PID
int 61H
or al,al ;Peripheral installed?
jz tick none ;No, so uninstall
cmp ah,PID_CODE :Correct peripheral?
Jjne tick _none ;No, so uninstall

;Peripheral installed, so toggle LEDs

mov dx,LEDS_PORT ;Toggle LED address

C-4

tick none:

tick exit:

CODE_SIZE

cseg

dseg
data_sptr

stak_save
tick vect

load base

LOAD_SIZE
ALOC_SIZE

dseg

out dx,al
Jmp short tick_exit

assume cs:dseg

;AL unimportant
JExit

;Force DSEG offset

i Invalid Peripheral, so uninstall TSR

mov ax,2500H+INTR_NUMB

mov bx,offset tick vect
mov ds,cs:[bx+2]

mov dx,cs:[bx]

int 21H

;Set interrupt vector
;Get old vector

iNow vector reset, free allocated memory

push cs

pop es

mov ah,49H

int 21H

pop es

pop ds

pop dx

pop bx

pop ax

Jmp dword ptr cs:tick vect

equ $-tick _code

ends

;Segment of block

;Free memory

;Restore registers

;Jump to old TSR
;Size of ISR

;Data segment TEMPLATE (No initialised data here!)

segment
label byte
dw ?

dw ?

dw ?

dw ?
label byte

equ ($-data sptr)+CODE_SIZE
equ LOAD_SIZE+100H

ends

end xrom_main

;Start of Data

;Caller stack stored here

:01d vector stored here

;Start of ISR

;Load module size
;Load module + Stack

R k= R R e R Y

Module:

e me R ms e R WSS A TS B S RS B A e m

name

LF
CR

BIOX
DOSX
BIDO

cseg

xrom main
bixt_type

bixt_size

bixt_gbio
bixt_gdos

bixt _user

bixt_preb:
bixt bext:
bixt_pdos:
bixt_dext:
bixt_ados:
bixt_pwdn:
bixt_pwup:

Xrom_proc

genx_vect

Copyright: DIP Ltd, 1989

ROM Extension DEMO program

A ROM extension may be run from a Credit Card Memory
or an Extension ROM.

The Extension code must preserve ALL registers!

The Pre-BIOS vector MUST return by a FAR JMP to
OFFFE:0, as no stack is set up at this stage

XROM. ASH

B4 mE wE Wa oms we A we mE mE we As wE ms s s

KEERAAA T AN AT AT AR A A E R LA R AR R AN L AR A AR R AL A IR R AR AR R AR A TR R AR RN AR AR

XROM

dassume cs:cseg

equ OaH ;Line feed

equ 0dH ;Carriage return

equ Oaab5H ;Specific BIOS extension
equ 055aaH ;Specific DOS extension
equ 05555H ;Complete control
segment

org OH ;Extension Vector table
label near

dw BIOX ;Identification code

db 0 ;Num 512 byte blocks in ROM
org 3H

label byte ;Specific BIOS extension
label byte ;Specific DOS extension
Jmp genx_vect :Specific extension vector
org 40H

label byte ;OEM user text

db 'Test ROM (C) DIP’

org 50H

Jmp preb_vect ;Pre-bios jmp vector

org 55H

Jmp bext vect ;Bios-ext jmp vector

org 5aH

Jjmp pdos_vect ;Pre-dos jmp vector

org 5fH

Jmp dext vect ;Dos-ext jmp vector

org 64H

Jjmp ados_vect ;Post-dos jmp vector

org 69H _

Jjmp pwdn_vect ;Power down jmp vector
org 6eH

jmp pwup_vect ;Power up jmp vector
proc FAR

;Determine extension type

label near

C-6

not_genb:

not gend:

preb_vect

preb_retn

bext_vect

pdos_vect

dext vect

ados_vect

pwdn_vect

pwup_vect

xrom_disp

push
cmp
jne
mov
Jmp

cmp
jne

mov
Jmp
mov
Jmp

label
Jmp
dw
dw
label

push
mov
Jmp
label

push
mov

Jmp
labe]

push
mov
Jmp

Jabel

push
mov

Jmp
label

push
mov

Jmp
label

push
mov

Jmp
label

push
push
push
push
push

call

mov
int

or

bp

cs:[0].BIOX
not_genb

bp,offset gbio_text
short xrom disp

cs:[0],D0SX
not_gend

bp,offset gdos_text
short xrom disp

bp,offset invl_text
short xrom_disp

near

dword ptr cs:preb_retn

0
0fffeH

near

bp
bp,offset bext text
short xrom disp

near

bp
bp,offset pdos_text
short xrom disp

near

bp
bp,offset dext_text
short xrom disp

near

bp
bp,offset ados_text
short xrom_disp

near

bp
bp,offset pwdn_text
short xrom_disp

near

bp
bp,offset pwup text
short xrom disp

near

ax

bx

cX

dx

es
disp_text

ax,2400H
61H

dl,di

;Preserve BP

;Specific BIOS extension 7

;No

;Specific BIOS extn text

;Specific DOS extension ?

;No

;Specific DOS extn text

;Invalid text

;Pre-BIOS extension

:Post-BIOS extension

;Pre-DOS extension

:DOS extension

;Post-DOS extension

;Power-Down extension

;Power-Up extension

;Main display routine

;Preserve registers

:Display text in BP

;Get ROM state

sNormal ROM ?

not_norm:

not_drva:

not_drvb:

not_xrom:

stat_disp:

Xrom_proc

- w ms me ma

jnz
nov
Jmp
dec
jnz
mov
Jmp
dec
Jjnz
mov
Jmp
dec
jnz
mov
Jmp
mov
call

mov
call

pop
pop
pop
pop
pop
pop

ret

endp

not_norm

bp,offset norm_text
short stat disp

dl
not_drva

bp,offset drva text
short stat_disp

dl
not_drvb

bp,offset drvb text
short stat disp

dl
not_xron

bp,offset xrom_text
short stat disp

bp,offset invl text
disp_text

bp.offset crif_text
disp_text

es
dx
cX
bx
ax
bp

s S e R e e e e e e e e e s e e

Main Display routine

s e e ol o i e R R R o e R A o sk o i e ok ke e ek ke R R R R e Rk
v

;No, so skip

;Get normal ROM text
;Drive A 7

;No, so skip

Get Drive A text
:DOrive B 7

;No, so skip

sGet Drive B text
;Orive B 7

;No, so skip

:Get Drive B text

:Display text in BP
;Finally CR, LF

;Restore registers

(FAR return

.
.
.
.
.
.

disp_text proc near
xor bh, bh ;Page 0
mov ah,3 ;Get cursor position in DX
int 10H
push cs ;Access text
pop es
xor ch,ch ;Initialise
moy cl,es:[bp] :Get length
inc bp ;Advance to text
mov ax, 1301H :Write string
int 10H
ret
disp text endp
gbio_text db gdos text-$-1
db 'Spec BIOS Extension - '
gdos_text db bext_text-$-1
db 'Spec DOS Extensjon - '
bext text db pdos text-%-1

db "Com B10S Extension - '
C-8

pdos_text

dext_text

ados_text

pwdn_text

pwup_text

norm_text

drva_text

drvb_text

xrom_text

invl_text

crif_text

cseq

db
db

db
db

db
db

db
db

db
db

db
db

db
db

db
db

db
db

db
db

db

ends
end

dext_text-$-1
'Pre-DOS Extension - '

ados_text-$-1
'Com DOS Extension - '

pwdn_text-$-1
'Post-DOS Extension - °*

pwup_text-$-1
'Power Down Extension

norm text-$-1
'Power Up Extension - '

drva_text-$-1
"Normal ROM'

drvb_text-$-1
'CCM Drive A’

xrom_text-$-1
'CCM Drive B’

invl_text-$-1
'Extn ROM'

crif_text-$-1
'Tnvalid'
2,CR,LF

xrom_main

C-9

Portfolio Interrupt 60 Specification
May 1990

Atari Corporation'.' |
1196 Borregas Avenue
Sunnyvale, CA 94086

Portfolio interrupt 60 Specifications was printed in the United States of America.
Third Edition:

This document was produced with an Atari Mega 4 computer using Microsoft Write and an Atari SLM804
laser printer.

