
CONTENTS

1 Technical Overview of portfolio............1_l

2 Hardware
2.1 System Description.............2_1
2.2 System Memory... ...2_4
2.3 Memory Cards..2_6
2.4 Custom ASIC Chip........2_B
2.5 Power Supply Unit.........2_9
2.6 Portfolio Expansion port.........2_11
2.7 Peripheral Design lssues..... ...2_17
2.8 LCD Disptay.....2_21

3 Software
3.1 General Description..............3_1
3,2 Differences Between portfolio Blos and IBM pc Blos..3-4
3.3 System Specific 81OS.......3_6
3.4 Differences Between MS-Dos and portfolio Dos..................3-23
3.5 Device Drivers and peripheral Software..3_24
3.6 Memory Cards......3_2g
3.7 Screen Handling..3_30
3.8 Power Management...... ..3_31
3.9 Special File Formats............. .3_33
3.10 IBM PC Development System.... ..g_37

4 Peripherals
4.1 Portfolio Serial Communications....4_1
4.2 smart Parallel lnterface Fife Transfer protocol Description.......4-3
4.3 IBM PC Card Drive4_4
4.4 EPROM Writer Adaptor Boards.4_5

Appendixes

A Example .RUN program.
..........A_1

B Diagram of Portfolio Character Set.... B_1

C Example Peripheral Design..C_1

-1

1 TECHNICAL OVERVIEW OF PORTFOLIO

The Atari Portfolio is the first product that provides the functionality of a standard
desktop PC in a package which can fit into a pocket.

The main requirements for the Portfolio technology are that the product should be
pocketable, compatible, have low power consumption and above all be inexpensive
to purihase.

The Portfolio is the size of a video cassette (VHS) and weighs less than one pound
(450 grams).

The Portfolio provides a high degree of software compatibilily with the industry
standard desktop microcomputer, the IBM PC. This is achieved by supplying a PC-
compatible BIOS, Ms-Dos-compatible operating system as well as Lotus 1-2-3 file-
compatible spreadsheet. The Portfolio also provides an expansion bus connector
which allows peripherals to be connected to the product.

The Portfolio is inexpensive to manufacture as the software is provided on and runs
lrom ROM and with the large scale integration of system logic, using an ASIC, the
overall component cost and size are reduced.

The Portfolio uses credit card-sized memory cards instead of magnetic disks, and a
LCD display. These components have a low power consumption and hence the
product can use the consumer standard AA batteries and achieve a long battery life.

This Technical Reference Guide describes the Portfolio technology in detail and
provides the necessary information for a third party to develop hardware and
software applications for the Portfolio. This document only provides information
specific to the Portfolio technology. lf you want information on the standard IBM PC
hardware, BIOS, or MS-DOS then the following publications should provide the
required information:

IBM Personal Computer Publications:

Technical Reference (BIOS and Hardware)
Disk Operating System (PC-DOS)

Microsoft Press Publications ISBN Reference

Peter Norton Programmer's Guide 0-914845-46-2
The MS-DOS Encyclopedia 1-55615-049-0
IBM ROM BIOS (Ouick Reference Series) 1-55615-135-7
MS-DOS Functions (Ouick Reference) 1-55615-128-4

1-1

2. HARDWARE

2.1. System Description

OSCILLATORS

POWER SUPPLY
CONTROL

KEYBOARD

80c88
SYSTEM
LOGIC

INCLUDING

ASIC

ON BOARD RAM

4KB MDA
COMPATIBLE

124K8
SYSTEM

EXPANSION
PORT

CHARACTER
GENERATOR
ROM

DEDICATED
VIDEO
RAM

LCD
DRIVE

VIDEO CONTROLLER

TONE DIALLER
AND SOUNDS

128K8 ROM A

CARD MEMORY .I28KB ROM B

BLOCK DIAGRAM OF PORTFOLIO SYSTEM

2-1

2-1-1 Microprocessor Unit

The Portfolio uses an 80C88 MPU, the same processor as the original IBM PC. lt is
the CMOS static version which allows the MPU clock to be halted when no
processing is taking place and hence power consumption is kept to a minimum. The
Portfolio is faster than the original IBM PC, the clock running at 4.9152MH2 instead
ol 4.77MH2. However, the Portfolio processor uses minimum mode, so bus lock
cannot be used. (See section 2.6 for more details.)

2.1.2 System RAM

The current Portfolio uses four 32 KByte Static RAM chips, giving a total of
128KBytes. These have a very low standby current which allows them to maintain
their contents for extended periods with minimal drain on batteries.(See section 2.2
for more details.)

2.1.3 System ROM

The current Portfolio has in total 256 KBytes of ROM which contains all of the BIOS,
DOS, command processor and application software. This ROM currently comprises
of two 1 28 KByte chips. (See section 2.2 for more details.)

2.1-4 LCD Display

The LCD is a 240 x 64 pixel display. lt is driven by a set of LCD screen drivers which
are controlled by a graphics LCD controller. The screen behaves in the same way
as an IBM PC monochrome text screen (MDA). The conlroller also uses a dedicated
Video RAM chip and a character generator ROM. For graphics it is pixel compatible
provided the PC-compatible BIOS is used. (See sections 2.2.2,2.8 and 3.7.)

2-1.5 Tone Dialler + Sound

The Portfolio speaker is driven by a Dual Tone Multiple Frequency (DTMF)
telephone dialler chip. This produces all the necessary dual tones required for tone
dialling plus a sel of melody tones for musical applications. The keyboard click also
uses this circuit. (See section 3.3.1.)

2-2

2.1.6 AS|C

This circuit contains most of the system logic. (See section 2.4 for more details.)

2.1-7 Keyboard

The Portfolio uses a 63-key OWERTY 'switch-matrix'keyboard. The ASIC
generates a set of physical scan-codes which are translated by the BIOS to IBM PC-
compatible scan-codes.

2.1-g Memory Card Connector

The Portfolio contains a memory card connector on the side of the product. Credil
card-sized memory cards can be inserted into this connector, allowing for dala and
programs to be accessed by the Portfolio soflware. (See section 2.2.4, 3.6.)

2- 1.9 Expansion Port

On the right-hand side of the product there is a 60-pin connector which provides the
necessary signals for various peripherals. (See section 2.6,2.7 and 3.5.)

2.1.10 Power Supply Unit

This supplies all the power required in the system. ll produces various supply lines.
The circuit includes a switching regulator that steps up the voltage lrom 3 AA cells to
5V. The regulator may be switched off. (See section 2.5 and 3.8 for more details.)

2-3

2.2 SYSTEM MEMORY

2.2.1 Memory MaP

SYSTEM ROM A - (128K BYTES)

CREDIT CARD MEMORY

(EOUIVALENT TO
A: OR B:)

SYSTEM ROM B - (128K BYTES)

MIRROR OF VIDEO RAM (NOT USED)

VIDEO RAM MDA 4K BYTES

EXPANSION RAM AREA UP TO
512K BYTES

SYSTEM RAM - 124K BYTES

(INCLUDING C:)

Diagram of Portfolio MemorY MaP

(all addresses in hex)

2-4

2.2_2 RAM

There is a total of 128 KBytes of on-board RAM provided with the Portfolio.

4 KBytes of this RAM are mapped to 80000h to make up the video RAM which is
compatible with the IBM PC MDA screen. This gives a total system RAM ol 124
KBytes.

The system RAM can be expanded up to 636 KBytes by use of memory expansion
peripheral(s).

The Portfolio allows the user to have an internal RAM disk (known as C:) which can
be user configured. This RAM disk uses the top of the system RAM.

2-2.3 System ROM A

This contains the BIOS, operating system and some of the application software. The
reset vector sits at FFFF0h. This ROM cannot be mapped out of the memory map.

2.2-4 System ROM B

This contains the rest of the application software. This ROM may be switched out of
the memory map and replaced by either the internal memory card or an external
memory card on a peripheral. The BIOS disk services would normally perform this
switching function. (See section 3.6.)

2-5

2-3 Memory Cards

The Portfolio uses credit card-sized memory cards which are specially designed for
the Portfolio. There are similar memory cards available from other vendors. DO
NOT use these cards with the Portfolio as they may harm the card and the Portfolio.

These come in three main types: RAM, OTPROM and Mask ROM. (See below for
explanation.)

The cards are formatted to look like MS-DOS disks. lt is possible to run a program
directly from a card and hence reduce lhe amount of system RAM required. (See
seclion 3.6.3 for more details.)

2.3-2 RAM cards

The RAM cards are currently available in three main sizes: 32, 64 and 1 28 KBytes.

The cards are made up of Static RAM and each card contains a lithium back-up
cell. This cell will maintain the data on a card when it is not in a Portfolio for a year
or more.

2.3.3 OTPROM cards

The One Time Programmable ROMs cards that are currently available are 64 and
128 KBytes. They are read-only cards and would typically be used for holding fixed
data or software. They can be programmed in a standard EPROM programmer like
a normal PROM (see section 4.4).

2.3.4 Mask ROM

These cards are "factory programmed" and have a low unit cost. This makes them
suitable for issuing mass production software. Currently available only as 128 KByte
oplion.

2.3-5 Future Card Sizes

The Portfolio BIOS contains support for ROM and RAM cards of greater than 128
KBytes. lf these become available, they will be made up of 128 KByte pages with a
page register at offsel 0004h. lt is imperative that NO application soltware uses this
memory card location, no matter what the card capacity.

2-6

2-3.6 Memory Card Pin-out

Below is a pin out of typical memory cards. Differences between the various card
types are highlighted. (Pin 1 is on the right with the connections up and pointing to
you.)

Pin COMMON RAM OTPROM
32k 64k 128k

Mask ROM

1

2
3
4
5
6
7
I
I

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

416
415

VBB VPP NC VPP NC
412
A7
A6
A5
A4
A3
A2
A1
AO
DO
D1
D2
GND
D3
D4
D5
D6
D7
CE
410

OE OE OE/VPP OE OE
All
A9
A8
413
414

WE NC NC PGM NC
vcc
CDET

Notes: NC No internal connection.
VCC Operating supply: 5 Voils.
GND Signalground
CDET This is the small pin (internally connected

to GND), used to delect presence of card.Ax Card address line x.
Dx Card data line x.
VBB Card battery voltage.
PGM OTPROM program line. 0V in program mode.VPP OTPROM program voltage.

12.5V Program mode, 5V normallyOE Low to indicate a read cycle.
WE Low lo indicate a write cycle.

2-7

2.4 Custom ASIC Chip

The Portfolio custom ASIC chip provides most of the necessary system logic. lt is a
gate array implemented using silicon gate CMOS technology, which allows for very
low power and high speed operation.

This Application Specific lntegrated Circuit (ASIC) is used to generate all the select
lines for the memory, memory cards and other system blocks. lt also contains
several system control lunctions. These functions are controlled using a set of
registers which control the various parts of the system such as memory chip size.

2.4-1 System Clock

The clock is 4.9152MH2, with a 50% duty cycle produced by a crystal oscillator. The
clock can go in to a stop mode. A custom chip interrupt will cause the clock to
restart.

2-4.2 Timer

The system timer tick count is generated from a 32768H2 crystal oscillator which will
generate an interrupt every 1 second or every 128 seconds.

2.4.3 Keyboard Controller

The keyboard controller will scan an eight by eight push to make key-switch matrix.
A pressed or released key will cause an interrupt. The processor will obtain the scan
code from a control register.

2-4.4 lnterrupt Handler

This controls the critical error for the memory cards, keyboard and tick count
interrupt. This is extended outside the ASIC to allow for external peripheral
interrupts.

2-4.5 Soft Contrast for LCD

A control register holds the contrasl value for lhe LCD display.

2-8

2-5 Power Supply Unit

The Portfolio has several power supply lines and control lines. These are used for
various purposes and have different power characterislics as explained below. They
are all available on the expansion bus.

When batteries and a power supply are connected to the Portfolio simultaneously,
the Portfolio will be supplied by the higher voltage ("initial source").

(See section 3.8 for software issues.)

2-5.1 Power Modes

i) NO POWER MODE
This is the state when no initial source is connected to the Portfolio (e.g. changing
batteries). lf an initial source has been supplied and then removed, the system RAM
will be backed up by an internal capacitor.

¡i) OFF MODE
This is the state the Portfolio goes into when the'OFF'command is used. The
custom chip and RAM are powered directly from the initial source.

iii) STANDBY MODE
This is the state that the Portfolio will be in while waiting for a key press. The whole
system is powered from the output of the internal five volt regulator. However, the
system clock CCLK is halted in order to stop the processor and save power.

iv) RUN MODE
This the state in which the Portfolio is actually processing. The whole system is
powered from lhe output of the five volt regulator and the system clock CCLK is
running, thus causing maximum power usage.

2.5.3 VCC (Memory Card supply voltage)

This line follows sVS. lt is designed to be used by an external memory card so that
plugging in and pulling out a card will not cause spikes on SVS. This line should not
be used for any other purpose.

2-9

2-5-2 sVS - Five Volt switched supply line

This is the output of the five volt regulator. During STANDBY and RUN modes, this
line will supply five volts. At any other time this line will lloat low. Peripherals may be
designed that use this supply.

5VS is capable of supplying up to 40 mA at 5V +/- 5To lo a peripherat. This assumes
that the main unit is taking maximum power. The Portfolio will run correctly outside
the 5% supply tolerance; however, this is not recommended.

Use of 5VS by a peripheral will decrease the unit's battery life. Also, since alkaline
batteries develop a voltage drop (due to inlernal resistance) the low battery warning
will occur when the batteries are less depleted than if the peripheral was not
plugged in.

2.5.4 VRAM (Memory Power Supply)

This is the supply for the system RAM:

STANDBY and RUN 4.5V
OFF initial source voltage - 0.5V
NO POWER current voltage across a capacitor.

During NO POWER Mode the voltage will decay, so care should be taken that no
current is taken from this line or the system RAM could be corrupted. When the cold
resel switch is pressed this line is pulled to GND through a small resistor.

2.5.5 VEXT (External voltage)

This is the exteinal power supply voltage connected directly to the external jack
socket. This enables peripherals wilh their own power source to make use of the
Portfolio external power supply. lt is possible to supply the Portfolio via this
connection. However, care should be taken to avoid external power supply conflicts.

2.5.6 BATD (Battery detection signal)

This control signal is used to isolate system RAM from the rest of the circuit when
the batteries are removed. lt would normally carry the initial source but when the
inilial source is removed, it is pulled to GND. This line could be used by a peripheral
to access the initial source.

2-10

2.6 Portfolio Expansion Port

The Portfolio uses a 60-pin expansion connector which can take custom designed
peripherals. (See section 4 for more details on current range of peripherals.)

2.6.1 Expansion Port Connector Pin-out

Location of pin 1 - lf you are looking into the Portfolio expansion port then the top
pin on the right is 1 and the bottom right is 2.

ABUF .1
REDY .3
BCOM .5
NMD1 .7
DTR .9
PDET .11

ccLK .13

HLDA .15

lAcK .17

roM .19

Al8 .21

416 .23

414 .25

412 .27

410 .29

A8 .31

HLDI .33

GND .35

oA7 .37

oA5 .39

oA3 .41

oAl .43

ADo .45

AD2 ,47

AD4 .49

AD6 .51

EINT .53

VEXT .55

BATD .57

sVS .59

2. sVS
4. VCC

6. NCC1

8. WAKE
10. DEN

12. ilNT

14. MRST
16. HLDO
18. CDET
20. 419
22. 417

24. A15
26. 413
28. All
30. A9

32. VRAM
34. ALE

36. NMIO
38. 0A6
40. oA4
42. OA2
44. OA0

46. ADl
48. AD3

50. ADs
52. AD7

54. NRDI

56. EACK

58. NWRI

60. BBUF

2-11

1

2-6-2 Explanation of expansion pin names

This section explains the functions of the expansion porl. lt assumes a knowledge of
I

80C88 minimum mode. Detailed Timing for relevant signals can be found ín a
microprocessor data sheet, ideally OKI MSM80C88ARS-2.

I

REDY output
This line indicates to the CPU that the custom chip is ready. This line is

i

active high. I

VCC output
This is the Credit Card power supply. I

BCOM output
This is the communications select line, used for peripheral
implementations. lt is low if l/O locations 807X are being accessed. This
signal is active within 100nS of l/O address being valid (see section 2.7).

r

NCCl output
This is the external credit card chip select line. lt is low if the external
credit card is selected. See BCOM for timing.

NMD 1 input
This is the external credit card delect line. lt goes low to indicate that a
card is plugged in.

DTR input/output
This is the 80C88 data direction signal. During CPU HOLD this line may
be driven.

DEN input/output
This is the 80C88 data enable signal. Low indicates a data cycle. During
CPU HOLD this line may be driven.

PDET input
This is the peripheral detection line. lt should be tied high on a terminating
peripheral that has a PlD. (See section 21 for more details.)

llNT outpul
This is the internal interrupt request line to the CPU (INTR). lt goes high to
indicate an interrupt request.

2-12

IACK

EINT

EACK

CCLK

MRST

HLDI

HLDO

HLDA

input/output
This is the 80C88 interrupt acknowledge line (INTA). lt goes low to
request an interrupt vector after an llNT. During CPU HOLD it may be
driven by external hardware.

input
This is the external interrupt request line. lt may be driven high by external
hardware on a terminating peripheral to request an interrupt. This interrupt
line has lower priority than the on board interrupts. This signal is level
triggered.

output
This is the external interrupt acknowledge line from the Portfolio. lt goes
low to request an interrupt vector after an EINT. lt follows \INTA on the
processor, but is delayed by up to 40nS.

outpul
This is the main processor clock (4.9152MH2, 50% duty cycle). Since the
clock pauses when no processing is taking place, dynamic logic should
not use this line. lt may be used for synchronising peripheral logic. During
halt mode this line is high. This signal is only available to terminating
peripherals.

output
This indicates system reset. MRST will normally be high, except when a
terminating peripheral is installed. The terminating peripheral will experi
ence a short resel when inserted. lf a terminating peripheral is installed
then MRST goes high to indicate system reset. MRST will remain high at
any time the reset key is pressed. lt will also go high when the main
computer system powers up. Under these conditions MRST will remain
high lor over 300mS.

input
This is the hold request line and will drive HOLD on the 88C88. lt may be
driven high by external hardware to requisition the system bus.

output
This is the 80C88 hold request line (HOLD). HLDI should be used to
request a HOLD.

output
This is the 80c88 hold acknowledge line (HLDA). lt goes high to indicate
that the bus is now free. This state will be called CPU HOLD.

2-13

WAKE input
This líne is used by a peripheral to wake up the main computer when it is
powered down. This line is set low to request wake up. Wake up can be

i

confirmed by waiting for a falling edge on MRST. lt will take 300-400mS
for wake-up to be confirmed. When wake up is confirmed, the wake input
should be released. I

CDET input
This signal is lied low to indicate to the main computer that an external
credit card drive is present.

IOM input/output
This is the 80C88 memory access select line. lf high then a l/O cycle is
taking place, if low lhen a memory cycle. During CPU hold this line may
be driven.

VRAM output
This is the RAM power supply. lt will backup RAM when the batteries are I

removed, therefore any current taken from this line should be pAs.

sVS output
This is the switched 5V output. There are two 5VS lines.

GND output
Signal ground line.

VEXT output
This is lhe external power supply line.

ALE input/output
This is the address latch signal from the CPU. lt latches the address bus
on its falling edge. During CPU HOLD this line may be driven.

A8-A 19 input/output
These are the upper part of the address bus from the CPU. During CPU
HOLD these lines may be driven.

AD0-AD7 input/output
These are the multiplexed address/data bus from the CPU. During CPU
HOLD these lines may be driven.

OA0-OA7 output
These are the lower latched address lines.

2-14

I NnDl input/output
This is the B0C8B \RD signal. lt goes low to indicate a CPU read cycle.

i During CPU HOLD this line may be driven.
I

NWRI input/output

i fhis is the 80C88 \WR signal. lt goes low to indicate a CPU write cycle.
During CPU HOLD this line may be driven.

BATD output
This is the detect line for the batteries. lt goes low if the batterie$ are
removed without a power supply being present. This can be used to
prevent accidental corruption of RAM.

ABUF/BBUF input
These are insertion detection pins. A terminating peripheral should have
these lines connected to the adjacent 5VS line. (See section 2.7 on
peripheral design.)

NMIO output
This is the 80C88 non-maskable interrupt request line.

2.6-3 Comparison between IBM and Portfolio expansion bus

The IBM PC and Portfolio expansion buses are analogous; however, the
implementation of these buses are very different. See the comparison below:

IBM PC Porllolio

a) tlO is parlially decoded. l/O MUST be fully decoded.

b) A0-A1e are ratched address
"ti.?;?3í,.gsSHPå1ilitri^""itåL:si

c) D0-D7 are bufrered dara
å""rÈà?iåH ä:"å?iäxladdress/dara

rines

d) lRa2-lRQ7 are inputs to EINT/EACK allow connection of peripheral
the interrupl conlroller. w¡lh an inlerrupt conlroller.

e) IOR/IOW/MEMR/MEMW are NRDI/NWRI/IOM are MIN mode bus control
MAX mode bus control signals signals.

f) DRAl-DRO3/DACKo-DACK3/AEN/TC No analogous signals, however, enough control
are DMA control signals signals exisl lo allow DMA conlrol on a peripheral.

g) UO CH RDY inserts wait No analogous signal.
stales for slow l/O.

h) ALE is address latch enable. ALE is address latch enable

i) OSC is'14.31818 MHz Clock. No equivalent signal.

j) CLK is 4.77 MHz, 33% duty CCLK is 4.91 52MH2,50% duty clock which halls.
cycle clock

k) lO CH CK No signal.

2-15

TYPICAL TERM¡NATING PER¡PHERAL

BBUF

MAIN

PERIPHERAL

LOGIC

DECODE

LOGIC

ADO-AD7

NCCl EXPANSION

ROM

GND

EXPANSION BUS
(TOWARDS PORTFOLIO)

2-16

2-7 PERIPHERAL DESIGN TSSUES

There are two types of peripheral that can be connected to the Portfolio. These
peripherals either continue the system bus ("Through Peripheral") or not
("Terminating Peripheral"). Different considerations are required for designing these
types of peripherals. Appendix C illustrates an example peripheral design. (See
section 3.5 for software issues.)

2.7.1 Terminating Peripherals (see diagram)

A peripheral of this type signals its presence to the Portfolio by having PDET tied
high. lf PDET is high then the Portfolio expecls to see a Peripheral ldentifier(PlD).
This is read from l/O location 807Fh. The returned number must be in the range
40h-7Fh. Please note that identifiers under 40h and over 7Fh are reserved for use
by DIP and must NOT be used by non-DlP applications.

A read at l/O location 807Fh should NOT be used by any peripheral in ANY way
olher than as stated above.

A terminating peripheral can have an expansion ROM which contains support
software for the peripheral. This eliminates need for software to be supplied
separately. The chip select for this ROM should be connected to NCC1. At various
times during a boot sequence, the ROM will be checked for an identifier. lf this is
present then the software contained on the ROM will be executed. (See section 3.5
for more details.)

The Portfolio has only limited expansion bus buffering. To make best use of this the
following rules should be obeyed.

i) ABUF and BBUF should be tied to the adjacent 5VS lines. This will cause the
processor to hold while a connector is half in.

ii) Only OA0-OA3 should be used. BCOM should be used for higher addressing on
peripherals.

iii) Peripherals using the external interrupt facility should be reset by MRST into a
state where interrupts are disabled until the vectors are set up correclly. This is to
prevent spurious interrupts occurring before the interrupt vector is set up.

2-17

TYPICAL THROUGH PERIPHERAL

BBUF

ABUF

NCCl

(rN)

ON EXPANSION BUS NOT EXPLICITLY MENTIONED

SMC SELECT LINE FOR
"DRIVE B:" MEMORY CARD

EXPANSION BUS
(AWAY FROM PORTFOLIO)

EXPANSION BUS
(TOWARDS PORTFOLIO)

SIGNAL TO LATCH ADO ON WRITE
AT 807C. LATCHED VALUE CALLED'D'.

D=O
NCCl(OUT)=NCCI
SMC=5V

D=O
SMC=NCCl
NCCl(OUT)=5V

2-18

I

\ 2.7.2 Through peripherals (see diagram)

i On these peripherals the system bus is continued so that further peripherals can be
i connected to the system. For example, a memory expansion unit would be this type

of peripheral. ln order that terminating peripherals will operate correctly the following
recommendations should be taken into account when designing "through"

I peripherals.

i) ABUF and BBUF should not be connected to 5VS, but brought straight through
the peripheral.

ii) lf OA0-OA3 are used on the peripheral, they should be buffered before the
"through" connector.

¡ii) PDET should not be connected to 5VS, but brought straight through the
peripheral.

iv) The l/O locations 8070-807F should not be used so as to provide compatibility
with terminating peripherals using these locations (such as DIP serial and parallel
peripherals). 807Ch can be used as stated in vi) below.

v) "Through" peripherals risk crashing the system bus as virtually no buffering exists.
It is therefore recommended lhat these peripherals are only inserted or removed
from the Portfolio when powered down.

vi) To ensure that ROM extensions on terminating peripherals function correctly,
through peripherals which contain a memory card interface must supply logic that
follows the following rules:

* A write of zero to l/O 807Ch will cause NCCl to be directed to the through
expansion port.

* A write of one to l/O 807Ch will cause NCCl to be directed to the peripheral
memory card interface.

2-19

2.7.3 Allocation of Peripheral lD (P¡D) bytes

The PlDs have currently been allocated as follows:

PID PERIPHERAL

00h Communication Card
01h Serial Port
02h Parallel Port
03h Printer Peripheral
04h Modem

05-3Fh Reserved
40-7Fh User Peripherals

80h File-Transfer lnterface
81-FFh Reserved

For custom user peripherals a specific PID can be allocated by contacting the Atari
Portfolio Product Manager in writing, describing lhe use of the peripheral.

2.8 LCD Display

The Portfolio uses a 240x64 pixel LCD display which uses the "super-twist"
technology. This corresponds to 8 lines of 40 characters text display.

The circuit includes a graphics LCD screen controller with dedicated screen RAM
chip and character set ROM, used in such a way as to be compatible as possible
wilh an IBM Monochrome Display Adapter (MDA). (See section 3.7 for more
details.)

The LCD circuit has the following characteristics:

* Full IBM PC Extended character set (see Appendix B)

* Virtual 80x25 MDA screen page with various screen modes

* PC-BIOS compatible pixel Set/Reset for graphics

* Each character is implemented as an array of 6x8 pixels

t Software controlled contrast

* Block or underline cursor

Note: Screen text attributes and various cursor modes are not supported by the
Portfolio.

2-21

3 SOFTWARE

3.1 General Description

3- 1.1 Overview

The Atari Portfolio software is contained on ROM and predominantly executes from
ROM, and hence minimizes the use of RAM. This software provides as much PC
compatibility as possible given the hardware constraints. (See sections 3.2 and 3.4
for BIOS and DOS comparisons.)

This software also includes some more advanced features which enable the
Portfolio to be used more effectively in a portable environment than a standard PC.
Most of these software features are accessed using lnterrupt 6'lH, the Atari Portfolio
specific functions. (See section 3.3.1.)

To aid development of application software for the Atari Portfolio which require the
use of these specific functions there is a TSR (Terminate and Stay Resident)
Emulator program for the IBM PC. This program emulates most of the functions.
(See section 3.10 for more information.)

3.1.2 Portfolio Programming

The Portfolio obeys IBM's own programming guidelines for PC compatibility,
however these are a lot more flexible than the industry-standard definition of a
'clone'PC.

Most'well-behaved' PC programs run with no problem on the Portfolio, provided
lhat they do nol go below the Blos to directly use the hardware. The main
development issues are lhe screen size and memory capacity. Below are the
various points lo take into consideration when developing a program for the
Portfolio.

SCREEN - (See also section 3.7.)

The Portfolio has a 40 column by I line text display which uses video RAM at the
same address as the PC Monochrome Display Adaptor (MDA) and uses the same
character set. However the Portfolio LCD controller does not support text attributes
such as bold, underline and reverse or the various cursor sizes. lf you want to use
the Portfolio graphics facility lhen use the standard BIOS pixel read and write
interrupt.

3-1

MEMORY - (See also section 2.2.)

The Portfolio has an internal memory disk C: which can be configured in 8KB
l

intervals, minimum 8KB. This leaves a maximum of 116 KByte usable RAM of which
10 KBytes are used by the operating system and BIOS. Therefore it is recommended
that programs should not use more than 1O0KBytes of system RAM. lf you wanl lo

I

use the built-in 'pop-up' applications with the external program then allow for some
free RAM (minimum ol 17 KBytes).

MEMORY CARDS - (See also section 3.6.)

These memory cards appear to a DOS program like a standard floppy disk. The
Portfolio has DOS resident all of the time and therefore does not need to boot from
a disk. lf you want to automatically boot into a program then you can put
AUTOEXEC.BAT on a memory card, overriding C:\AUTOEXEC.

RS232/SERIAL - (See also section 4.1.)

The only compatible method for accessing the serial port is through the BIOS.
However most off-the-shelf serial programs go directly to the hardware.

KEYBOARD- (See also section 3.2.1.)

The Atari Portfolio supplies full IBM PC scan-code compatibility provided access is
through the BIOS. ln other words it is possible to generate every keypress or
combination that a standard PC can generate (SHIFT, CTRL, ALT, NUM PAD). lt is
also possible to generate other non-PC key combinations necessary for functions
such as contrast and switching off.

POWER - (See also section 3.8.)

For power conservation, it is recommended that programs are designed which do
not poll the keyboard conlinuously.

ADVANCED

There are also more advanced features which enable custom programs for the
Portfolio to perform more sophisticated tasks, such as running programs directly
from the memory cards (section 3.6), peripherals with built-in software on ROM
(section 3.5), language information and access to the built-in tone dialler.

3-2

3.1.3 Troubleshooting

Running well-behaved standard off-the-shelf PC programs:

* Make sure that the DISPLAY SETUP (see user manual) is set to Static PC for
External programs.

* lf the program writes directly to Video RAM then ensure that DISPLAY REFRESH
is set to KEYBOARD or FAST TIMED, whichever is more appropriate.

* Endeavor to allocate enough system RAM.

Although many popular programs are'well-behaved'there are also many programs
which directly address the hardware. This can cause a problem on the Portfolio as
the lO addresses are different. The most common of these incompatibilies occur
with the keyboard and hardware interrupts. The Portfolio does not have a
Programmable lnterrupt Controller (PlC) or a dedicated keyboard controller,
therefore some programs which access these such as Basic and XTALK will not
function correctly. The Portfolio also uses a different Timer Tick than a PC which
affects some'dirty'programs such as Sidekick. Another hardware area that differs
on the Portfolio is the use of the speaker, which should be accessed using the
BIOS.

3-3

3-2 Differences Between Portfolio BIOS and IBM PC BIOS

For the purposes of this document, Portfolio BIOS is defined as the program which l

communicates between the DOS and the hardware. (See recommended books in
section 1 for more information on the standard PC BIOS.)

i

There are a few differences between Portfolio BIOS and the standard IBM PC
BIOS. These are generally in areas where the hardware differs to such an extent

i

that complete compatibility is unobtainable. For example, in the Video Services (lnt
i

10H) the Portfolio only has two screen modes; 80 by 25 Text and 240 by 64
Graphics.

3-2.1 lnterrupt differences

The following list highlights lhe main differences between the DIP BIOS and IBM PC
BIOS:

lnt 09H Keyboard
The Portfolio keyboard is not at the same lO address as a standard IBM
PC, therefore any program which requires the keyboard to be at port 60H ì

will not work correctly.

lnt 10H Video Services
Service 00H, Mode 07 to OAH are supported, but only in Text or Graphics
mode. Service 01H, Cursor size is set to either block or u/line. (See
section 3.7.)

lnt 13H Disk
The Portfolio has modified Memory Card/Disk services 0 to 05H and 83H.
(See section 3.3.2 for more details.)

lnt 15H Extended
No Extended services are available.

lnt 16H Keyboard
Only service 0, 1 ,2, 4 are supported.

lnt 18H BASIC
Not supported.

lnt 1AH Clock
Only services 0-07H supported.

lnt 1CH Timer tick
lnvoked less frequently than IBM PC (see section 3.3.1).

3-4

3-2-2 Portfolio BOOT procedure

On a COLD boot (batteries removed, COLD Reset switch pressed, then batteries
replaced), the BIOS executes a limited Power On Self Test (POST) to verify system
integrity. This will destroy data in system memory (both programs in the Transient
Program Area and those on internal drive C:). The Portfolio system then performs
BIOS and DOS initialization before jumping to the COMMAND processor. This will
always reset the machine unless there is a hardware fault.

On a Hardware WARM boot (WARM Reset switch pressed or batteries replaced
without pressing the COLD Restart switch), the Portfolio performs BIOS and DOS
initialization before jumping to the COMMAND processor.

On a Software WARM boot (Ctrl-AlþDel on keyboard), the sequence of operations
is similar to those for a Hardware warm boot. The difference between the two is that
a Hardware warm boot also resets the ASlc and Processor which may be
necessary if the interrupts have been disabled because the keyboard will not
recognize user key presses.

3-5

3.3 System Specific BIOS

3-3-1 lnt 61H - DIP extended BIOS services

Function Description

OH
7H
8H
9H
BH
DH
EH
FH
10H
11H
12H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1EH
1FH
20H
24H
26H
28H
2CH
2DH
zEH
30H

Service lnitialization
Format Credit Card Memory (CCM)
Get size of lnternal disk
Format lnternal disk
Determine if CCM present
Get Screen size
Get/Set Screen mode
Get/Set Cursor mode
Get/Set virtual screen position
Move virtual screen position
Screen refresh
Sound generalion
Melody tone
Dial number
Mute states
Get Serial port parameters
Get Peripheral lD byte
Set Peripheral lD byte
Preset Peripheral lO data
Get/Set Clock tick speed
Get-key/Tick Screen refresh
Disable revectoring of lnt 9H
Get/Set ROM space state
Get/Set Power State
Get/Set Language
Get BIOS version number
Turn system off
Enable/Disable status line
File transfer via smart cable

Note: There are other reserved lnt 61H services which are used internally by the
Operating system. lt is not recommended that these services are invoked by
applications software, as they may be modified or deleted in future versions of the
software.