3.10 APPLICATION ENVIRONMENT SERVICES

3.10.1 Available Services

The following services are available in all versions of the ROMs:

Service Function

00H Get version number (of ROMs)
01H Line Editor

02H Get current application

03H Reserved for custom add-ins
bSH Screen Save/Restore

0SH Draw box

bFH Menu handling

10H Box area calculation

]2H Message windows

.14H Error windows

3.10.2 Detailed Description of Services

Where coordinates are specified in 16 bit registers (e.g., top right, bottom left), the upper
byte is the y coordinate, and the lower byte is the x coordinate.

For all box drawing routines (including menus, help, etc.), if the box is larger than the
physical screen size, characters will be displayed incorrectly.

Fn 00H Get Version Number
Parameters: None.

Returns: DS:DX Version number (zero terminated string)

3-29

Fn 01H Line Editor
Parameters: DS:DI Pointer to editor control structure
Returns: AX The character which caused termination
Description: Edits the line of text. The text can be in a box (or not), and text can be
longer than screen width. Scroll margins exist at either end of the edit
window. The control structure is as follows:
ep_targ dw 2 ; far ptr to string to be edited. Result
dw ? » edit is also placed here. All strings
; Zero terminated.
€p_pos dw ? ;initial position, in bytes, into the
; text on entry (starting at zero).
ep_max dw ? ; max length of edited strin
ep_xpos db ? ;screen xpos (starting at 0
ep_ypos db ? | screen ypos (starting at 0)
ep_mode db ? ;Whensetto2the string will be
; cleared as editing starts (e.g. files
; load); If set to 0, the string is not
= clea)xred (e.g. editing a worksheet
; cell
ep_hit dw ? ;Initial keypress to be processed
; before getting keypress from user.
; Typically used for preprocessing
; characters.
ep_tit dw ? ;box title and prompt in the form:
dw ? ; DB ‘TITLE’,0,'PROMPT",0,0.
ep_exit dw ? ;array of keycodes (see below) that
dw ? ;allow exit from the editor.
ep_fn dw ? ;address of the getkey routine.
dw ? ; Routine should return a 16 bit
;in AX
ep_wid do ? ; Maximum box or screen width
ep_wind db ? ;Setto OFFH for no box, O for a
; single line box, 1 for a double line
; box.
ep_res dw ? ; Reserved
dw 7
ep_udel dw ? ;address of the undelete routine.
dw ? ; This routine is called every time
; a character is deleted. If not
; Needed, use a dummy routine
; (ret far). DS:BX points to the
; deleted text. AH is 0 for the left
; delete and 1 for the right delete.
; Avoid changing segment registers.
Notes: 1. The target buffer should be at least ‘max'+1 bytes long to accommodate the zero terminator.

2. If a default string is required, put it in the target butfer, zero terminated.

3. The array of exit keys consists of 16 bit ‘keys.” The top nibble is zero for the standard 256
characters; but for control characters like Home, End, etc,, itis set to 1.

4. KEYCODES: Normal ASCII characters represented as AL=ASCI| code, AH=0, eg.,'Als
0041H. Extended keycodes represented as AL=scan code, AH=1, (e.g., left arrow=0148H).
Special (DIP speciﬁc;' keycodes represented as AL=code, AL=2/3. e.g. Before sending
undeleted characters (always inserted, no * processing) send 0201H, and send 0202H at end
of undelete characters.

5. If you specify a box, the 2 bytes are taken away from ‘wid’ when ediling.
6. Similarly, if you give a prompt, this will reduce your play area as well.

3-30

En 02H Get Current Application

Parameters: DL Set to FFH (-1)
Returns: Current Application:

where:

AL=0 Not in application

1 Worksheet

2 Diary

3 Editor

4 Address Book

5 Calculator

6 Setup

7 Applications Menu

Description: Determines the current application. This would typically be done from an
editor book or TSR.
Fn O03H Reserved for Custom Add-ins

A series of ‘hooks’ are provided into the Editor to enable users to control the Editor from
the outside.

There are 5 Editor ‘hooks’. These enable an application spawned from within the Editor to
access a limited number of internal functions which modify the text and environment.

EDHO_GOTO Move the cursor position

EDHO_GET Get the cursor position
EDHO_REF Refresh the screen
EDHO_LOC Get location of character at cursor
EDHO_INS Insert strring into text
EDHO_DEL Delete characters from text

3-31

EDHO GOTO Move the cursor position

Parameters: AL 0
CX Repetition count
DX Type of movement
Returns: AX Number of characters moved

Note: There are 6 types of movement:

Character

Word

Line

Start/End of line
Start/End of para
Start/End of file

A negative repetition count moves backwards.
EDHO_GET Get the cursor position

O WN —

Parameters: AL 1
Returns; BX Column offset
DX Line number

Note: Returns the current cursor location.

EDHO_REF Refresh the screen

Parameters: AL 2
BX Cursor location override
DX Invalid flag override
Returns: None

Note: Cursor ove;ride is only applicable if the cursor is outside the scroll margins, and
forces a refresh from the point specified:

0 Do nothing

1 Refresh using top scroll margin
2 Refresh using center

3 Refresh using bottom scroll

Invalid flag override consisits of 5 bits which are used internally by the Editor. They are
ORed with any existing bits, and determine what type of refresh is performed:

0 Use default override

1 Refresh current line

2 Refresh current paragraph

4 Refresh current offset

8 Check within scroll margins
10H Refresh border/frame
20H Complete redraw

3-32

EDHO_LOC Get location of character at cursor

Parameters:

Returns:

AL 3
ES:BX Address of text

Note: This service gets the address in RAM of the character at the cursor.

EDHO_INS

Parameters:

Returns:

Insert string into text

AL 4
ES:BX Address of AZCIIZ string to insert
AX 0 if failed

Note: Inserts text at current cursor position, and moves cursor to end of string.

EDHO_DEL Delete characters from text

Parameters:

Returns:

AL 5

CX Number of characters to delete

DX 0 prevents characters from going in Undelete buffer
AX 0 if failed

Note: A negative number in CX simulates backspace, a positive number simulates

Delete.