3-6

Fn 00H Service lnitialization 3.10

Parameters:
AH OOH

Returns:
None

Note: This service should be called once only as part of its initialization by any
application program that intends to use any lnt 61H function calls.

Fn 07H Format Credit Card Memory 2.3, 3.6, 3-32

Parameters:
AH O7H
AL Drive number (0 or 1)

Returns:
CF Set if error during format
AH Error code (See INT 13H)

Note: Drive number 0 selects drive A:, and drive number 1 selects drive B:. This
service should not be used to format the internal disk (drive number 2).

Fn OBH Get size of lnternal disk

Parameters:
AH O8H

Returns:
AX Segment Address of disk
BX Size of disk in Kbytes

3.3_2

Fn 09H Format lnternal disk 3-3-z

Paramelers:
AH OgH
BX Size of disk in Kbytes

Returns:
lf CF=1
BX Maximum size possible (K)

Note: The system is rebooted if successful. All files on drive C: will be lost.

3-7

Fn OBH Determine if CCM present and valid 2-3. 3.3-2, 3-6

Parameters:
AH OBH
AL Drive number (0 or 1)

Returns:
CF=O Card present and correct

lf CF= 1

AH Error code (See lnt 13H)

Note: This can be used to determine if a valid CCM is in the specified drive. Drive
number 0 selects drive A:, and drive number 1 selects physical drive B:.

Fn ODH Get screen size

Parameters:
AH ODH

Returns:
AX Physical screen size
DX Logical screen size

Note:
AH/DH Row number
AL/DL Column number

Fn OEH Get/Set screen mode

Parameters:
AH OEH
AL=O Get mode
AL=1 Set mode
DL New mode

Returns:
lf AL=0
DL Mode
lf AL=1
DL Old mode

2.8. 3.7. 2.1.4

2.1.4. 2.8. 3_7

3-8

Note: The mode is changed by setting one of the following mode bits in DL:

Clear bits (00H)80 by 25 mode
bit 0 (01H) 40 by 8 mode
b¡t 1 (02H) Tracked mode
bit 7 (80H) Graphics

These bits are mutually exclusive. When changing to 40 by I mode, if the
cursor position or virtual screen origin is off the screen, then the virtual
screen origin will be set to (0.0), the Screen cleared and cursor homed.

Fn OFH Get/Set Cursor mode

Parameters:
AH OFH
AL=0 Get mode
AL=1 Set mode
BL New Cursor mode
AL=2 Force mode

Returns: lf AL= 0
BL Cursor mode
tf AL> 0
BL Old Cursor mode

Note: Cursor mode is as follows:
0 Cursor off
1 Underline
2 Block

2_1.4. 2.8. 3.7

Force mode automatically sets the BIOS cursor size to reflect the Keyboard
Numlock state.

?-o

Fn 10H Get/Set virtual screen position 2-1-4.2.8.3.7

Parameters:
AH 1OH

AL 0 Get position
AL 1 Set position
lf AL=1
DH Row number
DL Column number

Returns:
lf AL=O
DH Row number
DL Column number

Note: The virtual screen position is the top left origin of the 40 by 8 window on the
logical screen.

Fn 1lH Move virtual screen position 2.1.4,3-7

Parameters.
AH 11H
AL Number of lines to move cursor
DL Direction to move cursor

1up
2 Down
3 Left
4 Right

Returns:
None

Note: This moves the origin of the virtual screen within scroll margins. lt only works
if in Static or tracked mode, and has a similar eflect to pressing the Alt-
Cursor keys.

Fn 12H Screen refresh 2-1.4.2-8.3.7

Parameters:
AH 12H

Returns: None

Note: This service copies the contents of the Video RAM to the LCD controller,
and is slightly faster than invoking lnt 10H service 0.

3-1 0

Fn 15H Sound

Parameters:
AH
AL

Returns:
None

Fn 16H Melody tone generator

Parameters:
AH
CX
DL

30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
29H
38H
3CH
3DH
OEH
3EH
2CH
3FH
04H
05H
25H
2FH
06H
07H

Returns:
None

generation 2-1-5

1sH
Sub service:
0 Key-click
1 Beep
2 Alarm

2.1.s

16H
Length of tone in 10 mSecs intervals
Tone code (See below)

D#5 622.3 Hz
E5 659.3 Hz
F5 698.5 Hz
F*5 740.0 Hz
G5 784.0 Hz
G*5 830.6 Hz
A5 880.0 Hz
Ar+5 932.3 Hz
85 987.8 Hz
C6 1046.5 Hz
Ctt6 1 108.7 Hz
D6 1174.7 Hz
D*6 1244.5 Hz
EO 1318.5 Hz
FO 1396.9 Hz
F*6 1480.0 Hz
G6 1568.0 Hz
G{t6 1661 .2 Hz
A6 1760.0 Hz
A1+6 1864.7 Hz
86 1975.5 Hz
C7 2093.0 Hz
C*7 2217.5 Hz
D7 2349.3 Hz
D#7 2489.0 Hz

3-1 1

Fn 17H Dial number

Parameters:
AH 17H
DS:Sl String of characters
CX Length of string

Returns:
None

Note: String to be in ASCll. Valid characters are: 0 1

Letters must be in upper case.

2.1.5

23456789A8CD*s

2.1_5Fn 18H Mute

Parameters:
AH
AL

Returns:

states

18H
00
01
02
03
04
05
06
07
08
09

lfAL=
DL

lfAL=
DL

Get mute state
Set mute state
Get key click state
Set key click state
Get bleep state
Set bleep state
Get alarm state
Set alarm state
Get DTMF duration
Set DTMF duration

1, 3, 5,7 or 9
0 Off (Muted)
1On
0,2,4,6 or 8
0 Off (Muted)
1On

Fn 19H Get Serial port parameters

Parameters.
AH 19H
DX Serial port number

2.7. 4.1. 3.5

Returns:
lf AH=0, Composite parameters in AL
lf AH< >0, Error

Note: This service returns composite parameters identical to those used by lnt 14H
Service 0 (lnitialize).

3-12

Fn lAH Get Peripheral lD byte 2.7.3-s

Parameters:
None

Relurns:
AH Peripheral lD byte
AL 0 if no peripheral installed

Note: This returns the peripheral lD code for the current terminating peripheral.
(See Fn 1BH.)

Fn 1BH Set Peripheral lD byte

Parameters:
AH 1BH
AL=O Set Serial lD
AL=1 Set Parallel lD
DL Current peripheral lD

Returns:
None

2.7. 3.5

Note: There may be peripherals designed that contain circuitry that is similar to the
Serial or Parallel peripherals, ln order that these peripherals may use existing
BIOS services they must identify themselves as being software compatible.
DL should be set to the Peripheral lD code. (See Fn 1AH.)

Fn lCH Preset/Return Peripheral data 2-1.3.5, 4.1

Parameters:
AH 1CH
AL=0 Preset Data values
AL= 1 Return Data values
BH Table entry number
lf AL=O
BL Data value
DX lO address

Returns:
lf AL=1
BL Data value
DX lO address

3-1 3

Note: This service is used to preset peripheral lO data in a table associating an lO
address with a data value. Service 0 will actually output the data to the
specified lO locations. On Power-up, the table entries will be scanned for
non-zero lO address values, and the associated data will be written out. This
would typically be used to reslore lnterrupt numbers following Power-up. The
first four table entries out of 10 max are reserved.

Fn lEH Get/Set Clock tick speed 2.4.3.8

Parameters:
AH 1EH
AL Subservice

0 Get speed
1 Set speed

lfAL=1
BX Clock tick speed

0 Tick every 128 seconds
1 Tick every second

Returns:
lfAL=0
BX Clock tick speed

0 Tick every 128 seconds
1 Tick every second

Note: 1 sec speed uses much more power.

3-14

Fn lFH Get-key/NMl invoked screen refresh 2-8,3-7,3-B

Parameters:
AH 1FH
AL=0 Get refresh state
AL= 1 Set refresh state

lf AL=1
DX New state

Returns:
lf AL=0
DX Current state

lf AL='l
DX Old state

Note:
DH Refresh on NMls state
DL Refresh on keys state

DH/DL=O Revectoring disabled
DH/DL=1 Revectoring enabled

lf bit 7 of the stale is set, then the slate is unchanged.

Fn 20H Disable revectoring of lnt 9H 3.2

Parameters:
AH 2OH
AL=O Get revectoring of lnt 9H state
AL=1 Set revectoring of lnt gH state

lf AL=1
DL=O Disable revectoring
DL=1 Enable revectoring

Returns:
lf AL=0
DL=0 Revectoring disabled
DL=1 Rev.ectoringenabled

Note: This is used to automatically revector lnt gH to the BIOS. This prevents
applications software from setting up its own lnt 9H. Note that the Portfolio
keyboard lO address is not IBM compatible. This service is automatically
invoked on a boot.

3-1 5

Fn 24H Get/Set ROMTCCM space state 2-2-4

Parameters:
AH 24H
AL=0 Get ROM state
AL=1 Set ROM state

lf AL=1
DL New ROM state
DH New CCM state

Returns:
lf AL=O
DL Current ROM state
DH Current CCM state
lf AL=1
DL Old ROM state
DH Old CCM state

Note: ROM state in DL is as follows:

DL=O Normal applications ROM
DL=1 CCM Drive A:
DL=2 CCM Drive B:
DL=3 Expansion ROM

CCM state in DH is as follows:

DH=0 CCM Drives Disable(d)
DH=1 CCM Drive A: Permanently enable(d)
DH=2 CCM Drive B: Permanently enable(d)

CF=0 No error
CF=1 lnvalid option or error

Note: This service should be used with care, as il can swap either Memory cards
or an extension ROM into the C000:0 to ODFFF:F address range. This range
is normally used by the internal applications ROM. lts primary use is to allow
advanced users direct access to extension ROMs and Memory cards.

3-1 6

Fn 26H Get/Set Power control 2.1-10, 2-5, 3.8

Parameters:
AH 26H
AL=O Get Power control state
AL=1 Set Power control stale

lf AL=1
DL New state

Returns:
lf AL=0
DL Current state

lf AL=1
DL Old state

Note:
DL=O Normal Power-down on low battery
DL=1 Prevent Power-down but display warning
DL=2 Prevent Power-down with no warning

This is used to prevent the Portfolio from powering down on a low battery.
It is not recommended for use except for conditions in which a power down
might be critical to an application or peripheral.

3-17

Fn 28H Get/Set Text/Keyboard language

Parameters:
AH 28H
AL=O Get Languages
AL=1 Set Languages
AL=3 Language table pointers

lf AL=1
DX New languages

Returns:
lf AL=O
DX Current languages

lf AL='l
DX Old languages

lf AL=3
ES:CX Keyboard table pointer
ES:DX Language table pointer

Note: DH Text language
DL Keyboard language

Both DH and DL will be 0, 1 or 2, corresponding to the language in the
ROM.

lf bit 7 of the language/keyboard code is set, then it remains unchanged.

The tables consist of a count byte, followed by the language identification
codes for the resident languages. These are as follows:

ENGLISH O

FRENCH 1

GERMAN 2
SPANISH 3
ITALIAN 4
SWEDISH 5
DANISH 6

3-1 B

Fn 2CH Get BIOS version number

Parameters:
AH 2CH

Returns:
DS:BX Address ol BIOS version number

Note: The version number consists of a Maior and Minor version number, followed
by a '$'terminator. A typical example is: '1.050$'

Fn 2DH Turn system off

Parameters:
AH 2DH

Returns:
None

2.1.10, 2.5, 3.8

Note: This is similar to typing OFF at the command line.

Fn 2EH Enable/Disable system status line

Parameters:
AH zEH
AL=OH Disable status line
AL=1H Enable status line

DH Row number
DL Column number

Returns:
None

Nole: This is similar to invoking the status line using the LOCK key.

3-1 I

Fn 30H File Transfer services 4.2

Parameters:
AH
AL

DS:DX

lf AL= 0
CX
tf
CX

Returns:
lf AL=1
CX
DL

30H
0 Transmit block
1 Receive block
2 Open ports
3 Close ports
4 Wait 500mS
Start of Data buffer

Bytes to Send
AL= 1

Maximum buffer size

Bytes Received
Error Code
0 No error
1 Buffer size too small
2 Timeout on transmission
3 Checksum failure
4 lnvalid sub-service
5 Peripheral not installed

Note: This is used by the File Transfer utility built into System Setup.

3.3-2 Disk services

The Portfolio Credit Card Memory (CCM)/Disk services are provided at the BIOS
level by lnt 13H.

There are six standard diskette sub-services, plus one special service. These are as
below:

0H Reset CCM/Disk system
1H Get CCM/Disk status
2H Read CCM/Disk sectors
3H Write CCM/Disk sectors
4H Verify CCM/Disk sectors
5H Format CCM/Disk track
83H Write CCM/Disk boot sector

3-20

Services 0 to 4 are similar to standard IBM PC BIOS disk services. They can access
the three internally supported disk drives A, B and C (referred to as drives 0, 1 and
2 respectively).

lnt 13H uses the BIOS Parameter Block (BPB) on the Boot sector (first sector) of
the drive to determine the drive characteristics. During formatting, it is necessary to
use a Format BPB, which is supported by service 83H. This service is used inslead
of service 5H to format the first track of a CCM/Disk.

i

The parameters to service 5 are unlike those on a normal PC as detailed below:

lnt 13H Fn 5H
Parameters:

AH 5H
DL Drive number
DH Side/Head
CH Track number

Returns:
CF=1 Error code in AH

Note: Writes defined byte onto one track of CCM. Byte is
specified in the Disk base table.

The Disk base table is similar to that used by an IBM PC. The table for both CCMs
is pointed to by interrupt 1EH, and the table lor the internal disk is pointed to by
interrupt 41H. The formal of both disk base tables is as below:

Oflset 03H Bytes per sector code (0=80H, 1=100H, 2=200H)
Offset OAH Format data bytes (Normally F6H)

During formatting using lnterrupt 61H (see section 3.3.1), the CCM/Disk sector size
is dynamically set according to the disk size. See below:

Disk size Sector size

0 to <=32 Kbytes 80H/128 bytes per sector
>32 to <=64 Kbytes 100H/256 bytes per sector
>64 Kbytes 200H/512 bytes per sector

This ensures that a small disk size allows a reasonable number of sectors. Since
Portfolio DOS allocates one sector per data cluster, this allows lhe same number of
small data files on a 32K CCM as a 128K CCM.

3-21

There are various lnt 61H services that provide extended disk services (see section
3.3.1.):

lnt 61H Fn 7H Format a CCM

lnt 61H Fn 8H Get the size of the lnternal Disk

lnt 61H Fn 9H Format the lnternal disk

lnt 6'lH Fn OBH Determine if a valid CCM is present.

Note: A CCM may also contain a BIOS extension which does not affect the
operation of the CCM, but can modify the Operating system or Power-down/Power-
up sequence. (See section 3.5.)

3-22

3.4 Differences Between Portfolio DOS and MS-DOS

For the purposes of this manual, Portfolio DOS is defined as the program which
communicates between the Command processor or User application, and the BIOS.
It does NOT include the Command processor. (See recommended books in section
1 lor more information on the standard MS/PC-DOS.)

There are a few differences between Portfolio DOS and MS-DOS. These are mainly
enhancements to Portfolio DOS 2.1 '1 to make it more DOS 3.XX compatible:

lnt 21H Fn 37H Get/Set Country
Portfolio DOS is DOS 3.XX compatible

lnt 21H Fn 4BH Execute program
As well as providing standard EXEC services it also allows a program lo be
RUN directly off a CCM (section 3.6.3).

lnt 28H Keyboard busy
Not supported. This would normally be called during console lO polling,
however Portfolio DOS does not poll the console, but actually waits for a
key using lnt 16H Fn 0H. (See section 3.8 on power management.)

lnt 2AH lnternal MS-DOS function not fully supported

3-23

3.5 Device Drivers and Peripheral Software

3.5.1 Device Drivers

Device drivers are used by DOS to communicale with the BIOS. They provide a

standard interface which isolates the DOS from the device specilic BIOS. The
Portfolio has the following resident device drivers in ROM:

CON, CLOCK$, PRN, LPT1, AUX, COMl and Disk driver

CON performs all Console lO
PRN/LPT1 perform all Parallel (Printer) lO
AUX/COMI perform all Serial lO
CLOCK$ special driver to access the BIOS Clock

These are all character devices that process strings of characters one character at a
time. They are all identified by their names.

The Disk device driver is a Block device which requires all lO to be done in blocks. lt
addresses all the normal Portfolio disk drives (A, B and C). lt has no name.

It is possible to replace these resident device drivers (and add new ones) by the use
of installable device drivers. These may be loaded by DOS using the'DEVICE='
command in CONFIG.SYS. lf a character device is loaded that has the same name
as one of the above device drivers, then it replaces it. This mechanism is used by
programs such as ANSI.SYS which is actually a CONsole device driver with added
f eatures.

lf a Block device driver is added, it supplements the existing Disk device driver. An
example of this is the Virtual disk driver VDISK.SYS, which would add drive D:.

The structure of an installable device driver is compatible with any MS-DOS 2.1 1

device driver.

3-24

3-5-2 Peripheral Design

There is a special design issue associated with Portfolio peripherals, due to the
Portfolio auto power-down power conservation feature. This means that most
peripheral devices will need to be re-initialized on power-up. (See Appendix C for
more information.)

There are two methods provided to fulfill this requirement:

1) lnt 61H Fn 1CH
This service stores a list of lO addresses and associated dala values, which will be
output on a power-up. lf all initialization specific lO writes are made via this service,
then they will automatically be repeated on all power-up sequences.

A typical use for this service might be to restore an interrupt number in an interrupt
driven serial peripheral.

2) Use a ROM extension. This would generally be required when the sequence of
operations during power-up could not be supported by the lnt 61H service. This will
require the peripheral to contain an extension ROM. (See 3.5.3.)

There are two exceptions to the above. The serial port parameters are read during
the power-down sequence and correctly re-programmed on the subsequent power-
up. The Parallel port is also initialized on Power up.

Each peripheral is identified to the Portfolio by its Peripheral lD code (PlD) (see
section 2.7). This is actually a hardware lO location on the peripheral which may be
read using lnt 61H Fn 1AH.

The other software issue associated with custom peripheral design concerns the
Serial or Parallel peripherals. lf the custom peripheral wants to use existing BIOS
services then they must identify themselves as being hardware compatible:

lnt 61H Fn 1BH configures the BIOS to recognize a peripheral to be Serial or
Parallel compatible.

3-25

3-5.3 ROM Extensions

ROM extensions are sections of code that can be executed at various stages during
i

the BooT sequence, and during Power up and Power Down. They may be on a i

Credit Card Memory (CCM) or on a extension ROM on a peripheral. A typical use of
such an extension is to modify the operating system or initialize custom peripherals.

I

There are three main types of extensions: A Specific BIOS extension, a Specific
,

DOS extension, and Common extensions: i

* The specific Blos extension is invoked after BloS initialization.
* The specilic Dos extension is invoked after Dos initialization.
* The common extension is invoked before and afrer both Blos and Dos

initialization, before Command processor initialization and during Power-Down and
Power-Up.

The ROM extensions are searched for on Drive A, then the extension ROM and
then Drive B. lf a valid extension is found and executed, then the search for that
particular type of extension is terminated.

The format of a ROM/CCM extension is as follows:

Offset Size

00H dw ? :ldentilication code
02H db ? ;Number of 512 byte

;blocks(unused)
03H db 5 dup (?) ;Specific BIOS/DOS exten.
40H db 'DlP ROM!!' ;OEM user text
50H db 5 dup (?) ;Pre-bios jmp vector
55H db 5 dup (?) ;Bios-ext jmp vector
5AH db 5 dup (?) ;Pre-dos jmp vector
sfH db 5 dup (?) ;Dos-ext jmp vector
64H db 5 dup (?) ;Post-dos jmp vector
69H db 5 dup (?) ;Power-Down jmp vector
6eH db 5 dup (?) ;Power-Up jmp vector

The extension vectors occupy the first '128 bytes of the CCM/ROM. The vectors are
positioned so as to allow a valid BIOS Parameter Block (BPB) on a CCM so that it
can be used both as an extension CCM and as normal. The ldentification code at
Offset 0 determines the main extension type as below:

AA55H ;Specific BIOS extenslon
55AAH ;Specific DOS extenston
5555H ;Common extensions

3-26

Thus, if the word at Offset 0 is AA55H, then after BIOS initialization a FAR CALL will
be made to Offset 3. The 5 bytes following this offset allow for a short/normal/far
jump to the extension code. lf the word was 55AAH, the call would be made after
DOS initialization. lf the word is 5555H, then all the common extensions would be
called at the appropriate times.

Note: All the jump vectors must be set up to a suitable return when using a
common extension, even if they are not used.

All ROM extensions must preserve the processor registers. Extreme care must be
taken when using extensions, especially those which are invoked half way through
the boot sequence, as these may adversely affect the operation of the Portfolio. The
Pre-BIOS extension is called almost immediately on jumping from the Reset vector,
and so has no stack set up. lt must return via a FAR JUMP to OFFFE:OH. All the
other extensions must return via a FAR RET. lt is recommended that the Post-DOS
extension is used in prelerence to those preceding it.

The OEM user lext field at Offset 40H is to allow an OEM to identify the ROM.

See Appendix C for examples of using an Extension ROM.

3-27

3-6 Memory Cards

3.6.1 Format

Each credit card memory (CCM) must be formatted before use, this program
creates a format analogous with a standard floppy disk format.

All formatted memory cards contain only 1 sector per cluster as opposed to the 2 or
more found in larger systems. (See section 3.3.2 for more details.)

The Atari Portfolio BIOS has been written to handle future paged Credit Card
Memories (CCM). The BIOS assumes that the page register, is one byte located at
offset 10 (0AH) within the Boot sector (First sector) of the Memory card. For this
reason DO NOT use this memory location in programs.

3.6.2 AutobootMechanism

The Portfolio has the ability to invoke AUTOEXEC.BAT from drives other than drive
C:.

lf a memory card is in drive A: or B: and AUTOEXEC.BAT file exists, it is executed
in preference to autoexec on C:. B: will have priority over A: if an AUTOEXEC.BAT
exists on both A: and B:.

lf it is required that the AUTOEXEC.BAT on drive C: is always executed, terminate
the batch file on drive A: with the command:

C:AUTOEXEC

The CONFIG.SYS lile is always loaded from drive C: and cannot be overridden.

3.6-3 Run

A RUN file is a specially written program that can be directly executed lrom a Credit
Card Memory (CCM) without having to be loaded into the Transient Program Area
(TPA). An obvious advantage of this method of execution is that it minimizes system
memory usage.

A RUN file can be executed from the Command processor by typing RUN
<filename>, or by invoking lnt 21H Fn 4BH at the DOS level as for a normal
program, but with AL set to 80H.

3-28

There are several requirements for the programs which can use the RUN command:

* The program needs to be specially written to be used with the RUN command.
* The program needs to be on drive A: or drive B: and it needs to occupy

consecutive clusters on the disk. This situation cannot be guaranteed if a file is
simply copied to the drive.

* The file needs to have a .RUN extension.

Writing .RUN Programs

Almost all standard programs assume either that their data is in system RAM, or that
they can slore data in their code segmenl. Although a .RUN file is similar lo a .COM
file, care should be taken when dealing with data.

The initialization code of the .RUN program has to perform the following (these
points are illustrated in Appendix A):

* Reduce the syslem memory usage down to the minimum requirement. There must
be at least 10h paragraphs, i.e. the size of the PSP.

* Allocate data and stack using DOS inlerrupt 21h fn 48h and set ss:sp to point to
this block.

* Copy all initialized variable data from the memory card to the allocated data block
in system RAM.

* The program can then perform most functions it wishes to, including any DOS
calls. The program MUST terminate with DOS interrupt 21h function 4Ch
"terminate process".

t The program does not need to copy the non-variable (constant) data from the
ROM card into RAM before using it. This data can be used directly from the card.
This means prompts or text messages need not take up any RAM.

The built-in applications can be invoked while a program is being RUN using the hot
keys as usual.

lf during execution of a RUN file the Credit Card Memory (CCM) is removed from
the drive, the next instruction to be executed on the card will be interrupted by an
error handler. This displays the error message. 'ERROR: Card Access'and
terminates the process. A RUN file may not EXEC another file from within itself.

Appendix A provides an example of a RUN program which illustrates how to
program a typical RUN program.

3-29

3-7 Screen Handling

The Portfolio BIOS supports two main Video modes, Text and Graphics. The BIOS
Video lnterrupt 10H may be used to set the screen mode:

Mode Type PC Resolution Portfolio

Mode 7 Text (80,25) <80,25>
ModeS Graphics (160,200) <160,64>
Mode 9 Graphics (320,200) <240,64>
Mode A Graphics (640,200) <240,64>

As can been seen, the Portfolio interpretations of these modes is fairly simple.

The Text modes are actually viewed using a 40x8 window. There are 3 sub-modes:
Slatic PC, 40x8 and Tracked.

Static PC mode is where the physical screen area acts as a window onto the larger
80x25 text screen. The window may be moved using the Alt-Cursor keys, or lnt 61H
Fn 1 1H.

40x8 mode actually sets the logical screen size to 40 columns by 8 rows. This mode
is intended for use by software written specifically for the Portfolio, such as the the
Command processor and the lnternal applications.

Tracked mode is similar to static mode, except that the Screen window positions
itself at the cursor.

This mode can be set using lnt 61H Fn OEH.

The Video RAM (VRAM) for the text screen is at segment 08000H therefore it is
possible to write directly to the Video RAM, but any screen refreshing must be
invoked by the application. There is only one text page.

There are other lnt 61H Video services:

lnt 61H Fn ODH get the logical and physical screen sizes
lnt 61H Fn OFH Set cursor size
lnl 61H Fn 10H Set the virtual screen window origin

on the 80 by 25 screen
lnt 61H Fn 12H Force a screen refresh.

ln Graphics mode, the Graphics screen has a 240 by 64 pixel resolution and can be
written to or read from using BIOS pixel read/write lnt 10H Fn OCH or Fn ODH
respectively. The Atari Portfolio has three cursor modes: Block, Underline and Off . lf
the cursor size is set in the BIOS then either Block or underline mode will be set up.

3-30

3-8 Power Management

The Portfolio is designed to minimize power consumption and hence maximize
battery life. This is reflected in the hardware design, but is enhanced by various
software features.

The main power wasting operation in most computers is waiting for user entry at the
keyboard. Once the Portfolio Keyboard BIOS Getkey ready service (lnt 16H Fn 0)
has detected keyboard inactivity, it will start to decrement a timeout counter. On
timeout, the Portfolio will enter its power-down sequence. Once powered-down, any
hardware interrupt will initiate a power-up sequence.

This timeout is dependent on whether the machine is set to fast or slow timer ticks
(lnt 61H Fn 1FH), but is always between 128 and 256 seconds.

It is important that all keyboard input is done via a DOS or BIOS keyboard service
that waits for a key press. Polling the keyboard continuously will quickly wear out the
batteries. This will be obvious as the Portfolio will never power down.

Another power wasting operation is refreshing the LCD controller from the Video
RAM. lf an application writes directly to the Video RAM, then it must be refreshed at
appropriate intervals using lnt 61H Fn 12H. lt is possible to force a screen refresh
on a keypress or on a timer-tick using lnt 61H Fn 1FH. Many applications which run
on the Portfolio, but are designed for the IBM PC require this refresh on keys as
they assume automatic screen refreshing. Refresh on timer ticks is dependent on
the tick speed. This can be set using lnt 61H Fn 1EH.

Note: The timer tick (lnt 8H and lnt 1CH) is not the same as the IBM PC timer tick
which occurs 18.2 times a second. lt is either generated once every 128 seconds, or
once per second.

As a general rule, an application should avoid refreshing the screen except where
necessary. W¡th refresh on both keys and timer ticks, and with limer ticks set to fast
(i.e. 1 tick per second), the processor spends a lot of its time refreshing the screen.

Generaling sounds using Sound generation, Melody tone generation or Tone
dialling (lnt 61H Fn 15H, 16H or 17H respectively) can draw a high current from the
Portfolio batteries.

The Alarm will timeout after about 15 seconds to prevent the batteries from being
overly strained.

3-31

All peripherals will add to the power consumption, unless they have their own power
source. lt is recommended that an external power supply is used wherever practical
when using peripherals.

During Disk access, Tone generation, Timer tick and on each press of the return
key, the Portfolio checks to see if its batteries are running low. lf a low battery is
delected, the Portfolio automatically powers down after displaying a low battery
message. On power up, it will display the same message lo indicate to a user the
reason why it powered down.

It is possible to prevent the Portfolio from powering down using lnt 61H Fn 26H. This
service must ONLY be used if absolutely necessary, because this may force the
Portfolio to operate outside its electrical specification with possible damage to the
hardware.

3-32

3-9 Special File Formats

3-9.1 Diary saved file format

The built in diary saves its data in a standard ASCII file format. To eliminate different
date formats for different countries, the Diary stores the information in English
format.

Certain information, such as repeal entries and alarm information is saved along
with the diary entries.

The following is an example diary file:

6/07/89
1 4.14 Technical reference
20:00 Go home

lf an entry is a repeating entry, the time is preceded by a code letter indicating the
repeat period. The following table lists the code letters and their associated repeat
periods:

d Daily
w Weekly
n Non weekend, i.e. Mon-Fri
m Monthly
y Yearly

lf an alarm is associated with an entry, the'@'symbol is placed on the line before
the time.

lf an entry has an alarm and it is a repeating entry, the repeat symbol preceeds the
alarm symbol.

For example:
6/07/89

@ 20:00 Go home
7to7t89

d 14:48 Hello there!
w@ 18:10 Goto tennis

The first entry is a non repeating entry with an alarm. The second is a daily repeat
and the third is a weekly repeat which will sound the Portlolio's alarm.

The diary sorts the entries chronologically when it loads any given file.

3-33

3-9.2 System File Formats

There are three files used by the system which obey a standard file format. These
are:

Clipboard (C:\S YSTEM\CLIPBORD.DAT)
Undelete (C:\SYSTEM\UNDELETE.DAT)
Permanent data (C:\SYSTEM\PERMDATA.DAT)

All three files are loaded into RAM when the applications are invoked. Operations
affecting any of the information stored in these files only change the RAM copy. All
three files are written out when the user quits all the applications, i.e. presses
<ESC> at the top level menu.

3.9.2.1 CLIPBORD.DAT

This is the file which the applications use as the clipboard. lt is a single block of data
ending wilh a zero byte (00h). Carriage returns are stored as ODh without the trailing
OAh Line feed. The maximum size of the clipboard is 8K characters. This must
include the 0 terminator.

lf the file does nol contain a 00h termination byte, then the file is not loaded into the
clipboard. Similarly, if the file is greater than the maximum number of allowed
characters, it isn't loaded. ln both cases when the file is nol loaded, it will be
overwrilten with a fresh file upon exit from the application.

lf the clipboard has the normal text format of ODh,OAh the file will only load correctly
into the Editor and the Diary.

3.9.2.2 UNDELETE.DAT

The undelete file is used to store all the characters or blocks of data deleted from all
the applications. lt is made up of a number of "blocks" of data. Each block
represents a group of characters deleted with one command. The format of a block
is as follows:

<DATA> <00h> <DlR>

The <DATA> is the character or characters which are deleted. lf a block of data is
deleted containing carriage returns, these are stored as <ODh>, not <ODh><OAh>.

The 00h byte is used to determine the length of the deleted block.

3-34

The <DlR> is a one byte code indicating in which direction the deletion was made. lf
the data was deleted to the left, i.e. using the BACKSPACE key, then this byte will
contain <00h>. lf the data was deleted from the right, i.e. using , this byte will
be <01h>.

The maximum number of characters which the undeletion file can contain is 2000. lf
the file contains more than this number of bytes, then it will be ignored and replaced
with a new file upon exiting from the application.

lf the UNDELETE.DAT file doesn'l have the correct format, the effects are
unpredictable. lt is likely the data in the file will be inaccessable.

3.9-2.3 PERMDATA-DAT

The format of the system data file is as follows:

Byle(s)
in Hex

0
1

2

3

4..6

7
8..56
57
58..5b
5c
5d
5e..60

61

62..b0
b1..b4

b5
b6..104
105..106
107..108
109..10a
10b

10c

bOd..10e

Function

Non zero: undelele buffer enabled.
Non zero: undelete bul is saved on exit
Non zero: clipboard is enabled.
Non zero: clipboard is saved on exil
Reserved.

Worksheel:
Non zero: lrame on upon entry.
DrivelPalh/Name of lasl used file.
0: Autoload last spreadsheet, 0flh don't
3 character 0 terminaled currency string.
lnilial decimal point, '.'(2eh) or','(2dh)
Printer delault paper widlh.
Reserved.

Diary:
Non zero: lrame on upon enlry.
Drive/Palh/Name ol last used lile.
Reserved.

Editor:
Non zero: lrame on upon enlry.
Drive/Palh/Name of last used lile.
Top line on screen 0 is first line in lile
Currenl cursor line no, 0 is firsl line.
Cursor: number ol bytes into current line.
Right margin.
Non zero: word wrap on.
Reserved.

3-35

10f
110..'l5e
15t..168
169..16t

170
171..1bt
1c0
1c1 ..1c2
1c3..1ca
1cb..1d5
1d6..1e0
1e 1 ..1eb
1ec..116

1t7

1f8

1t9
lfa

ltb
11c..24a
24b..24e
24t
250
251
2s2..2d1
2d2

2d3
2d4
2d5
2d6

Address book:
Non zero: frame on upon enlry.
Drive/Path/Name ol last used lile.
Dial prefix in ASCll, zero terminated.
Reserved.

Calculator:
Non zero: lrame on upon entry.
Reserved.
M1 sign: Bil T set for negalive number.
M1 exp: signed word, 0:1.000<=mant<2.000
Ml mantissa.
Memory 2.