Fn 08H Screen Savel/Restore

Parameters:

Returns:

Description:

AL Subservice (0-3)

BH Video page number

DS:SI Buffer to store saved screen RAM

CX Bottom right of screen area to save (inclusive)
DX Top left of screen area to save (inclusive)
None

This function either saves or restores the screen area defined by CX and
DX to the buffer pointed to by DS:SI. (The Portfolio does not use the
attribute information in its display.) The subservices are as follows:

00 Save characters only

o1 Save characters + attributes
02 Restore characters only

03 Restore characters + attributes

Fn 09H Draw Box

Parameters:

AL Type (O=single line, 1=double line)
BH Video page number

CX Bottom right of box

DX Top left of box

3-33

Returns: None

Description: This function draws a box at the specific location on the screen.

Fn OFH Menus

Parameters: AL Type (O=single line, 1=double line)
AL Bits 3..7 max depth of menu (including borders)
BH Video page number
CH Last top line
CL Last selected item
DX Top left of box
DS:SI Menu text (double terminated zero)
ES:DI Defaults text (double terminated zero)

(if Dl is FFFFH there is no default text)

Returns: AX -1 for ESC pressed
or
AH Top line
AL selected line

Description: Draws a menu at the location specified in DX. CH specifies the line that
will appear at the top of the screen, and CL specifies the line that the
cursor will be on (with respect to the menu text, not including the title).
The first line of the menu text is the menu title and does not have a
corresponding entry in the defaults text. lf no title is required, this can be
set to zero (null string). If bits 3..7 of AL are 0, then the menu will not have
depth checking. If a single line box is selected, the function will draw an
empty box (with the title) and return. Otherwise the menu will be
displayed, and once a selection has been made, the menu box becomes
single line, and control returns to the caller.

Fn 10H Box Area Calculation

Parameters: DX Top left of box
DS:SI . Menu text (double terminated zero)
ES:DI Detfaults text (double terminated zero)
Returns: AH Number of items (including title)
AL Number of items (including title)
BX Number of bytes used (excluding attributes)
CX Bottom right of box
Description: Calculates the number of bytes needed to save the screen for a given

menu. Note that the maximum width is assumed to be the maximum
menu item + the maximum default. Also DX is destroyed by this call.

3-34

Fn 12H Message Windows

Parameters:

Returns:

Description:

Fn 14H Error

Parameters:

Returns:

Description:

BH Video page number

DX Top left of box

DS:SI Message text (double terminated zero)
None

Displays text at DS:Sl on the screen in a double line box. First line of text
is taken as the title. This service is used for the information messages,
such as loading, saving, etc.

Windows

BH Video page number

DX Top left of box

CX Must be set to non-zero value
DS:Si Error text (double terminated zero)
None

Displays text at DS:Sl on the screen in a double line box. There is no title.
A beep is emitted and the function waits for a key to be pressed. The
screen is then restored and then control is returned to the caller.

3.11 IBM PC DEVELOPMENT SYSTEM

The Portfolio contains some system-specific extended BIOS functions which are accessed
using interrupt 61H and a series of application environment services that are accessed
using interrupt 60H. If you want to emulate these functions when developing programs on
a standard IBM PC, this is possible by running the programs 160.EXE and I61.EXE on a
PC. These programs will Terminate and Stay Resident (TSR), and enable you to easily
develop custom programs. To ensure upward compatibility of your programs (if you plan
to use any 161 functions), make sure that you use |61 Fn OH first (see section 3.10.1). All
of the documented Int 60H services are supported by the IBM-hosted version.

3-35

ave
g
VRaW
5 "ite 2 T
-5) old
: i
gab =
] oA —" N\
Caw ol
i Sxs A
o8 A
mes 87 ke
lacn AD® "
) =
i 408 FAYAY T Sy o)
TH A8y Ll
Ara wT
T (200 2
I == sy = .
e 1 AT ¥ YIRETY
:.l | Sl L 4
s LIS tum
FemaLe) allh L Vs ey
= o
A]
= faav - ; i
= Al i e " en
{r , . 1_,[TousB.av
L] Py v 3
? ™ | Do rev Frusiey vee
1t A = L &
I‘ Ei=
v o "
alm : acn
A
avh
Tt R
oy
vee
Cie ere 13
3one 14
G A -4
Aro Arp
Hy: M""l e o
iy
T aTuriey T
1e [17] L L] axn
(1] ny
wo# o ety v Rl
1 t
I S gi!t...;;i!i..;i.h.;i!h.gi.t.u J &
o8 ¥
ur 14 T DECOLSL IE CAFACITORS FOA IC°8

.

'

1

! N

: = =

H i |
[]

H i

'

[}

'

]

.

)

seceessmmmcsacncnacacnanncand

Sy

2. CAPACITOAR ARE MCABUATD IN PARIDS,
1. REBIBTORS ARC MEASURED 1N Orems,
NOTES-UM.EBS OTrTANISE BPECIFLEO:

Schematic Diagram: Serial Interface

-——-—-—-—mmn--HHHHHHHHHHnMHF‘II—lﬂnn‘1|1|.1|.:|

(W
P STLY

i
i
i
i
1
i

AS]
n
ETL
ik
131 i
Tia
- L1E) I
_“‘—"%. [s (TR o e s
rs i m
3 i L
rs Tinllad
L
L3 "
. o s LA
3
~
W EmAL L] Y
== Shorar
A4 v 1
YL L
vee 1 -
F+4 t 5 t ¥ 1
e
i £ E= S :
LI}
E: ’: L | BATAS T P T %
* 7t - RALAY P x - =
i o %] DALAR TR i :fF"“
S Eid DAZAY B 2 ;jl
ar -
e aATH it oo v0a il
11t pule \IQE Af8a
=1 = ll s rL LI.E A208
jjmren \at o aiia
i = i e
TICTT
el
\
L 1% L]
114 sve (L1} ‘ v e vy va : L =
TR TR | T T T L :
vi 20 I 2 3 s s
v 1 ? ;E; ere ;!; 010 ;E; §lo0 ;!; Porv 1 R
DLEOUPLINS CAPACITORS POR IC°3
'
Ve s s s

P, CAPSCITOAD AAL WEANUALD IN FaRADS
L. ACSISTORE ARE MEABURALD TN OnmS,
MTEeur E38 DTHEREINE SRCCIFLEN:

Schematic Diagram: Parallel Interface

4.1.5 Using the serial port: Example program TMTM.COM

The following section contains the listing for an interrupt driven terminal emulation
program. This program shows how the serial port can be used in an applications
program. The serial port routines (TMIO.ASM) contain comments showing how the
same thing could be performed on an IBM PC. This will allow users familier with the
IBM PC to see how to modify existing software.

The program consists of several files:

TM.INC
TMTM.ASM
TMKY.ASM
TMDP.ASM
TMIO.ASM

Equates

Main routine
Keyboard routines
Display routines
Serial port routines

TMIO.ASM will be of most interest to those developing software for the serial port.
The other files have been included for completeness. TMTM.ASM should be linked in
as the first module create TMTM.COM.