Memory 3.

Memory 4.

Memory 5.

Format: O-General, 1-Fixed, 2-Sci., 3-Eng.
Number of decimal places

Separalors: 0 - none, non-zero-separalors
Decimal point: 0 -'.', non-zero','

Selup:
Reserved.
Drive/Palh/Name ol prinler lile destinalion
Reserved.
Printer dest, 0:Parallel, 1:Serial, 2:lile.
Lines per printer page.

Prinler selup code lenglh.
SeluÞ codes, ASCII chars, i.e. ESC=18h.

300
600

9600
None
odd

2d7

End ol line code

Number ol top paper margin lines.
Bollom paper margin lines.
Lell paper margin character indenl.
Baud rale 0 110

1 150

0 <cR>
1 <CR><LF>
2 <CR><LF><LF>

1 200
2400
4800

Even
7 bits.
I bits.
1 slop bit.
2 stop bits.

Parity

2
3

4

5

6

7
0
1

2d8

2d9

The PERMDATA.DAT file currently contains 730 bytes.

3

Data bils 2

3
Stop bits 0

1

3-36

3.10 IBM PC Development system

The Portfolio contains a few system specific extended BIOS functions which are
accessed using interrupt 61H. lf you wanl to emulate these functions when
developing programs on a standard IBM PC then this is possible by running the
program 161.EXE on a PC. This program will remain Terminate and Stay Resident
(TSR) and hence enable you easily develop custom programs. To ensure upward
compatibility of your programs, if you plan to use any 161 functions then make sure
that you use 161 Fn 0H first. (See section 3.3.1.)

lnt 61H Services supported by IBM hosted version:

Fn No

OH

7H
8H
9H
BH
DH
EH
FH
't0H

11H

12H
15H

16H

17H

18H

19H

lAH
lBH
lCH
1EH

lFH
20H
24H
26H
28H
zCH
2DH
2EH
30H

Key:

Function descriplion

Service lnitializalion
Format Credit Card Memory
Get size of lnlernal disk
Format lnternaldisk
Delermine il CCM presenl
Gel/Set Screen size
Gel/Sel Screen mode
Gel/Sel Cursor mode
Gel/Sel virtual screen posilion

Move virtual screen position

Screen relresh
Sound generalion

Melody lone
Dialnumber
Mute slates
Gel Serial porl paramelers

Get Peripheral lD byte
Set Peripheral lD byte
Presel Peripheral lO dala
Gel/Sel Clock tick speed
Get-key/Tick Screen relresh
Disable revectoring ol lnt 9H
Get/Set ROM space state
Get/Set Power Slate
Gel/Set Language
Get BIOS version number
Turn system off
Enable/Disable stalus line
File transler via smarl cable

X

Supported

,t
x

x

X

,t

X

x

x
X

x

Y2

V2

x

X

X

Yz

Service supported
Service not supported

Service parlly supporled

3-37

4 PERIPHERALS

4-1 Portfolio Serial Communications

4- l .1 Hardware Specification

Standard:
Line Vollages:
Current Loop:
Conneclor:

Connector Pin out:

EIA RS232C compalible
+/- 9V
Not Supporled
9 Pin D-Shell Plug (AT compatible)

Pin Name

1 CD Carrier Detecl
2 RD Receive Data
3 TD Transmit Data
4 DTR Data Terminal Ready
5 GND Signal Ground
6 DSR Data Set Ready
7 RTS Request To Send
I CTS Clear To Send
9 Rl Ring lndicator

82C504

Yes (see below)
1.8432 MHz

Base Address of 82c50: Stored at Memory Localion 400h

lnterface lC:

lnlerrupl Support:
Divisor Clock:

4.1.2 lO Registers

Since the same computer interlace (with the except¡on of interrupt handling) is used
on the Portfolio as on the IBM PC/AT, the lO registers have the same function. The
base address for the serial port may be found by reading memory location 400h in
the BIOS data area. lf the value at this address is XXXXh, then the lO registers are
thus:

lO Address Register ol82c50A

XXXX+O R RBR Receiver Buffer Register
W THR Transmiiler Buffer Register

XXXX+1 R/W IER lnterrupt Enable Register
XXXX+2 R/W llR lnterrupt ldentilication
XXXX+3 R/W LCR Line Control Register
XXXX+4 R/W MCR Modem Control Register
XXXX+S R/W LSR Line Status Register
XXXX+6 R/W MSR Modem SIaIUS Register
XXXX+7 R/W SCR Scratch Register

4-1

4.1.3 lnterrupt Support l

Since the Portfolio does not contain an 8259 compatible Peripheral lnterrupt
Controller, interrupts are handled in a different way than on an IBM PC/AT.

The serial port has register called the Serial lnterrupt Vector Register (SIVR). An
,

eight bit number can be written to this register. This number is the interrupt number
that is to be used with the serial port. For example, writing 10 to SIVR will cause a
call to the double word pointer held at memory address 10*4.

SIVR is at l/O location 807Fh and is write only. lt should be set up before 82c50A
interrupts are enabled.

When an interrupt is generated by the 82c50A, it is passed on to the CPU. lf no
other interrupts are pending then the CPU will read the contents of SIVR and
service that interrupt number.

lnterrupts are acknowledged by accessing the 82c50A and reading llR. This will l

allow the operation required to service and acknowledge the interrupt to be
determined.

4-1.4 Other Useful lnformation

To determine whether a serial port is installed, it is recommended that use is made
of BIOS lnterrupt 1 t h - Get Equipment List.

Since the Porlfolio will attempt to power down while waiting for a key stroke (lNT
16h service 00h), it is recommended that terminal emulation soflware polls the
keyboard until a key is waiting in the buffer (lNT 16h service 01h).

To set up SIVR it is recommended that INT 61h service 1Ch is used:

AH = 1Ch
AL = 0 ;set up lO address
BH = 5 ;lO table entry 5
BL = Byte to wríte
DX = lO address

Use of this function will ensure thal SIVR is always set up correctly (unless table
entry 5 is reused for a different address).

ln order to maintain future compatibility it is recommended that on exit from the
program, the table entry used above have its address set to zero. This should be
followed by a write of 2Ah to l/O 807Fh.

4-2

4-3

4.2 Smart Parallel lnterface
File Transfer Protocol Description

The IBM PC and many compatibles have uni-directional centronics parallel ports. ln
order to allow an inexpensive but useful peripheral it was decided that the Portfolio
parallel centronics port would allow programs to be sent to and from IBM PCs as
well as to a printer. This is accomplished by using a synchronous serial transfer
protocol. Status lines on the IBM PC which can be accessed through the BIOS are
used as inputs on the lBM. The Portfolio parallel port is fully bi-directional.

The file transfer BIOS should be used with the following considerations (see section
3.3. 1):

* Before sending or receiving the ports should be opened.

* Sending a block expects the other end to be receiving a block, and visa versa.

* A timeout will occur if there is no answer within 500mS.

* Sending a block will aulomatically transfer the length of the block. The receiver will
return an error if the buffer is too small.

* On any failure, wait 500mS (to allow the other end to timeout) and attempt to re-
transmit/receive the block.

* A error at one end will normally cause an error at the other, so block order should
not be lost.

* A checksum will be sent with each block to provide simple error detection.

* At the end of the transfer the ports should be closed.

4.3 IBM PC Card Drive

The IBM PC card drive consists of an expansion bus card and plastic box with a
cable. The expansion card can be used in a IBM PC/AT or compatible. The cable is
used to connect the card to the plastic box. There is a slot in the front of the box that
allows the insertion of a Credit-card memory, as used on the Portfolio.

By running the appropriate block device driver software, the card drive can access
the card in the same way as a normal disk.

The card uses a block of four l/O locations. These are located at a starl address
indicated by optional links on the board. When these are changed from the default
setting, the device drive driver must be told of the change in the CONFIG.SYS file.

4-4

4.4 EPROM Writer Adaptor Boards

PROM programming adaptors are available which allow PROM (OTP) memory
cards to be programmed using a standard PROM programmer. The adaptors
convert the PROM card to the same outline as a standard DIL PROM. Use model
HPC-501 to program 512 KBit cards and model HPC-502 for 1 Mbit cards.

When programming the PROM card the PROM programmer should be set up as a
Fujitsu PROM. lf however, Fujitsu settings are not available, some of the other
12.5V PROM programming specifications will also work. The ideal programming
specification is:

vPP 12.5V
64 KByte use 27C512 (ldeally Fujitsu CMOS)
128 KByte use 27C1001 (ldeally NEC CMOS)

Once the correct ROM type has been chosen use the following procedure to make a
copy of a RAM card:

i) Select a PROM card with the same capacity as the RAM card and use the correct
adaptor for the card capacity

ii) Place adaptor in PROM socket of the programmer, ensure that it is inserted the
correct way.

iii) Place RAM card in to adaptor and LOAD the contents in to the programmer
using the relevant option.

iv) Place PROM card in to the adaptor and program as for a normal PROM chip.

WARNING:

1) DO NOT ATTEMPT TO PROGRAM THE RAM CARD

2) Some PROM programmers do not like the power being turned ON and OFF so
remove the cards before switching ON or OFF.

4-5

APPENDIX A: EXAMPLE .RUN PROGRAM

Section 3'6 highlights the main design issues to take into account when creating a
.RUN program.

lncluded on the Portfolio Emulator Disk are the following files:

RNRN.ASM Assembler .RUN program
MAIN.C Example C .RUN program
RU_C.ASM C Header
BUILD.BAT Creates program using Turbo C tools

The above files illustrate two programs which use the Atari Portfolio .RUN function.

RNRN is an assembler program which prints out the original calling parameters and
lhen lhree numbers.

MAIN is a program which illustrates a .RUN program written in C. RU C.ASM is the
C Header necessary for Borland's Turbo C compiler and BUILD.BAT illustrates how
to create the program using Turbo C tools.

Notes on interfacing "C" files to the RUN command

For "C" files, several more segments need to be declared to ensure "C" gets the
data and code in the correct positions in the .RUN file. The .COM file is converted
into a .RUN file by renaming.

RU-C.ASM is the header which can be used to interface to a "C" program. lf "C"
source files are being used without any provided "C" libraries then tnJtile RU C
can be used as the header directly. lf library code is required the header will need to
be enhanced to perform the necessary ribrary initialization.

The RU-c.ASM header works with rurbo c and can be used as a guide to
modifying other "c" headers used by different "c" compiler libraries.

Most "C" headers supplied with "C" compilers can be assembled for different
memory models. The example code in RU_C.ASM needs to be placed in the "C"
startup header and assembled for the SMALL model.

Run Files Greater than 64K

To build a .RUN file with a code size greater than 64K, it is necessary to have more
than one code segment. One way to achieve this is to build the progiam using the

A-1

TITLT RNRN.ASM

coflÌi¡ent *
(c) Copyright DIP, 19Bg

Exantple .RUN program

DGR0UP group _text._data._cdata

STACKSIZT equ 400

; code segnqnt.
_text seginent pubìic byte 'C0DE'

assume cs: text,ds: data

org 0

; byte in stack.

rnrn marn

RUN cor¡nand test routine.
0n entry, DS, SS and ES all point to the PSP.in RAM.

CS ìs a-ptr ìnto the credit card, so ntay actuaììy be in R0l'll.

Hhen thii routine is executed. the whole of RAl'l is aììocated to the
process.

Paraneters:
None

Returns:
None

proc near

bx. 10h
ah,04ah
2lh
rnrn err

bx,0FFSET rnrn_uend
bx.0FFSET rnrn_dstart
bx,Ofh
cì ,4
bx. cl
bx.STACKSI ZEl16
ah.48h
2lh
rnrn err

; set stack to Point to RAM.

rnrn uend+STACKSIZE

10h paras to keeP the PSP.

modify memory.

error reducing mennrY.

alloc for initialised data,
uninitiatised data and a

; stack.

ca.lc paras in init data area.
add in paras in stack.
aì locate menìory.
allocate stack and data.
no nìenìory,

; source ìs on nemorY card.

; target is allocated RAM.

; copy ìnit data front card to RAM.

; restore PSP ptr'.

MCiV

mov
int
jc

mov
sub
add
mov
shr
add
mov
int
jc

mov
mov

push

mov
sub

mov
push
pop
xor
m0v
cìd

; preserve PSP PoÍnter.

cx.0FFSET rnrn_dend
cx.OffSEf rnrn-dstart ; bytes jn initialised data'

si.0FFSET DGROUP:rnrn dstart ; copy fron here.

A-2

rnrn fcbl:
mov
inc
mov
int
I oop

nov
mov

rnrn fcb2:
m0v
inc
mov
int
ì oop

push
pop

mov
cal ì

inc

m0v
cal l

nìov
m0v
cal ì

xor
jmp

rnrn err:
mov
push
pop
mov
ìnt
mov

rnrn end:
push

mov
ìnt

pop
fnov
int

rnrn nìat n

dì,es: [si]
si
ah,2
2Lh
rnrn fcbl

si,6dh
cx.11

dl ,es: [si]
si
ah,2
zLh
rnrn fcb2

SS

ds

aì, rnrn val
rnrn_di sp

rnrn vaì

al, rnrn val
rnrn_di sp

rnrn unin,44
al.rnrn unin
rnrn_di sp

al.aì
short rnrn end

dx,OFFSET DGR0UP:rnnn nren

get char fronr FCB buiìt into PSP.

print name of first parsed FCB.

print nante of second parsed FCB.

DS is ptr to data in RAI'|.

get ìnitiaìised data.
dispìay the value.

get changed data.
dìspìay the vaìue.

set a piece of uninitialised data.
get uninitial ised data.
dispìay the value.

return errorlevel of 0.

wrìte directìy fronr ROM card!
lfrjte string.
teì I user there was nìemory error.
terminate with error code of 1.

save errorleveì code in al.

waìt for a key.

get errorìevel code back.
ternri nate process.

convert to two numbers.
convert to ASCII digits'0'..'9'.
save to print 2nd char.

print lst digit.

rnrn_di sp

Dispiay the value in AL with a trailìng
Paranteters:

At Value to prìnt, ìess than
Returns:

None
'***.

CS

ds
ah, 9

2th
aì .1

AX

ah. I
21h

AX

ah. 4ch
21h

endp

rnrn_di sp proc near

A-3

A-4

TITLE RU C.AS¡.,|

connìent *
Copyright DIP Ltd., 1989

'C' header for creatÍon of .RUN files.

Memory usage:

Hìgh nemorY
SP: Stack

DVSS: Initiaì ised data

ES: PSP

;----------- Low nenorv

; Segment and Group declaratjons

; code and fixed data (ìess than 64k).
TEXT SEGMENT BYTE PUBLIC 'CODT'
TEXT ENDS

; code ends (narker segment)
TEXTEND SEGHENT BYTT PUBLIC 'CEND'

-TEXTEND ENDS

; initialised data transferred jnto RAll.
DATA SEGI,IENT PARA PUBLIC 'DATA'
DATA ENDS

; uninìtialised data which Ís allocated space in R/tt'l-

BSS SEGMENT HORD PUBLIC 'BSS'
BSS ENDS

; uninit'ialised data end (marker segment).
BSSEND SIGr,IENT BYTE PUBLIC 'STACK'

-BSSEND INOS

DGROUP GROUP DATA, BSS, BSSEND ; dgroup ìs aJl data segnÌents'

mov
int
jc

pop
flpv
mov
mov

push
pop

push
pop

nov
add
and

xot

ah. 4ah
21h
abort

bx
ax. ds
ss, ax
sp, bx

ds
es

si, offset TEXT:etext
si, OFh
si. 0FFFOh

di.dì

cx, offset DGR0UP:bdata
CX

cx, I

novsw

di,offset DGROUP:bdata
cx.of fset DGRoUP: edata
cx, di
al . a.ì

stosb

nal n

ah,4ch
2lh

ax,4c01h
21h

; reduce RAM to required RAM.

; can't reduce.

; get caìc'd p back.

; stack is in RA[,l.

; target is allocated RAM after PSP.

; source ìs memory card.

; get ptr to last byte in code.
; round up to lst byte in data.
; dãta is para aìigned on the card.
; ds:si is ptr to start of init data.
; put data at 0 offs into alloc'd RAl4.

; es:di is ptr to alloc'd RAM target.
; get bytes in initialised data.
; round up: ensure ìast byte is copìed.

; copy init data fron¡ mentory card.

; DS back to ptr to RAM.

; ptr to where uninit data goes in RAtl.
; ptr to end of aì I data.
; caìc bytes in BSS.
; clear to zero.

; i nvÒke progrant.

; terminate with nlain's return code.

; abort with error.

es
ds

mov
flov
sub
xor
rep

caì l

nov
int

abort:
mov
int

start endp

TEXT ENDS

TEXTEND SEGI,IENT BYTE PUBLIC
etext ìabeì byte
IEXTEND ENDS

DATA SEGMTNT
pubì i c errno

errno dw 0
DATA ENDS

8SS SEGMENT

bdata label byte
BS5 ENDS

BSSENO SEGI'4ENT

edata ìabel byte
BSSEND ENDS

'ctND'
;Last byte of text segnìent

end start

A-7

APPENDIX B DIAGRAM OF PORTFOLIO CHARACTER SET
(all numbers in decimal)

48 64 B0 96 rrz LZB 144 160 176 Ig2l6 240224208

.1....¡
lllrl. Ir..... Iarr. . . I

¡.....1rr¡¡r. I

.¡..
ttr....f
!tta...¡
ttt¡

.r.¡-¡¡.r.t..t.t.¡
t't.t..t.r.t
r.¡.I..r't.t
r.t.t.

a
I
Itra

.t.t...¡.¡..