The program will set the serial port to 1200 baud, 8 data bits, 1 stop bits and no parity.
The top data bit will be cleared. ALT Q can be used to exit from the program.

s =

e SN ANLNNR

DR DA

[R TR R R TR R R R T R R SR SR R R R R Y I

nclude file for Demo terminal emulator for

R R Ry Ry E kR R F R 2 2 E
’

; Definitions for accessing 82CS0 on serial port

SER_BASE equ 400h ; serial base address in ROM

; Offsets from base address of 82C50 control registers

RBR equ Oh ; receiver buffer register

THR equ Oh ; transmitter holding register

IER equ 1h ; interrupt enable register

IIR equ 2h ; interrupt identification register
LCR equ 3h ; line control register

MCR equ 4h ; modem control register

LSR equ 5h ; line status register

MSR equ 6h ; modem status register

; Interrupt Controller

INT_REG equ 807fh ; address of serial vector reg (SIVR)
INT_ON equ 01lh ; enable interrupt on char in
INT_OFF equ 00h ; disable all serial interrupts
INT_NUM equ Och ; interrupt number for serial port

; Control bytes

DTR

equ 01lh ; bit in MCR for DTR

RTS equ 02h : bit in MCR for RTS

THRE_MASK equ 20h : bit in LSR for transmitter ready
; Memory allocation blocks
BUF_LEN equ 100h ; length of serial input buffer
STK_LEN equ 200h ; length of program stack
; Miscellaeous definitions
CR equ 0dh ; carriage return character
LF equ 0ah ; line feed character
PORT_DEFAULT equ 83h ; serial port defaults
STRP_TOP equ 7th ; clear top bit
name tmtm
tmtm_main

Terminal emulator for Pocket PC Serial Port

This terminal emulator is fully interrupt ;
driven and shows how serial port applications ;
can be written for the Pocket PC ;

This module should appear at the start of
linked objects
tmtm_main is the entry point

T S EE E I E I IR T T T s 3 o

extrn tmio_inon: near
extrn tmio_init: near
extrn tmky_gtky: near
extrn tmio_char: near
extrn tmio_intc: near
extrn tmio_offc: word
extrn tmio_segc: word

inciude tm.inc

code segment byte public
org 100h
code ends

; pgroup allows the linking of several modules in such a way that the
; total code size can be determined

pgroup group code, endseg
assume cs:pgroup, ds:pgroup
code segment byte public

tmtm_main proc near

: Free unused memory to allow applications/hotkeys to work
mov ah, 4ah ; modify memory allocation
mov bx, offset pgroup:last_byte + STK_LEN + Ofh
mov cx, 4

S|

shr bx, ¢l ; divide by 10h; bx has paragraphs

int 21h ; do it!
jnc tmtm_mmok ; jump if modified ok
; memory modification failed: print message and exit
mov ah, 9h ; display message
mov dx, offset tmtm_fail ; failed on allocation
int 21h
mov ax, 4c00h ; terminate program
int 21h
; memory modification succeeded: continue starting up
tmtm_mmok :
; set up stack in allocated space
mov sp, offset pgroup:iast_byte + STK_LEN
; intialise Pocket PC LCD screen using DIP specific services
mov ax, 0eOlh ; set external screen mode
mov di, 02 ; to 80%25 tracked
int 61h
mov ax, 1001 h ; Set screen position
mov dx, O ; to top 1h corner of display
int 61h
mov ah, 9 ; display start up message
mov dx, offset tmtm_strt
int 21h
; grab interrupt Och (COM1 interrupt service routine)
cli ; disable interrupts
push bx
push es
mov ax, 350ch ; get current int Och vector
int 21h
mov tmio_offc, bx ; save offset
mov tmio_segc, es ; save segment
pop es
pop bx
mov dx, offset tmio_intc ; Set up our own Och service
mov ax, 250ch ; routine as tmio_intc
int 21h
sti
call tmio_ini t ; initialise terminal emulator
call tmio_inon ; enable serial interrupts

; main emulator routine: exit from program is via tmky_gtky
main_next:

call tmky_gtky ; ASCII key in al from keyboard
call tmio_char ; send it to serial port
jmp main_next

tmtm_main endp

; Message table

tmtm_fail db 'Failed To Allocate Memory', CR, LF, '$*

tmtm_strt db 'DIP PPC Terminal Emulator Demo Program', CR, LF, '$'
code ends

; endseg is a dummy segment that will appear at the end of the

Soprt

; terminal emulator
endseg segment byte public
last_byte: ;end of the program
endseg ends
end tmtm_main
name tmky
" tmky ;
; Terminal keyboard handlier ;
; This module controls the terminal keyboard ;
M Will allow emulator to quit on ALT Q -
;***:‘::’:‘.’::’c*:‘::’:*:‘::‘:;’::’::':*:'::':‘.':3'::’::‘:*:':#:‘::‘:ft:’rz’:*:’t}'c;’::‘::’::’:‘.’::’::’::‘::‘::‘:‘k:‘::':'.':‘.'::‘:-.'::'.—:";'P‘:;‘
public tmky_gtky
extrn tmdp_prbf: near
extrn tmio_exit: near
include tm.inc

code segment byte public

assume

tmky_gtky
terminal keyboard handler

ALT will call command key
ALT Q will leave program

Parameters:
NONE
Returns:

Destroys:
NONE

WE Ws W Me We We WO WA WS WE WE WE We WA WE W

wait and process key from keyboard
returns valid ASCII character in AL

al: ASCII character code

cs:code, ds:code

eRBhBNNARN K LNk hhhhhhNehhh kit hhdbhdte ettt hs

S L L L i R L LI

tmky_gtky proc near
gtky_wtky:

call tmdp_prb f
mov ah, 1

int 16h

jz gtky_wtky
mov ah, 0

int 16h

or al, al

jz gtky_test

ret

check and display input buffer
check key status for key stroke
ready

wait for a key (no power down!)
key ready so get it

from keyboard buffer

extended code?

use extended codes as special

;check for ALT codes
gtky_test:
cmp ah, 10h ; check for ALT Q
jne gtky_wtky ; jump if not ALT Q
call tmio_exit ; pbrepare to leave terminal emulator
int 20h ; leave it
tmky_gtky endp
code ends
end

name tmdp
. f::‘r:‘::‘:f;;’:;’::':;'::':7':‘.':7':;’:;':-.’::'::':-.'::':*‘.::'::‘::'::'::':-,'::‘:".::‘r;‘::'::'::‘::'::‘:‘.':'.'::‘::':‘.'::':}’::’:‘.‘::'::'::'::‘:-'.::'::': TPt .
tmdp :
This module handles screen output ;

o Fede Yo RIS A A SN e S S S e e e S fe e S o dn 0 e do dt So 9t Fo S 7 So 2o B R R R N Y

”
by
o,
an
3
»,
3
o

public tmdp_prbf

public tmdp_bptr
include tm.inc
code segment byte public

assume Ccs:code, ds:code
-*****************ﬂ#*t**ﬁ*ﬁﬁ*k***#**#*********ﬁ***k****#

' tmdp_prbf

; Display serial input buffer contents
The interrupt can place additional characters
in the buffer, except when the buffer is being
modified.

i Parameters:
» NONE
; Returns:

; NONE
; Destroys:

H NONE

MO WE W W W ws W W W wWE we wy we we W&

-ﬁ***************kﬁ**k***********ﬁ**********************-
]

tmdp_prbf proc near
push ax
push dx
push -~ osi

prbf_next:

i are we at the beginning of the serial input buffer?
cmp tmdp_bptr, offset tmdp_cbuf
jne prbf_char ; 1T not then print contents
pop si
pop dx
pop ax
ret

; at least one character needs to be printed
prbf_char:

mov
mov
mov
int

di, offset tmdp_cbuf ; start of buffer

dl, [di] ; move first character
ah, 2 : into AH
21h ; display character

shift serial buffer along
first disable interrupts to prevent new charcters being added while
buffer is being altered

cli
cld
mov
dec
sub
mov

;disable interrupts
;direction up
cx, tmdp_bptr ;end of buffer+l
CcX ;last character of buffer
cx, offset tmdp_cbuf ;no. bytes to move in (X
si, offset tmdp_cbuf+l ;start of string to move

at this point, es:di points to the start of the buffer and
ds:si points to one character in. The buffer will be shifted down one
character by the use of movsb.

rep movsh
dec
sti

jmp

tmdp_prbf endp

Buffer storage

i[ds:si] --> [es:di] CX times
tmdp_bptr :new end of buffer
;allow interrupts again

; buffer may receive characters again

prbf_next ; loop for next character

tmdp_cbuf db BUF_LEN dup (00) ;serial input buffer
tmdp_bptr dw offset tmdp_cbuf ;pointer to top input buffer

code ends
end
name tmio

.
?
.
’
.
!
.
’

’
.
’
.
,
.
+
.
LI
.
L
.
'
.
L
1
-

tmio

This module interfaces with serial port

The interrupt routine assumes that an interrupt
signifies the presence of a serial input

character

No handshaking is performed by the emulator
A baud rate of 1200 is assumed

8 data bits/no parity is assumed

Top data bit is stripped off

R R R R R R T R SR r R SR TR R e e TR R TR SRt e R S O SR PR AR R DR R R TR SR T T]

public
public
public
public

tmio_char
tmio_init
tmio_inon
tmio_inof

public tmio_exit

public tmio_intc

public tmio_offc

public tmio_segc

extrn tmdp_bptr: word
include tm.inc
code segment byte public

assume Cs: , ds:code
; tmio_char -
; Sends a character to the serial port -
i Parameters: 3
; al: ASCII character to send ;

; Returns: -
; NONE :
: Destroys: *
; NONE :
'***%********k****ﬁﬁ*ﬁ*************************kﬁ*%****
tmio_char proc near

push dx

push di

push ax
mov di, tmio_base ; get base address of COM1 82C50
mov dx, LSR ; line status register
add dx, di
char_wthr: -
in . al, dx ; wait for transmitter ready
test al, THRE_MASK
jz char_wthr ; loop if not ready
pop ax
mov dx, THR ; address of transmitter holding
add dx, di ; register
out dx, al ; send character to serial
pop di
pop dx
ret
tmio_char endp
;*s’r*:‘:;"::’:a‘: Ted St d e NN :':a’r:‘::‘::‘c-.'::‘rf:5':-.':*5':‘.’::’:3':!:-.‘:#::‘.-'.’:3':7'::'::':7'::'::'::‘::‘:-.':-.'::‘:-.’n‘:i: ;
: tmio_init :
: performsl initialisation of serial port .
: Port is intialised to 1200 baud, 8 bits, :
] no parity. ;
3 DTR is set high: I'm always ready ;
; Interrupt register on port setup as INT_REG :
; Parameters: :

; NONE .
;. Returns:

NONE

i Destroys:

; NON

tmio_init proc near
push ax
push si
push dx
push di
xor ax, ax
push ds
mov ds, ax
mov
pop ds
mov tmio_base, di

call tmio_inof
mov
call tmio_inpt

H in al, 21h

: and al, Oefh

: out 21h, al
mov ax, INT_NUM
call tmio_sint

; set up modem control register
mov dx, MCR
add dx, di
mov

mov
out dx, al
call tmio_inon
mov dx, di
in al, dx
pop di
pop dx
pop Si
pop ax
ret

tmio_init endp

; tmio_inon

; Enables serial interrupts

R TR TR R AR o PR N g S R R R R R b R TR SRR Sl T S e R (R R R R

; segment zero

di, ds:[SER_BASE] ; get base of coml

: restore ds to local
; save base address
; disable serial interrupts

al, PORT_DEFAULT ; set up port as in header

; set up 80c¢50

Set up interrupts for the serial port
On an IBM PC the following code could be used

: access 82(C59 PIC
; enable int Och

This will not work on the Pocket PC, but the following code can be used

; interrupt number
; set up serial interrupt

: Tell the world we are ready

al, DTR or RTS; set RTS/DTR
On an IBM PC the interrupt line needs to be enabled:

al, DTR or RTS or 8

; set up modem control register
; enable serial interrupts
; clear input buffer on 82C50

: Parameters: .
; NONE :
= Returns: :

: NONE :
3 Destroys: :
: al, dx :
H '
:**ﬁ******ﬁ***************ﬁﬁﬁ*ﬁ*******&***************ﬁ*;

tmio_inon proc near

mov dx, IER ; interrupt enable register

add dx, cs:tmio_base

mov al, INT_ON ; interrupt enabled

out dx, al

ret
tmio_inon endp

= *#ﬂ****ﬁk%*********ﬁﬁk*ﬁ**#***ﬁ******;

: tmio_inof ;
- Disable serial interrupts :

: Parameters: :
: NONE ;
: Returns: ;
$ NONE -
s Destroys: :
: al, dx :
;******#*:‘:***f;:‘:kt:{c:‘:a‘:i:;’::':*-'.::‘z;’::‘:*‘k:’::':f::’:z‘.--ki:-.‘:*-.’;:‘:'.'n‘:f:-‘.:".:3:{:-.’:!:-.‘:**:‘:*:‘::

’
tmio_inof proc near

mov dx, IER ; interrupt enable register

add dx, cs:tmio_base

mov al, INT_OFF ; disable interrupts

out dx, al

ret
tmio_inof endp
;k**k******ﬁ*ﬁ*k*ﬁﬁ#****k#: s

tmio_intc :

Serial read interrupt service :

-

Invoked by serial input register being full
Places character in buffer and returns ;

Parameters: -

NONE :
- Returns: :
NONE .
; Destroys: :
; NONE .