.l.l-.
ta¡¡tt

.¡1.
a..lt..ar..lt..!. tt.

tt¡¡

T¡!¡..1
ltt

T¡ tttt

1...r1.... IT.l
tt.l
It.¡
tt
't

rt..tl¡¡.. ttta..¡t
II.. ¡t

.llr.
t...¡trtt.

¡¡ttt¡I¡
t¡¡a

t...!t...1a. . rt.Il.l

rr.t.. t......!.I.t.lt,.tta..1..r.
¡.1...1..r..I!I¡. i.¡rr

TIIII
I
I

tt I¡ a¡
I

...I..'r...t¡t.
t...1l¡ttt4.....trll

..att.f.r.
t..t.tttrlt..t.1..t.t..tt

::!::.tta.
¡...tt...¡.ltt.

IIT.ttttt.¡t¡¡
!.

lt
II
I.
II
¡t¡.ltlt

t.t¡tlt'¡¡ttt.tt

ttrat1...tt...¡t..'.¡....t....t....

I¡
I

TI.¡.t
.a

ta!1..1..
I..

.t.!..ttt.....t.I¡¡I
t...!.lltt

I
aIttI¡ I

r!¡
!.1t.l I

.ltt.
t...¡t...1.tt¡.

t¡tttat
.t.l.I.¡.t.r.t.t.l.l

.¡....-¡.....¡.
¡tt¡t

III¡
tltt I

rrl att
tta

t..l. ¡tt..'..4
. ¡trtt...¡.II¡I

¡tt ¡..l
TTT

.t. -

I
t¡¡

I
tltt

tt¡tt ..t..t
tt!..1
ttt..1..4

¡a t¡¡r
tttt

.tttt.r.¡.¡.
l.¡.

..t...1..rt.
-.t...1'
t.l..t..

TI!ITttl¡t

¡...tlt. . ¡t.t.tf . . rt¡...4

tat

tttl

¡¡.¡
:!
tt

.t.¡.¡
II.l.a
.T.¡

Itt
rtt Itlrlt.I..

t..tt.a.l IIIII

a.ar.t

tt¡
.t
::
I¡

¡a¡r.I.!.¡.1.¡.¡.T.T

¡
I

I
T¡tt¡
a

¡
I
I
t¡t
I
I
I
I

¡a II ft¡
a

.t¡.1
t. t¡.¡t¡r

I
I

tfatrtt¡
tt II ttI I I

t T
..r...¡.r.
. ttt.1...ttt¡ttt.....¡llt

T¡¡
I
!

!..t..
::!
trl

TTIII..t..
' ra!.t...¡
'ttt...¡..

I
t...t¡...1
'III¡....1
ttt¡.

Itt..r
ltr..r
..I

t¡t
¡

tt I

t Iltt t

.¡.r.

. ¡t¡.t'..t.IITT4.. -..¡¡tt

I
TTT

I

ttttr¡
I

.t.t
::
t!.t.t

tt
a
a
I¡

f:
II

I TTT
.¡
It

-.'.4
tttt¡4...rt..'t.¡¡1.

tttt¡
Irtt

¡
I

'r.....t...t¡t.
¡...1aatrt!...'.tltt

¡
I

.t.l
II

t..t..rl¡
.ITI.
!..'¡r-..¡r.'.1.¡.4.

TIlt I ttt¡ I
a
I
I

¡t ¡t...!. rtt '
¡ I

I
II

t¡

ItI¡
TT!

IItt

ITTI

¡
T

I
¡t

t¡ttr!¡atftt¡ttt¡t
TTI

tftattttTIt¡II

.!,.

.l
'l.l.a
t¡

tt
IIT..1
t.lt-ta.!

I
I

t.f!
¡i

I l¡
TT

I
TIT

I¡
I
t

¡¡rt..¡..¡..
¡
I

t.l
l.l
¡'!-.f
tra

I
a

t'.t..!ff
T¡I

t.l.-t'r.¡-t
t.r.

tt't.¡I.f.f.
ara .1.t.

t.tt.. trtt.'.t'

¡
I
T
I
T

fr¡¡a!ttlt¡tal¡rrtrrttt!

I
II

¡ll¡

:f
Tf
'l

.t.t.
ttttt..t..
t¡tt¡..!-...¡..

I
I
I
a
I
T

t.t
t.lt.lIII

t¡t¡!¡tt¡tttttttt¡l¡tr¡t

...t
l¡t.. . tr.t.l
I..a

tlt..t.t.
tar

ttt
rtt

::
¡!.t.

tt¡

I
taII

..f..t
ttt..¡
It¡

.l

.l
IT
ta.¡
.a

¡l
tt

!rtTIIttt¡t¡tal¡tfITIl¡t

..ttt.1...r....¡¡t¡¡t'.'..t...

. . ttt

tttT¡Ir¡l!tr

I
I

I
I
I

¡t! I
a¡¡

¡ ¡alttttt!¡t¡TITTIIltr¡ll
T
I
I
a
a
T

¡tt

¡tI.¡.
't.t..

tl
tt

ff:
r¡t

t.IItt¡tlt¡t¡.

!
t

ttt

rtI llt,t!
¡t Iat

...t

. .lt
Ittt. . tt...t

I
I
I¡
!
I

.l
II.t
.l

ta
I
I¡t¡¡¡
I

I rttltt¡at I
lr!..t
t¡r

ttt
!¡tt I

tt.t¡...l¡
II
¡tt¡ I

.I¡I.
¡rrtft.¡.¡tt¡t¡4..'¡l¡ttt.rt¡.

..1...ltt'
rrlt¡

¡t tt I
I
T
I¡
I
I

ltr

¡¡t

lt!

I
I
I
I
I
I

at IItt
T I

I¡I tttt Iar
I't¡t.¡.¡.

Ittttt.ttr..'t'. 't.t..¡tt ¡r¡¡t

!t. ttlt¡ttltatrlrrl¡. r¡¡...t..

I¡
I¡¡

r.¡.l.t.¡¡ttt.t.tlltI.l.

!arr!.-.r...t.....t.....1
t...t. rtt.

TI¡ll¡
a

lttlt
T ITT

I
T

t¡t
It¡tt¡

IT¡rt¡
¡t...¡

T.lll.IT¡
T

.t..
t¡lr

I

.t
tt T

I
far
t.a

T

¡a
a
I
I ¡¡

'¡'t
il
't'!t¡

T II

I

!:l
rlt..r..¡

I T

t¡t¡..I. ¡ ¡a
I¡

.¡¡t.

. tt¡.ttt¡ttt.tttt.tt..t'..ttt.

TIT
I

t¡tr I I¡I¡ .T
.ll
t..rtft... tr

¡
I
I

I
t

¡¡
I

.t¡
¡¡t

I
I
I

t¡t
TI¡t ¡

I l¡rt tttlt
a
I

T'
tt
't

.t¡¡..r.¡.t.
l.lt..

¡...t4...¡1...It...1¡...r

It¡
ttl

I
I¡

¡
I
I
I¡¡

ll
I
I

¡¡ttt¡f¡rt¡t
!Ila.¡...¡¡...1

I
¡ttt

.t.
¡rt tt t t¡IITI

tla¡
¡tt I!tt¡

rtta..¡-
¡¡t¡.¡t¡
rt¡¡

r...¡t.¡.¡t.t.ltl.tt

I
I
II
¡t

I

I
I
I
I

l. tt¡1...r.t¡t¡ :!
t¡

I
I
II

¡¡¡¡
I
I
a
I

t¡!rl¡ttrtttt..lt..¡t¡trt¡ttttt¡

-t
II

r..tt.ltt
I

I

¡ ¡

tl¡ f
I
I
I
I
I
a

¡
I¡rIl ¡
I
t

¡ ! T¡
II¡¡¡
I¡

T¡¡
I

I
t ItI!

a¡r I
a

¡¡ I
I I

. ttt..¡..
't¡

I ¡¡
I
I

Itt
I

I
I

tt¡
't..t.

IT I

¡t.l

1..¡..¡trtt.t. ' I

tttt¡ ¡t..t. I
I

¡I
¡tr

¡
a
I
I

.t¡.t..t.
rtt

.t

.T
't..r.¡¡¡

t¡tttt¡lttt. .lt
'¡t. I¡t. Il'.rtrtftrl¡ttt

I
It¡tr
I

T

f
T¡trII

T¡
:f
t¡I¡

. . ¡tt..'¡.
''.t..'.t....t.
1..r.. ¡r. .

r¡¡ ¡ T

¡¡¡ttll
I

I¡t¡tt
!

I

ttr.lt
l.ttt...t..¡
t¡.

.'t'.t.-
trtr

a
I
¡ll
I
I

tttl
II I IT t. tt
I
a

It
I¡

.t
It.¡TI¡¡ I

I
I T tl

T.
t¡ It

t¡ ¡IItIttI

¡
a

It

a
I

I
T

tt.l
't

I
I
T¡¡.t¡ ¡l ¡¡I ¡ TI !¡

¡

..r!¡..1.r

. .¡¡r..¡....t..
tt¡..la. . .

.t
IT.l

.¡.
rtt
¡It

¡t ttttt
tl¡tt

1...¡tt. tlI.I'T¡.t.r
a.¡rt

I
tt.¡.tr'tt..

I
I
I

I

I

¡.t.
TII'
T'I¡ .l

tt

rttrt..¡¡tft I
I

It I
t.t t ¡.tlt..1..

trt.rtI.tttt
.T.T¡
l¡.ttT¡...

I
I
a

It.l.¡
¡.t.a.

..t..
t.¡.1.t¡t.
at. ¡t.¡¡a.
¡.t.r..¡..

att.
T.

tlt
I
I

I
I

IIT¡
I
I¡
I

ttt

rtlIT¡t
I'
l¡

tll¡t!
T¡¡

i4

l5

B-1

APPENDIX C Example peripheral design

As an illuslration of a typical Atari Portfolio peripheral we have designed a
peripheral which flashes an LED in time with the system tick. ln order that this
peripheral operates transparently to the user we have used a ROM extension.

Peripheral Specification

i) have a single LED which will toggle on a timer tick.
ii) have a PID of 64h.
iii) have all software on an extension ROM.
iv) only operate with the machine powered on.
v) be a terminating peripheral.
vi) the peripheral will power up with the LED off.

Hardware Design (see schematic)

See section 2.6 & 2.7 for more information.

I There is decode logic to read the PID from 807Fh. (Since there is no need find out
if the LED is on or off, the latch will be decoded for a write at 807Fh, to save
decoding logic.)

* Each successive write to B07Fh will toggle the LED
* lf the latch is set, the LED will be ON
* lf the latch is reset, the LED will be OFF
* The circuit will be powered from 5VS
* The buffering signals ABUF/BBUF and PDET are also used

Software Design (see listing of file PDEM.ASM)

* A ROM extension will be used to hook a TSR onto INT 1Ch
* Each call to INT 1ch will toggte the LED by writing to l/o B07Fh.* lf the peripheral is removed, the TSR will de-install itself.
* On power up, the LED is assumed to be reset.

ROM Extensions (see listing of XROM-ASM)

This example program illustrates how to design a simple ROM extension. lt can
either function as a specific BIOS, specific DOS, or Common extension, according
to the lD code at 0C000:0. Each extension module identifies itself, and where it was
invoked from. lt is a good demonstration of the potential power of ROM extensions.

c-1

io rEs;
tcI IS 74HC74
I .;r r :ì 74t1C?44
ùe-anie IS Z4HC3a
iu.¡ñ cÃtf 15 74Hc?ø
;:'?56 IS cllûs RoF

() öi.l io¡rne cr lo¡{s rQ

^i
-'- ËxPnnslm Pont

044
cÊ5
046
0A7
4.3
A9
Arø

cs 0E

Aø
FI I
A2
A3
Ê4
â5
â6

Ê8
n9
à1ø
Ê1!
Ête
Ê r.3
ri l4

sctr[|'1âT I C F0R tXêl'lPLt Pf R I PHf RAL

' **************t*************************t**********************.

lloduìe: PDEM.ASM
Copyright: DIp Ltd. 1989

Peripheral ROl"l Extension

' *****************x***

nanìe xRoM

assume cs:cseg,ds:dseg

D0SX equ 055aaH ;Specific DOS extension

cseg segment

org 0H ;Extension Vector table

xron_mairi label near ;Start label for MASI\|

bìxt-type dw D0SX ;Identification code

bìxt-size db 0 ;Num 512 byte bìocks in ROM

orq 3Hbixt_gdos label byte ;Specific DOS extensìonjmp genx_vect ;Sþec.ific extension vector

org 40Hbixt_user labeì byte ;0tM user text- d¡ 'lrt pìant periph'

;The pìan is to alìocate sonre nìemoryr Copy a section
; of code to nìenìory, and then poìnt'the SÞecifie¿
; vector to that code.

xronì_proc proc FAR

INTR_NUi'1B equ 1cH ;TIMER TICK

genx_vect I abeì near

;Aìlocate User RAM. Note that th.is can 0NLy be done
; after DOS initialisation.

mov bx,(ALOC SIZE+0fH)/I0H ;paras to allocatemov ah,48H
int zIH

nov ds.ax
nìov stak save.ss
mov stak_save+Z. sp

shl bx.I

;Preserve regi sters
; required to set up
; local stack

;Allocate nìenory

;Set DS to aì located RAM

;Preserve Caìler stack

;Convert size to bytes

;Set up stack at top
; of allocated nìenory

;Preserve registers
; YOU MUST ALIIAYS PRTSERVE

; ALL USIR REGS

;Set up User stack.

mov ss.ax
mov sp.bx

push cx
push dx
push si
push di
push bppush es

c-3

out dx,al ;AL uninìportantjnìp short tick exjt ;Exjt
ti ck none:

assume cs:dseg ;Force DSEG offset

;lnvaìid Peripheraì, so uninstall TSR

mov ax.2500H+INTR_NUMB ;Set interrupt vector
nov bx,offset tìck vect ;Get oìd vector
mov ds,cs: [bx+2]rnov dx.cs: [bx]int zIH

;Now vector reset. free allocated nìemory

push cs ;Segment of blockpop es
mov ah.49H ; Free merìory
i nt ZJ,H

tick exit:
PoP es ;Restore registerspop ds
pop dx
pop bx
pop ax

jmp dword ptr cs:tick_vect ;Jump to old TSR

C0DE_SIZE equ $-tick code ;Size of ISR

cseg ends

;Data segnìent TEMPLATE (No initialised data herel)

dseg segment

data_sptr label byte ;Start of oata

stak_save dw ? ;Caller stack stored here
dw?

tick vect dw ? 10ld vector stored here-dw?

ìoad_base label byte ;Start of ISR

!04q_!lZE equ ($-data_sptr)+CODE_SIZE ;Load moduìe size
ALOC_SIZE equ L0AD SIZE+100H - ;Load nodule + Stack

dseg ends

end xront nain

c-5

Moduì e: XRoM. ASf'|
Copyright; DIP Ltd, 1989

ROl'l Extension DEllO proqram

A ROM extension ntay be run fror a Credit Card Memory
or an txtension R0M.

The Extension code must preserve ALL registers!

ïhe Pre-8I05 vector I4UST return by a FAR JMP to
0FFFE:O, as no stack ìs set up at this stage

¡Line feed
;Carrìage return

;Specific BI0S extension
;Specific 00S extension
; Conp.lete control

;Extension Vector table

; Identification code

;Num 512 byte bìocks in ROltl

;Specìfìc BI05 extension
;Specì fic DOS extension
;Speci fi c extension vector

CR equ OdH

BIOX equ 0aa55H
DOSX equ 055aaH
BID0 equ 05555H

cseg séglntent

org 0H

xronr maÍn labeì near

bi xt_type dw BIOX

bixt size db 0

org 3H
bi xt_gbi o I abeì byte
bixt_gdos ìabel bytejmp genx_vect

org 40H
bjxt user ìabe'l byte ;Otl'4 user text- db 'Test R0l4 (C) DIP'

org 50H
bixt_preb: jtnp preb_vect ;Pre-bios jmp vector

org 55H
bixt_bext: jmp bext_vect ;B.ios-ext jnp vector

org 5aH
bìxt_pdos: jnrp pdos_vect ;Pre-dos jmp vector

org 5fH
bixt_dext: jmp dext_vect ;Dos-ext jnp vector

org 64H
bjxt_ados: jmp ados_vect ;Post-dos jnìp vector

org 69H
bixt_pwdn: jmp pwdn_vect ;Power down inp vector

org 6eH
bixt_pwup: jmp pwup_vect ;Power up imp vector

xrom_proc proc FAR

;Determì ne extension type

geRX vect label near

c-6

not_genb:

pdos_vect

dext vect

pwup vect

push bp

cnìp cs: [0], BI0Xjne not_genb

mov bp,offset gbio textjmp short xrom di sþ

cmp cs: [0].005Xjne not_gend

nìov bp,offset gdos textjnrp short xronr_dì sþ

mov bp.offset invl textjnrp short xronr_di sþ

.l abel near

jnp dword ptr cs:preb retn

dw0
dw OfffeH

I abeì near

push bp
mov bp.offset bext textjmp short xronr_di sþ

ìabeì near

push bp
mov bp,offset pdos textjntp short xronr_dì sp

ìabel near

push bp
mov bp,offset dext textjmp short xronr_di sþ

I abel near

push bp
mov bp.offset ados textjmp short xronr_dìsþ

I abel near

push bp
mov bp.offset pwdn textjnrp short xronr_di sþ

'label near

push bp
mov bp,offset phrup textjnp short xronr_di sþ

I abel near

push ax
push bx
push cx
push dx
push es

caì I di sp_text

mov ax.2400H
i nt 61H

or dl,dl

;Preserve BP

;Speci fic BI0S extension
;No

;Specìfic BI0S extn text

;Specific DOS extension ?

;No

;Specific DOS extn text

; Invaì id text

;Pre-BI0S extension

;Post-BI0S extension

;Pre-D0S extension

;DOS extension

;Post-DOS extension

;Power-Down extension

;Power-Up extension

;Main display routìne

;Preserve regi sters

c-7

jnz

nìov
jmp

dec
jnz

nìov
jmp

dec
jnz

mov
jmp

dec
jnz

mov
jmp

m0v

cal I

mov
caì I

p0p
p0p
pop
pop
p0p
pop

ret

endp

pdos_text db dext_text-$-1
db 'Pre-D0S Extension - '

dext text db ados text-$-l- db 'Com DOS txtension - '

ados text db pwdn_text-$-1- db 'Post-D0S €xtension - '

pwdn_text db pwup_text-$-1
db 'Power Down Extension - '

pwup_text db norm text-$-l
db 'Power UP Extension - '

nornì text db drva text-$-l
db 'Normal R0M'

drva text db drvb text-$-l- db 'CCH-Drive A'

drvb text db xron text-$-l
db 'CCt'l Drive B'

xrom text db invì text-$-l- db 'Extñ R0M'

invl text db crlf text-$-l- db 'lnvãl id'

cr'l f text db 2 , CR, LF

cseg ends
end xron nain

c-9

Portfolio lnterrupt 60 Specification
May 1990

Atari Corporation.
1196 Borregas Avenue
Sunnyvale, CA 94086

Portfolio lnterrupt 60 Specifications was printed in the United States of America.

Third Edition:

This document was produced wilh an Alari Mega 4 compuler using Microsoft Wrile and an Atari SLMSo4
laser printer.

3-10 APPLICATION ENVIRONMENT SERVICES

3-10-1 Available Services

The following services are available in all versions of the ROMs:

Service

00H
01H
02H

:'*
08H

:'"
OFH

]0"
12H

ì+u

Functíon

Get version number (of ROMs)
Line Editor
Gel current applícation
Reserved for custom add-ins

Screen Save/Restore
Draw box

Menu handling
Box area calculation

Message windows

Error windows

3-1O-2 Detailed Description of Services

Where coord¡nates are spec¡f¡ed in 16 bit registers (e.g.. top right. boltom left), the upper
byte is the y coord¡nate, and the lower byte is the x coord¡nate.

For all box drawing rout¡nes (including menus, help, etc.), if the box is larger lhan the
physical screen éize, characters will be displayed incorrectly.

Fn 00H Get Version Number

Parameters: None.

Returns: DS:DX Version number (zero terminated string)

3-29

Fn O lH Line

Parameters:

Returns:

Description:

Editor

DS:Dl

AX

Pointer to editor control structure

The character which caused termination

Edits the line of text. The text can be in a box (or not),
longer than screen width. scroll margins exist at eithàr
window. The control structure is as follows:

and text can be
end of the edit

ep_targ dw ?
dw?

epjos dw ?

ep_max dw ?ep_xpos db ?epJpos db ?ep_mode db ?

ep_hit dw ?

lar ptr to string lo be ediled- Resull
edit is also placed here- All strings
zero terminated.

t

address of the getkey routine.
Rouline should retum a 16 bit
in AX
Maximum box or screen width
Sgt !o OFFH for r¡o bo:ç 0 for a
single line bo¡<, 1 for a dor.Èle line
bor
Reserved

ep_tit

ep_exit

ep_fn

ep_res

ep_udel

dw
dw
dw
dw
dw
dw

?
?
?
?
?
?

ep_wid db ?ep_wind db ?

dw?
dw?
dw?
dw?

address of lhe undelete routine.
This routine is called every time
a character is deleted. lf n-ot
needed, use a dummy routine
(ret far)- DS:BX pointð to the
deleted teìil- AH is 0 for the left
delete and 1 for the right detete.
Avoid changing segrmènt registers-

Notes: l' The target buffer should be at least'ma:c+l bytes tong lo accommodate lhe zero terrn¡nator.L ll a defaull string is required, put ¡t ¡n the target buffer, zero terminaled.
3' The anay of exil keys consists of 't6 b_il'k-e¡ts.'The top nibble is zero for the standard 256characters; but for controlcharacters l¡ke Hlme,-Ènd, etc-, ¡t ¡s-set to'1.

).

end

5- lf you specify a box, rhe 2 byres are taken away from.wid' when ediring.
6- simirarry, ir you give a prompt, rhis wirr reduce your ptay area as weil.

3-30

Fn 02H Get

Parameters:

Returns:

Current Application

DL Set to FFH C1)

Current Application:

where:

Description:

7 Applications Menu

Determines the current application. This would typically be done from an
edilor book or TSR.

Fn 03H Reserved for Custom Add-ins

A series of 'hooks'are provided into the Editor to enable users to control the Editor from
the outside.

There are 5 Editor'hooks'. These enable an application spawned from within the Editor to
access a limited number of internalfunctions which modify the text and environment.

EDHO_GOTO Move the cursor position

AL=0
1

2
3
4
5
6

EDHO_GET
EDHO_REF
EDHO-LOC
EDHO_INS
EDHO DEL

Not in application
Worksheet
Diary
Editor
Address Book
Calculator
Setup

Get the cursor position
Refresh lhe screen
Get location of character at cursor
lnsert strring into text
Delete characters from text

ÎFTlTliîT- :{Ye..-ær- -----..a-.F.='..--''¡:ryEf:r-r¡?:

3-31

EDHO_GOTO Move the cursor position

Parameters: AL 0
CX Repetition count
DX Type of movement

Returns: AX Number of characlers moved

Note: There are 6 types of movement:

1 Character
2 Word
3 Line
4 StarVEnd of line
5 StarUEnd of para
6 StarUEnd of file

A negative repetition count moves backwards.

EDHO_GET Get the cursor position

Parameters: AL

Returns: BX
DX

4
I

10H
20H

Note: Returns the current cursor location.

EDHO_REF Refresh the screen

Parameters: AL 2
BX Cursor location override
DX lnvalid flag override

Relurns: None

Note: Cursor override is only applicable if the cursor is outside the scroll margins. and
forces a refresh from the point specified:

Do nothing
Refresh usíng top scroll margin
Refresh using center
Refresh using bottom scroll

lnvalid flag override consisits of 5 bils which are used internally by the Editor. They are
ORed with any existing bits, and determine what type of refresh is performed:

Use default override
Refresh current line
Refresh current paragraph
Relresh current offset
Check within scroll margins
Refresh border/frame
Complete redraw

L

E

E

r

c

t
Fò

i
lr

tf
b

E

E

E

E

E

E

f
T

E

E

r
E

E

E

I
E

¡

T

I
t

¡

I

I

0
1

2
3

0
1

2

1

Column offset
Line number

3-32

EDHO LOC Get location of character at cursor

Parameters: AL 3

Returns: ES:BX Address of text

Note- This service gets the address in RAM of the character at the cursor.

EDHO_INS lnsert string into text

Parameters: AL 4
ES:BX Address ol AZCIIZ string to insert

Returns: AX 0 if failed

Note: lnserts text at current cursor position. and moves cursor to end of string.

EDHO_DEL Delete characters from text

Parameters: AL 5
CX Number of characters to delete
DX 0 prevents characters from going in Undelete buffer

Returns: AX 0 if failed

Note: A negative number in CX simulates backspace. a positive number simulates
Delete.

Fn 08H Screen SavelRestore

Parameters: AL Subservice (0-3)

BH Video Page number
DS:SI Buffer to store saved screen RAM
CX Bottom right of screen area to save (inclusive)

DX Top left of screen area to save (inclusive)

Returns: None

Description: This function either saves or restores the screen area defined by CX and
DX to the buffer pointed to by DS:SI- (The Portfolio does not use the
attribute information in its display-) The subservices are as follows:

00 Save characters only
01 Save characters + attributes
OZ Restore characters onlY
03 Restore characters + attributes

Fn 09H Draw Box

Parameters: AL Type (0=single line. l=double line)
BH Video Page number
CX Bottom right of box
DX ToP left of box

3-33

Returns:

Description:

None

This function draws a box at the specific location on the screen.

AL Type (O=single line. 1=double line)
AL Bíts 3..7 max depth of menu (including borders)

Video page number
Last top line
Last selected item
Top left of box
Menu text (double terminated zero)
Defaults text (double terminated zero)

(if Dl is FFFFH there is no default text)

AX -1 for ESC pressed
or
AH Top line
AL selected line

Draws a menu at the location specified in DX. CH specifies the line that
will appear at the top of the screen, and CL specifies the line that the
cursor will be on (with respect to the menu text, not including the title).
The first line of the menu text is the menu title and does not have a
corresponding entry in the defaults text. lf no title is required, this can be
sel to zero (null string). lf bits 3..7 oÍ AL are 0, then the menu will not have
depth checking. lf a single line box is selected, the lunction will draw an
empty box (with the title) and return. Otherwise the menu will be
displayed, and once a selection has been made. the menu box becomes
single line, and control returns to the caller.

Fn 10H Box Area Calculation

Paramelers: DX Top left of box
DS:SI Menu text (double terminated zero)
ES:DI Delaults text (double terminated zero)

AH Number of items (including title)
AL Number of items (inctuding title)
BX Number of bytes used (excluding attributes)
CX Bottom right of box

Calculates the number of bytes needed to save the screen for a given
menu. Note that the maximum width is assumed to be the maximum
menu item + the maximum default. Also DX is destroyed by this call.

Returns:

Descriplion:

Fn OFH Menus

Parameters:

BH
CH
CL
DX
DS:SI
ES:Dl

Returns:

Description:

3-34

Fn 12H Message Windows

Parameters: BH
DX
DS:Sl

Returns:

Description:

Fn 14H Error Windows

Parameters: BH
DX
CX
DS:Sl

Returns:

Description:

Video page number
Top left of box
Message text (double terminated zero)

Video page number
Top left of box
Must be set to non-zero value
Error text (double terminated zero)

None

Displays text at DS:SI on the screen in a double line box. First line of text
is taken as the title. This service is used for the information messages,
such as loading, saving, etc.

None

Displays text at DS:SI on the screen in a double line box. There is no title.
A beep is emitted and the function waits for a key to be pressed. The
screen is then restored and then control is returned to the cal¡er.

3.11 IBM PC DEVELOPMENT SYSTEM

The Portfolio contains some system-specific extended BIOS functions which are accessed

using interrupt 61H and a series of application environment serv¡ces that are accessed

using interrupt 60H. lf you want to emulate these functions when developing programs on

a standard IBM PC, this is possible by running the programs 160.EXE and !61.EXE on a

PC. These programs will Terminate and Stay Resident (TSÐ. and enable you to easily

devetop cuitom programs- To ensure upward compatibility of your programs (if you plan

to use any 161 functions), make sure that you use 161 Fn 0H first (see section 3-lo-l). All

of the documented lnt 60H services are supported by the |BM-hosted version.

3-3s

ulu¡oúvl

€ ilr,. g r:¡,. g ¡:,," g slr ii Ír,.

zrúrt.r ,turt.t

lÊ ava aro

w ta taut ta ta

l. ê¡t¡cttoú ¡^a {¡aúao ¡¡ t¡t¡oa.
t. aa.¡ltoÉ ¡* t¡awo t¡ ha,
Et?a-u*f ¡a ôtñ¡¡aa aractl¡?o:

Schematic Diagram: Serial lnterface

- - - t.r r! !l E r lf ;r ; Fl Ft Fl Fl Ff Ft [rn Fl i-l 1'1 [n Ft rr rn Fl [t rr lr r,.r .!

tr trt aNc vt sa ct u¿

Ff.-T.lA.,
+...t.+...re+...rr+. .re

caccút!tia a¡r.c¡roaa tô¡ lc'l

t. c¡r¡c¡?orr ^ra ¡a¡a6a! tr t¡.¡ta
¡. aaalttoaa ¡^a ¡¡¡auaa tå ô¡¡a,

Schematic Diagram: Parallel lnterface

4-1.5 Using the serial port: Example program TMTM-COM

The'following section contains the listing for an interrupt driven terminal emulation
program. This program shows how the serial port can be used in an applications
program. The serial port routines (TMIO.ASM) contain comments showing how the
same thing could be performed on an IBM PC. This will allow users familier with the
IBM PC to see how to modify existing software.

The program consists of several files:

TMIO.ASM will be of most interesl to those developing software for the serial port.
The other fíles have been included for completeness. TMTM.ASM should be'linked in
as the first module create TMTM.COM.

The program will set the serial porl !o 1200 baud, 8 data bits, 1 stop bits and no parity.
The top data bit will be cleared. ALT O can be used to exit from the program.

TM.INC
TMTM.ASM
TMKY.ASM
TMDP.ASM
TMIO.ASM

SER-BASE
; Offsets
RBR
THR
IER
ITR
LCR
MCR

LSR
MSR

Equates
Main routine
Keyboard routines
Display routines
Serial port routines

equ 400h ; serial base address in ROM
from base address of 82C50 control registers

. * * J¡ J¡ J¡ J¡ -* J¡ ..t 4- :ir t J: -å t¡ r¡ J. ?'. :'¡ :'. * * -å J¡ :'. * ,¡ J: >'< !¡ ?. * * J. :? :l :t Jr ,. * * rÁ J. :? * ¡t * t Já * .la

tm t

fnclude fiìe for Demo terminal emulator for ;
i- ..- .t- ,. J, J- -.- r- r.

.< * i¡ * J< f¡ * :..- :.¡ * f¡ * * J¡ * * * * ?¡ .
t

Definitions for accessing 82C50 on serial port

equ 0h
equ 0h
equ th
equ 2h
equ 3h
equ 4h

; recei ver buffer regi ster
; transmitter hoìding register
; interrupt enable register
; interrupt'ídentìfication registerr rrrLur ruPL tvçttt¡t lLqL

; line controì registers:,rJLçr

; moclem controì register

equ 6h
; fnterrupt Controlìer
INT-REC equ 807fh
INT_ON equ 01h
INT_OFF equ 00h
INT_NUM equ Och
; Control bytes

DTR equ 01h

sYe t .r.v\.Llr¡ Lvrrl.vt tçytJL

equ 5h ; line status register
; modem status register

; address of seriaì vector reg (SIVR)
; enabl e i nterrupt on char i n
; di sabl e al I seri a'l i nterrupts
; interrupt number for serial port

; bit in MCR for DTR

RTS equ 02h ; bit ìn MCR for RTS i ì

THRE-MASK equ 20h ; bit in LSR for transmitter ready

; Memory al I ocat'i on bl ocks
BUF-LEN equ 100h ; length of serial input buffer
STK-LEN equ 200h ; ì ength of program stack

; Mi scel i aeous defi ni tions
CR equ Odh ; carriage return character
LF equ Oah ; line feed character
PORT-DEFAULT equ B3h ; serial port defaults
STRP-TOP equ 7fh ; clear top bìt

name tmtm
* ;'¡ :'; ;'¡ :'¡ :'::t :'< :'¡ :'¡ :'¡;'¡ :'. J¡ :t _å :'¡ ;'; i¡ i<:'< :'¡ J¡ _i .