- ms ma ma was = ws ww

Al
tmio_intc proc near

push ax

push dx

push di

mov dx, RBR ; address of receiver buffer
add dx, cs:tmio_base

in al, dx ; get received character into al
and al, STRP_TOP ; strip top bit

mov di, cs:tmdp_bptr ; place character at top

mov cs:[di], al ; of buffer

inc cs:tmdp_bptr ; advance buffer pointer

: On an IBM PC the interrupt must be acknowledged by the following code:

» mov al, 20h
; out 20h, ail
: On the Pocket PC this is unnecessary

pop di

pop dx

pop ax

iret
tmio_intc endp
:******#***********k*ﬁ****#******ﬁ#******t**********kkk*;
: tmio_exit .
; Ensures safe exit from terminal emulator :
: Parameters: .
: NONE .
: Returns: .
H NONE ;
H Destroys: i
: NONE =

efthfthtehfehtedefedetafeh e hdh ik nhffehkdhihhbhSshihhihhhiffdedchfhfdde.
’ A

tmio_exit proc near

push ax
push bx
push dx
call tmio_inof ; Disable interrupts
; put old interrupt service routine back
push ds
mov ds, tmio_segc ; get old segment
mov dx, tmio_offc ; get old offset
mov ax, 250ch
int 21h ; redirect serial interrupt
pop ds
mov al, 48h ; reset default interrupt vector
call tmio_sint
pop dx

pop bx

pop ax

ret
tmio_exit endp
p tmio_sint ;
; Set interrupt vector register ;
h Will replace existing entry if possible 4
- This routine uses int 6lh service 1ch to ensure H
- that power down will not corrupt serial port i
b vector register H
; Parameters: ;
: al: interrupt number :
» Returns: '
; NONE .
H Destroys: i
H NONE ;
;{:‘.’:;‘::‘:}':;‘.-:':z'::'::'.-:':-.'::':-.'::'::‘:-.‘:i:;’::':":;':-,':-.':f::‘::’:-.'::'::‘::‘::’::'::'::':;‘::‘:-‘.::‘::'::':-.'::'::':".::‘::‘::’:-.':**i’::‘:*:‘: .
tmio_sint proc near
push ax
push bx
push CcX
push dx
; check for vector already being set up
push ax .
mov cl, 3 ; first non-reserved entry
sint_srch:
inc cl
cmp cl, 11 ; max table entry+l
je sint_seti ; 1f got here then entry no exist
mov ax, 1cOlh ; return table entry
mov bh, ¢l ; table entry number
int 61h ; return table entry
; check if SIVR has been set up before
cmp dx, INT_REG ; have we found location in table ?
jne sint_srch ; no than always replace

5 have found location in table for interrupt vector number
sint_wral:

pop ax ; interrupt number back
mov b1, al ; put value to write into bl
mov bh, cl ; table entry to use
mov dx, INT_REG ; address of SIVR
mov ax, 1lcOOh ; write entry number
int 61h
jmp sint_exit
; find an empty entry table to use
sint_seti: ; find empty table entry
mov cl, 3 ; first entry to check

sint_sr00:

inc cl

cmp cl, 11 ; max table entry+1
je sint_bodg ; 1f got here then entry no exist
mov ax, 1c01lh ; return table entry
mov bh, <l ; table entry number
int 61h ; return table entry
cmp dx, 0 ; have we found empty location in table ?
jne sint_sr00 ; no than always replace
jmp sint_wral ; yes go and write it
sint_bodg: ; no table entry
; no table entry has been found to do it the bad way
pop ax
mov dx, INT_REG ; corruption of SIVR may occur
out dx, al ; on power down
sint_exit:
pop dx
pop cx
pop bx
pop ax
ret

tmio_sint endp
R R R R 2R R R S IR R R R TR RS R TR TR IR SR TR O TR R SR o R TR S TR R TR R R S T R Sk R 5 S
tmio_inpt

Initialise 80c50 (based on int 14h service 0)

Parameters:
al: port parameters (as int 14h)
Bits 7, 6, 5 BAUD RATE

00 0 110
60 1 150
01 0 300
01 1 600
10 0 1200
10 1 2400
11 0 4800
11 1 9600

Bits 4, 3 PARITY

x0 none
01 odd
11 even
Bit 2 STOP BITS
0 1 bit
1 2 bits
Bits 1, 0 WORD LENGTH
10 7 bits
11 8 bits

mA e M M ws A We we W ws me =4 WE WE MA W WP W we WA WE WA WA M ws W G we O

Returns:

NONE ;
Destroys: ;
NONE :

R R R R cR - r g PR R R LR R IR R R R R R R R R PR AR R SR R RS R R R R R A S Y

’

'

; - -

tmio_inpt proc near

push ax ; Preserve parameters
mov cl, S ; Set up shift count
shr al, cl ; Get bits to shift
jz init_spec ; Special case of 110 baud
mov cl, al ; Get count in CL
mov ch, 06h
shr cx, ¢l ; Get divisor in CX
jmp short init_norm
init_spec:
mov cx, 417h ; Divisor for 110 baud
init_norm:
mov dx, tmio_base ; Base address
add dx, LCR ; Get line control reg port
mov al, 80h ; Access divisor regs
out dx, al
mov dx, tmio_base ; Lower divisor latch
mov al, cl ; Get low divisor
out dx, al ; Write divisor
inc dx ; Upper divisor latch
mov al, ch ; Get high divisor
out dx, al ; Write divisor
pop ax ; Restore parameters
and al, 1fh ; Get bits 4 to O
mov dx, tmio_base ; Base address
add dx, LCR ; Line control register port
out dx, al ; Write data
ret
tmio_inpt endp
tmio_base dw O ; base address
tmio_offc dw O ; offset of old int Och
tmio_segc dw 0 ; segment of old int Och

code ends
B end

3. Internal Software

3.1 UPDATE 1.07

“
With this newsletter I am pleased to announce version 1.07 of
update. The version number is found by viewing the time of the
date stamp. Please distribute Update freely onto any and all
machines. The program works on both Atari and DIP machines and
checks against the ROM number for what to install.

This program will update your internal software. The syntax is;

UPDATE installs update with reply returns;
UPDATE+OK installed successfully, or
UPDATE+FAIL Can not be installed (probably because it

has already been installed)

To un-install the software from the machine. The syntax is;

UPDATE /u Un-install UPDATE with reply returns;
UPDATE-OK Un-installed successfully
UPDATE-FAIL Can not be un-installed (probably because

other TSR programs are loaded on top.)

To ensure update is always in use, please insert into your
autoexec.bat file.

3.2 2Zero length files.

Users can find when they try to load zero length files that the
machine hangs. Update now stops the saving of such files, but
loading in Zero length files will still cause the error. If a
zero length file has become the default file within that
application you will need to delete C:\SYSTEM\PERMDATA.DAT.

Developers Newsletter Page 4 Septcmber, 1990

3.3 Sector Size Problem.

Database applications can receive write fails when they produce
a file equal to the sector size (128 bytes on 32Kb*RAM card, 256
bytes on 64Kb RAM card and 512 bytes on 128Kb RAM card) For
example, if you write 127 records of any length on a 32Kb gaFd,
the 128th one will fail. This is most easily avoided by writing
out the complete Data file with the maximum number of records
required, and adding the data into those records as and when. As
no file extended is used, the problem can not occur. The other
alternative is to add a byte to the 127th record (one before the

multiple will be reached) and continuing with the offset to the
next multiple.

To find the sector size of the card you are using you spould call
INT 21 function 1CH. [Get free allocation table.] CX will return

the number of bytes in each sector. Here is a simple assembler
example to demonstrate.

TITLE SSSA.ASM
comment *
tritten by JO
¥ritten on 22.08.1990
Sheck against int 21 for sector size.

Code segment byte Public
assume cs:code

tﬁtl.iﬁt.ﬂtiti*tiii*tt.ttitttitt.tl**tttﬁtt*'tttti:

VOID sssa_main()
Call fat 21 and return sector size

Registers preserved:

[
Parameters:

none
Returns:

ax sector size
i'itttttﬂtii!ttttﬁtttitktt*tttitt**tttii*tiitttttt:

0 48 W4 mE Ba w4 WE S8 WP =2 &
P TR T T L L

public sssa_main proc near

push S1
push 0I
push X
mov A, 1Ch :get allocation table info
mov DL,1 :set to drive A
int 21h scall function
mov ax,cx ;give to AX for return
pop cX
pop o1
pop SI
ret
$sa_main endp
code ends
end

Developers Newsletter page S September, 1990

4. Developers Hints.

4.1 Throughout the manuals and information from DIP, you will
find emphasis on using the operating systems commands,
interrupts+ and function calls. This is to maintain the upwaxd
compatibility of products. Where information is given on lower
level interfacing with the machine you should expect a strongly
worded warning that this method may not be supported on future
revisions of the machine. Please take note of the implications
of any such warning. No one wants developers getting upset when

DIP release a new version and overnight their software fails to
run.

4.2 A couple of developers have found problems with the use of
some compilers. The problem is due to our BXEC loader not being
able to load files of certain lengths. It will display the
message 'EXEC error' and not execute the program. It may occur
with any compiler. Please-try recompiling the code with a small

change to the program/data size. Notify DIP of any problems you
have.

4.3 Take note that the Pocket PC is a MS DOS 2.11 compatible
machine, not DOS 3.x Many developers are now using compilers that
require DOS 3.0 or higher, so you are likely to find commands
that use DOS 3 services and are not supported. Please let us know
of any problems you have. Most major commands are supportable and
we will help you to achieve this.

4.4 Many developers are producing code which will have both an
IBM version and a DIP version with different libraries and
functions etc. Software may be produced that works for both IBM
and DIP products. This type of software may also need to know
which machine it is working on. Calls to INT60 can cause great
problems if the machine is not a DIP. The best way to test for
a DIP Pocket PC or Atari Portfolio is to look for the DIP
copyright notice in the machine "(C) DIP" sits at ROM address
FOO0:FFE6 and the following code will achieve this. You may also
check that INT61H is present by testing for the two bytes ‘DS’
before the SEG:OFF pointed to by the vector.

Developers Newsletter Page 6 September, 1990

TITLE CLIDR.ASHM

comment *
Written by BRI
Hritten on 31.10.1989 -
Set the NZ if we are not running with DIP's ROM's.
*
Data segment byte Public
cli_drtxtdip db *(C) DIP'
CLI_DRTXTLEN equ $-_cli_drtxtdip
data ends
Code segment byte Public

assume cs:icode,ds:data

*ﬁ.i'iiﬁ*ﬁtt*t.iitl.iiiﬁt*i**tttiiti*‘ﬁ'tt..ik*iiii*tﬂtit.ttiﬁ**itt:
cli_drom

Set IR if we are running on a DIP machine.
Check if on DIP machine by looking for "(C) OIP".

For us to run, the ROM at FO0O0:FFEG must contain the above
7 characters.

To call this function:

JSR cli_drom

.t @6 wo F 6 B4 WO GE WE N4 ws wE S ko 00 S0 -
o ma me me ms e ms e e

. Je on_the_dip_machine
Parameters:
Kone
Returns: :
NZ Means we are running on a foreign machine. :
ﬁi."i*.iiﬁi*ttt*t'iitittt.'iititti*ii.iﬁ.iktt*ﬁtiitttktttkikiitttt:
cli_drom proc near
push ds
push es
mov ax,0F000h
mov es,ax
mov 4i,0FFEGh s get ptr to where (C) OIP should be.
push cs
pop ds s source is my code segment.
mov s{,0FFSET _cli_drtxtdip ; text in our ROH.
mov cx,CLI_DRTXTLEN ; bytes in test string.
cld
rep cmpsb : ; compare strings
pop es
pop ds s RETURN 1N ZERO FLAG!
ret
cli_drom endp
code ends
end

Developers Newsletter Page 7 Septcmber,

1990

5.0 DIP PC Display

The DIP Pocket PC display currently supports both standard MDA
text, and a proprietary Graphics Format. The Video*Ram is located
at segment O0B00Oh. Text is stored as for MDA, with the first
character at 0B0OOh:0H and its attribute byte at 0B000:1lh. The
Pocket PC provides a single 80 x 25 text page using exactly 4000
bytes of Ram. There are 96 bytes remaining above this video RAM
which are used by the BIOS. Any attempt to select a second text
page will set the default page.

There are 2 graphics pages supported. The first page at 0B000:0h,
and the second page at 0B000:7DOh. Graphics pixels are stored
using a simple 8 horizontal pixels per byte, with the MSB of each
byte being the left most pixel of the eight. The resolution of
the Graphics Screen is 240 by 64, mapped as 30 by 64 bytes.

When the BIOS writes to the screen, it has to write to both Video
RAM and the LCD display. This is because the display is not
automatically refreshed (To save power). If a large amount of
information on the screen has to change, as happens if the screen
scrolls, then the entire Video RAM may be copied to the LCD.

There are normally only two ways to write graphics to the
display. The first is to use BIOS write pixel service (Fn OCh) .
The second is to write directly to video RAM, and refresh the
LCD. The former method is the recommended. The latter may not be
compatible,with future machines.

To find which screen is installed in the Pocket PC call function
INT61 function 36. The values returned are shown below. As any

future screens are installed, the return values produced will be
released.

INT 61h - Configuration Status (S 36)

Parameters:

AH 36h
Returns:

AX Configuration
Note

This service returns the machine build configuration, and
may be used to detect which video adapter is used. .
If AX bits OCh and 0Dh are set-to 0, then the service exists.
IF AX bits OCh and ODh are not set to zero, then service does not
exist and screen must be MDA.
If AX bit 02h is set to 0, the screen is MDA.

Developers Newslettex Page 8 Septcember, 1990

5.0 DIP PC Display

The DIP Pocket PC display currently supports bofh standard MDA
text, and a proprietary Graphlcs Format. The Video Ram ig located
at segment 0B00Oh. Text is stored as for MDA, with the first
character at 0B00OOh:0H and its attribute byte at 0B00Q:lh. The
Pocket PC provides a single 80 x 25 text page using exadtly 4000
bytes of Ram. There are 96 bytes remaining above this yideo RaAM
which are used by the BIOS. Any attempt to select a sodond text
page will set the default page. -

There are 2 graphics pages supported. The first page at 0B000:0h,
and the second page at 0B000:7DQ0h. Graphics pixels are stored
using a simple 8 horizontal pixels per byte, with the MSB of each
byte being the left most pixel of the eight. The resolution of
the Graphics Screen is 240 by 64, mapped as 30 by 64 bgtes.

When the BIOS writes to the screen, it has to write to bqph»vldeo
RAM and the LCD display: This is because the display is not
automatically refreshed (To save power). If a large amount of
information on the screen has to change, as happens if the screen
scrolls, then the entire Video RAM may be copied to thd LCD.

There are normally only two ways to write graphics to the
display. The first is to use BIOS write pixel service (Fn OCh).
The second is to write directly to video RAM, and refresh the
LCD. The former method is the recommended. The latter may not be
compatible ,with future machines.

To find which screen is installed in the Pocket PC call function
INT61 function 36. The values returned are shown below. As any

future screens are installed, the return values produced will be
released.

INT 61h ~ Configuration Status (S 36)

Parameters:

AH 36h
Returns:

AX Configuration
Note

This service returns the machine build configuration, and
may be used to detect which video adapter is used. .
If AX bits 0Ch and ODh are set-to 0, then the service exists.
IF AX bits 0Ch and ODh are not set to zero, then service does not
exist and screen must be MDA.
If AX bit 02h is set to 0, the screen is MDA.

Developers Newsletter Page 8 September, 1990

6.0 Security Protection for Memory Cards.

When providing software that takes many hours to produce and

supplying it on a very low cost machine,

there may be a genuine

concern about software piracy and the resultant loss of revenue.

The most efficient and low cost method
on the memory

a ‘'control byte’

of protection is to set
card where the program is

resident. The usual place to put this control byte is within the

boot sector of the memory card.
put the control byte anywhere.

software which can
is not found. The
(or string)
normally used.

Display
000000: EB 22 00 44 49 50 20 32
000010: 02 80 00 00 01 FF 01 00
000020: 00 00 00 00 88 07 00 CD
000030: D2 OE 07 80 43 00 90 B9
000040: 16 CD 19 4E 6F 6€ 20 53
000050: 73 68 20 6F 72 20 64 69
000060: 2E 0D 0A 52 65 70 6C 61
000070z 72 65 73 73 20 61 6E 79
000080: 00 00 00 00 00 00 00 00

Rest of sector
the last word

000xx0: 00 00 00 00 00 00 00 00

(If you have a ROM card you could
) This can then be checked by

take appropriate action if the control byte
preferred
is the

place for putting such a character
'Non-System disk®' message, which is not

of Ram Card Boot Sector.

2E 30 00 00 02 02 02 00 .".DIP 2.0......
08 00 02 00 00 00 00 00 T
1088 01 13 BB 07 00 33 oeeoenen. 3
390090CD1032€4CDC...9....2..
79 73 74 65 6D 20 64 69 «..Non-System di
73 68 20 65 72 72 6F 72 sk or disk error
63 65 20 61 6E 64 20 70 -..Replace and p

20 68 65 79 00 00 00 00
00 00 00 00 00 G0 00 00
00 00 00 00 00 00 00 00

ress any key....

................

................

will be formatted with zeros, apart from
which must not be overwritten.

00 00 00 00 00 00 55 AA u.

The following assembler routines are being employed by developers

to protect software.

Developers*Newsletter

Please adapt to suit your own requirements.

Page 9 September, 1990

TITLE WPRO.ASHM

comment *
Written by JD k <
Hritten on 21.08.1990

Test for control byte in absolute sector.
L1

data segment byte public

boot_sector db 512 DUP(0) :Hhere to store boot sector

data ends

code segment byte public
assume cs:code,ds:data

org 100h

ii'*i'ﬁti'ﬁtt*‘tﬁitﬁt**ittitttttiiiiitittiﬁittit***hkﬁ'tttti*ttki tt:
wpro main

Test for contral byte in absolute sector.
Parameters:
None
Returns:
AL » 1 general error, 2 not ready
9 not set, OA:set correctly

*iﬁﬁﬁitittt'ti*i*!attttlﬂltltiik****!.tiltitiitt*ti*itk**i***ttk*tﬁ:

a ms Be M4 me w4 AL wE S A

«bs w0 we o ad wa v a0

public wpro_main

wpro_main proc near
sInitialise
spush any other required
;registers
push bp sPreserve stack
push ds
mov al,00h sDrive Number, A:
mov cx,0lh :No. of sectors to write
mov dx,00h :Sector Number
mov bx,OFFSET boot_sector ;0TA pointer
push bx :Preserve BX
INT 25h ;Absolute sector read
Jnc wpro_success ;off we go
popf spop flags
:Hrite to sector
pop bx spreserving BX
cmp al,0zh :Check drive not ready
Je wpro_notready
mov ax,01lh ;Return lh for General error
Jmp wpro_finish
wWpro_success: ;Card ready
popf spop flags
pop bx sPreserving BX
mov al, [bx+51h} ;Get sector char
cmp al, "’
je wpro_set
mov ax,0%h -
Jmp wpro_finish
wpro_set:

Developers Newsletter Page 10 September,

1990

mov
Jmp

wpro_notready:
mov

wpro_finish:
pop
pop

ret
wpro_main

code ends
end

Developers Newsletter

ax,0Ah
wpra_finish

ax,03h

ds
bp

endp

-

sreturn A for card ready

:Orive not ready .
;return 3 for drive not ready

iPreserve registers
;presevre any others pushed

; & return

Page 11

September,

1990

TITLE WMRO.ASM

comment *
Hritten by JO
Written on 21.8.1990

To set up a control byte in the card

w

data segment byte public
boot_sector db 512 our(0)
data ends

code segment byte public

01h general error

;Where to store boot sector

assume cs:code,ds:data

org {00h
:tt'ittti.i.i!iit****ﬁii*ttt*tt*tit*tk*t*tﬁ*ﬁittﬁﬁttii&&itttttittitt;
: wwro_main 2
: Absolute Sector Read and Write to Create a protect character -
; Parameters: :
. None .
s Returns: :
3 Al: OAh Protected,02h write protect, 03h not ready ;
H H

pubtic wmro_main

wnro_main ‘proc near

push bp

push ds

mov al,00h

mov ¢x,01h

mov dx,00h

mov bx,0FFSET boot sector

push bx

INT 25h

Jnc wnro_success
wWiro_error:

popf

pop bx

canp al,o0h

Je wiro_writepro

anp at,02h

Je wnro_notready

mov ax,01h

Jmp wnro_finish
WI0_success:

popf °

pop bx

mov al,'{*

moy [bx+51h],al

mov al,00h

mov cx,01h

mov dx,00h =

push bx

INT 26h

Jnc waro_set

Developers Newsletter

Page 12

'.‘t"ﬂ**ﬁ*'tﬂ*iﬂ**t*i***ktk!'t*iittittktﬁ*ﬁik*itt*iik*ttt*ﬁiik-ﬁiﬁ:

spush any other requéred

_:registers

:Preserve stack

:0rive Number, A:

:No. of sectors to write
;Sector Number

:DTA pointer

sPreserve 8X

;Absolute sector read
;off we go

spop flags
spreserving BX
;Check for write protect

:Check drive not ready
;Return lh for General error

:Card ready

ipop flags
spreserving BX
;control character
:Give sector the char

:Orive Humber, A:

;No. of sectors to write
;Sector Number
;Preserve BX

;Absolute sector write
sset it ok

September,

1890

Jmp

wnro_set:
popf
pop
mov
Jmp

wnro_writepro:
mov
Jmp

wmro_notreadys
mov

waro_finish:

pop
pop

ret
wiro_main

code ends
end

Developers Newsletter

whnra_error

bx
ax,0Ah
wmro_finish

ax,02h
wiro_finish

ax,03h

ds
bp

endp

:pop flags .
:Preserving BX -
ireturn A for card ready

;Card write protected
;return 2 for card write protected

:Drive not ready
;return 3 for drive not ready
;Preserve

:preserve any other pushed
sregisters

: & return

Page 13 ~ September,

1990