; tmtm-mai n ',

; Terminal emulator for Pocket PC Serial Port ;

It

; This terminal emulator is fulìy interrupt ;

i driven and shows how serial port applications ;

; can be written for the Pocket PC ;

It

; Thi s modul e shoul d appear at the start of ;

; I inked objects :

; tmtnLmain is the entry Point ;

It
. * J.å-¡tÊ*t{ * * t-¡t h1 r¡ * * * * * J¡ L ¿¡ * J.J< * * r<* * ¡t -: l¡ t¡ r¡** J. -È Ê ¡t^r * rA ¿¡ ¿âJ¿L-* ¿ÅrÅ *rå¿¿¿ÅJ¿ .
tl

extrn tmio-inon: near
extrn tmio-init: near
extrn tmky-gtky: near
extrn tmio-char: near
extrn tmio-intc: near
extrn tmio-offc: word
extrn tmio-segc: word

include tm.inc
c'ode segment byte Publ i c

org 100h
code ends
; pgroup alìows the linking of severa'l modules in such a way that the
; total code sìze can be determined
pgroup group code, endseg

assume cs:pgroup, ds:pgrouP
code segment byte public
tmtm-mai n proc near
; Free unused memory to a'lìow appìications/hotkeys to work

mov ah, 4ah ; modify memory allocation
mov bx, offset pgroup:last-byte + STK-LEN + Ofh
mov cX, 4

,-}

shr bx, cl ; divide by 10h; bx has paragraphs
int 2].h ; do it!' jnc tmtm-mmok ; jump if modified ok

; memory modification failed: print message and exit
mov ah, th ; di spì ay message
mov dx, offset tmtm_fail ; failed on allocation
int z].h
mov âX, 4c00h ; termlnate program
int zl'h

; memory modification succeeded: continue starting up
tmtm_mmok:
; set up stack i n al I ocated space

mov sp, offset pgroup:ìast_byte + STK_LEN
; intialise Pocket PC LCD screen using DIP specific services

mov âX, 0e01 h ; set external screen mode
mov dl , 02 ; to 80'.25 tracked
i nt 61h
mov âX, 1001h ; set screen position
mov dx, 0 ; to top lh corner of display
i nt 61h
mov ah, 9 ; dìspìay start up message
mov dx, offset tmtm_strt
i nt 21h

i grab interrupt Och (C0M1 interrupt service routine)
cìi ; disabìe interrupts
push bx
push es
mov âX, 350ch ; get current int Och vector
i nt 21-h
mov tmio_offc, bx ; save offset
mov tmio_segc, €s i save segment
pop es
pop bx
mov dx, offset tmio_intc ; Set up our own Och service
mov aX, 250ch ; routine as tmio_intc
int zLh
sri
call tmio_ini t ; initiaìise terminal emulator
caì'ì tmi o-i non ; enabl e seri al i nterrupts

; main emulator routine: exit from program is via tmky_gtky
mai n_next :

call tmky_gtky ; ASCII key in al from keyboard
call tmio-char ; send it to serfal port
jmp maj n_next

tmtrumai n endp
; Message tabl e
tmtm_fail db'Failed To Al'locate Memory', CR, LF, '$'
tmtm_strt db'DIP PPC Terminal Emulator Demo Program', CR, LF, ,$'
code ends
; endseg is a dummy segment that wi'll appear at the end of the

f
I

; termj na-l
endseg
I ast_byte:
endseg

emul ator
segment byte pubììc

ends
end tmtm_mai n

;end of the program

name tmky
tt

; tmky ;

; Termi nal keyboard handl er ;

It

; Thi s modu'l e cont rol s the termi nal keyboard ;

; Will allow emulator to quit on ALT Q ;

tt
. & ¡t * Jl :Ì J¡ J¡ -¡ l¡ J¡ * :'¡ * :'r ;t J¡ 'j< l¡ J¡ J¡ J.- J¡ :'< /¡ J¡ 'l J.' J< J¡ lr /c 'å ¡'r Jc *' àÈ 'å Jr J¡ t< L :L -: Jr -å :'¡ :1- i¡ J¡ J¡ :i¡ J: i< :'r :t .
tr

publ ic tmky_gtky
extrn tmdp_prbf: near
extrn tmio_exit: near

incìude tm.inc
code segment byte public

assume cs:code, ds:code
.r.*JÁr¡&åt¡:t*¿ett***r¿*¿;**r¡ÈLJ.**tJr***J¡*.t*-J¡l-**J.JcJ<*r.rÉ,¡ls¿¿ki:*J;¿;*r¿r¿!;.
tt

; tmky-gtky ;
; terminaì keyboard handler ;

l,

; wait and process key from keyboard ;
; returns valid AscII character in AL ;

,t

; ALT wiìI call conrnand key ;

; ALT Q wiìJ leave program ;

t¡

; Parameters: .
,

; N0NE ;
; Returns: i
i aì: ASCII ëharacter code I

; Destroys: ;
;' NONE ;
. ,.:tJ¡ * & * * '¡ J.* rÁ ¡t *rr * -: * r'. -+:'¡ -: J¡ Jr å * J¡ -* * t- * å àq â* ***rá *rÁ* * *L ¿Å*¿â rÃ* ¿ÅJa* *¿å * .It
tmky-gtky proc near
gtky-wtky:

cal I
mov
int
jz
mov
int
or
jz
ret

tmdp-prbf i check and dispìay input buffer
âh, I ; check key status for key stroke
16h ; ready
gtky_wtk y ; wait for a key (no power down!)
ah, 0 ; key ready so get jt
16h ; from keyboard buffer
al, al ; extended code?
gtky_test ; use extended codes as specia'ì

name tmdp
. Ja J.'å :'. * ;'. * ¡! :'.:'. :'. *-:'.:'. -l j. r'.-:'.. :'. J. -Á :? :'a :..-:t :t rt:.< -: :.(:.. i! r¡ Ji L * -¡ :ì,..:! ;t :! ,. J. :.. :.. >k:t :.. .¡ i.(i- l¡ ?,. :,r .I

; tmdp :
t; Thi s modul e handl es screen output ;

. tt * ta * * * :: :'r J¡ ,a i- * -¿
-:- ,; :',- :t :'. * :t :'í *- ,ir :'i ,t :ir :ir Jt :t * * ,í ;t :t ,.i L ;t ta :.a * :.: * ::r ,a :.¡ :..- J¡ J¡ ::r J< -;! :,¡ J¡ ,¡ :ï .t

;check for ALT codes
gtky_test:

cmp ah, 10h ;jne gtky_wtky ;
cal I tmio_exit ;int 20h

tmky_gtky endp
code ends

end

i The interrupt
; in the buffer,
; modified.

check for ALT Q
jump if not ALT Q
prepare to I eave termi nal emul ator
ieave it

pubì i c
publ i c

include tm.inc
code segment byte pubìic

assume cs: code, ds: code
' * ¡tJ.-:'*': ** ^':::J¡**-ri:i -¡:jr:'.':t *:ir *:'.r.::J. * r.**^+ i. J¡ *J¡J¡ -å:: å- r.r::r r- 2t*:..-:t:ic:.!:.¡ J¡:.:J¡ å- * .

; tmdp-prbf
; Display seriaì input buffer contents

I

I

I

t

tmdp_prbf
tmdp_bpt r

can place additionaì characters
except when the buffer is beÍng :

t
l.

; Parameters: l
; NONE :

; Returns: :

; NONE :

; Destroys: :

; NONE
"

.t
t.

' l¡ * * J¡ * l¡ '¡ * * ¡'. ,{ L J. * ¡¡ *' ,< >'< :.q i; >t i¡ l¡ ¡t :k :t ?'i J¡ rÁ rt t * :: ¡'. -* t< * t å -g * J. t ¡t ,c J¡ :.¡ l¡ l. * J< f< * l¡ t-
j

tmdp-prbf proc near '
push ax
push dx
push si

prbf_next:
; are we at the beg'inning of the serial input buffer?

cmp tmdp_bptr, offset tmdp_cbufjne prbf_char ; if not then print contentspop si
PoP dx
pop ax
ret

; at least one character needs to lle printed
prbf-char:

t

; shift serial buffer aìong
; first disable'interrupts to prevent new charcters being added whjle
; buffer is being aìtered

nlov
mov
mov
int

cli
cld
mov
dec
sub
mov

; at this point, es:di
; ds:si points to one
; character by the use

rep movsb
dec
sti

; tmio
; This module interfaces with serial

;last character of buffer
tmdp-cbuf;no. bytes to nrove in CX

tmdp-cbuf+1 ;start of string to move
the start of the buffer and

in. The buffer wilì be shifted down one

tport ;

t

an interrupt ;
i nput ;

I

i
emulator ;

t

;

t

;

di, offset tmdp-cbuf ; start of buffer
dl, tdll ; move first character
ah, 2 : into AH

z].h ; display character

CX'
CX

;disable interrupts
; di recti on up

tmdp-bptr ;end of buffer+1

cX, offset
si, offset
po'ints to

character
of movsb.

;[ds:si] --' [es:di] CX times
tmdp-bptr ;new end of buffer

;aìlow interrupts again

;serial input buffer
;pointer to top input buffer

; buffer may recei ve characters agai n
jmp prbf-next ; 'loop for next character

tmdp-prbf endp
; Buffer storage
tmdp-cbuf db BUF-LEN dup (00)
tmdp-bptr dw offset tmdp-cbuf
code ends

end

nafne tmi o
. *¿á ** ****å J.** t r. * -å* **J. t-J¡ J.* * **t'i-"¡ r.'*-**': å-ri**:'rJ<* âr.'rt-* *r.rÁ**J.¡?* .
l,

/=\
\rr

;

; _- The interrupt
; sjgnifies the
; character
a

routine assumes that
presence of a serial

; No handshaking is performed by the
; A baud rate of 1-200 i s assumed
; 8 data bits/no parity is assumed
; Top data bit is stripped off'
I

. . i'¡!*:tJ:J¡:'¡:'<:'¡l¡;t:t:'<J¡:'lj::t:'r:'¡:'r;'.?'.l'.j<J:_j:'.>'3:'¡;'::'.;'r:':;'.>'::'í:'.:'.'***J.t *:'i*-:':'.¡'í*'*t<:tJr"1r 'tt
publ i c tmio-char
publ i c tmi o-i ni t
publ i c trni o-i non
pubì i c trni o-i nof

publ 'ic
pubì ì c
pubì i c
publ ì c
ext rn

i ncl ude tm. i nc

tmi o_exi t
tmi o_i ntc
tmi o_offc
tml o_segc
tmdp-bptr: word

ASCII character to send

t3 :'r * :t * Jr .J :1. t J¡ i. rt :'. *- * l¡ -¡ rx * * :'¡ -å :? å- -å r¡ * i¡ :.¡ :! :.¡ -l å- ¡q i¡ :t

code segment byte pubììc
assume cs:code, ds:code

. tt Ji :'a ;t :'r :'.- :': :t :: ¿:a ;'¡ :'a :: :': :'a :'a :'¡ >: :ì :.a :.¡ :i Ja :.a ;.¡ :.¡ :k ;t :.¡ :'¡ :.< :'.- ;.¡ :: >'a :i :i- >.a ;:-,: ;.a :t :.,-:.a :: :: ;: :t :: :ì :.r :.a :t :i- :..I

; tmio-char
; Sends a character to the serial port

; Parameters:
i al:
; Returns:
; NONE

; Destroys:
; NONE
. J. * * -a t- ;'. * * -å * å- :t å- * -i Ji :! J. Jr

tmio_char proc near
push
push
push
mov
mov
add

char_wthr:
in
test
jz
pop
mov
add
out
pop
pop
ret

tmio-char endp
' * J¡ * :? ¡¡ i¡ ¡t Jc * Ja tl :'. ¡'.' ;t l- -: :'. t- :'¡ ia ¡: t 11- t t¡ * L J. ta ;'. J. ¡? ,. J. * ,. ¡'¡ * ¡t J< r.¡ :ir :'. :? :.. ;! J3 J. :.. :.3 li :.. ,. J. ?aa

tmi o_i ni t
perfor:msì i ni ti al i sati on of seri aì port

bf ts,Port is intialised to
no parity.
DTR is set high: I'm
Interrupt regi ster on

Parameters:
NONE

1200 baud, 8

aìways ready
port setup as INT_REG

; Returns:

dx
di
AX
di, tmio_base
dx, LSR
dx, di

al, dx
al, THRE_MASK
char_wthr
AX
dx, THR
dx, di
dx, al
di
dx

; get base address of C0M1 82C50
; line status register

; wait for transmitter ready

; ìoop if not ready

; address of transmitter hoìding
; register
; send character to serial

; NONE ;

; Destroys: ;

; NONE ;
. ;1 i¡ ;: ;'r :'r >'. ;: :': ;: ;: :Ì t¡ ;t :'r :'. :t :: ;': :'.- ;1:'. :'r :t :: J.- ;'. :: :: ir :t ,ì i. :: -i: :! :'r ,: :Ì ;i :: :: :'. t'¡ :'r ;i :i :: 7'. ,1 :Ì :': i. i: ;t :': .

tmio_init proc near
push ax
push si
Push dx
push di

xor âX, ax
push ds
mov ds, ax ; segment zero
mov d j , ds: [-SER-BASE] ; get base of coml
pop ds ; restore ds to local
mov tmio-base, di ; save base address
call tmio-inof ; disable serial ìnterrupts
mov al , PORT-DEFAULT ; set up port as i n header
call tm'io-inpt ; set up 80c50

; Set up interrupts for the serial port
;0n an IBM PC the folìowing code could be used
t

; i n al , 21h ; access 82C59 PIC
; and â1, Oefh ; enable int Och

; out 21h, al
)r''

; This wil'l not work on the Pocket PC, but the folìowing code can be used Í i
mov âX, INT-NUM ; interrupt number
calì tmio-sint ; set up seriaì interrupt

; set up modem control register
mov dx, MCR ; Tell the world we are ready
add dx, di
mov aì, DTR or RTS ; set RTS/DTR

;0n an IBM PC the interrupt line needs to be enabled:
)

; mov âl , DTR o¡= RTS or 8

t-
out dx, aì ; set up modem control register
call tmío-inon ; enable serjal interrupts
mov dx, di ; clear input buffer on 82C50
in â1, dx
pop di
pop dx
pop si
pop ax
ret

tmio_init endp
. J: :'s :'.:'. j. :1r :ii :'._ :t :': :'. å-:'. _:' :'i :'.' :'.' t'. :'< :'< >l j¡ :'¡ 7'¡ :'¡ * _: :': ;': jí ^¿:'. :'. ;'. :'< J< :'-_:l :t :': -* ;'r x ;'< _l j: J¡ *- J< :'.'J< /< :i :t å' .

; tmio-inon ;

; Enables serial interrupts ;

. t'a t'í': _:' ;'. :': :'. rt Jí J¡ :t * :': rt ^+ :'a i. z'. rt :t :'{ È ;'. :t :k J._:i Jí i,. lt ;t t'¡ ¿? :k * i. :k :-! :: -* :'.-:'. :l i< -A * :'. ì'. -Á- ir r:. r'. Ja i. :'r
I

tmio-inon proc near

mov
add
mov
out
ret

tmio_inon endp
t

dx, IER ; interrupt enabìe regìster
dx, cs:tmio_base
âl , INT-0N ; i nterrupt enabl ed
dx, al

tmì o-i nof
Disabìe serial interrupts

Parameters:
NONE

Returns:
NONE

Destroys:
ãì, dx

. È r¡ * * * ls â * J¡ * * l¡ * :'¡ J: J< lc ¡t t< J< :'. :'< * J< ': t¡ J¡ J! '¡s l¡ :'< J¡ J¡
^+

r¡ /. * * * L J< -¡ * å- å. å l¡ r¡ f¡ :! * * ¡t J¡ ¡t .tl
tmio-inof proc near

t ¡'._ ii ;t :'. :'. ;! it :t * :1r :'a :'. * :'.- :',_ x r¡ ií >'¡ :t t(:'; -: r'. :'(rr ¡'s ra * * >:. * l¡ * Já t

tmio-inof endp
* . r* :ir J. :'< * * Ji t¡ ¡t J. J. * Jr r'. -: :t ¡'. i¡ :1i -å ,. ^ t? :'.- :ii :'. :t :L t rt :'¡ :: L' ìt '¡' å- i. * :'.- ¡t ii ;t å ¡-ç :'¡ -å J¡ * :'¡ -å ¿; l¡ r¡ * *,

tmi o_i ntc
Serial read interrupt service

Invoked by serial input register being full
Places character in buffer and returns

Parameters:
NONE

Returns:
NONE

Destroys:
NONE

dx, IER ; interrupt
dx, cs : tmi o-base
al, INT-OFF ; disable i
dx, al

enable register

nterrupts

tmio-i ntc proc near
Push ax
push dx
push di
mov dx, RBR ; address of receiver buffer
add dx, cs: tmi o-base
i n al , dx ; get recei ved character i nto aì
and al, STRP-TOP ; strip top bit
mov di, cs:tmdp-bptr ; place character at top
mov cs: [di], al ; of buffer
fnc cs:tmdp-bptr ; advance buffer pointer

;0n an IBM PC the interrupt must be acknowledged by the following code:

; mov al, 20h
; out 20h, al
I

; 0n the Pocket PC thi s i s unnecessary
pop dì
pop dx
pop ax
i ret

tmio-intc endp

; tmio-exit ;

; Ensures safe exit from terminal emulator ;

tt

; Parameters: ;

; NONE i

; Returns: i
; NONE ;

; Destroys: ;

; NONE ;
. Ê**t¡r.*l(r.t r.**+r¡****r'.J¡J.Jr*t J.¡l-*t-t t<*ttJ.ttJ.t rs'r*t ***r.*lr**+t(*È*r.r..
ll

tmio-exit proc near
push ax
push bx'' push dx
call tmio-inof ; Disable interrupts

; put old interrupt service routine back
push ds
mov ds, tmio-segc ; get oìd segment
mov dx, tmio-offc ; get oìd offset
mov âX, 250ch
int ?Lh ; redirect serial interrupt

. pop ds
mov âl , 48h ; reset defaul t i nterrupt vector
cal I tmio-si nt
pop dx
pop bx

pop ax
ret

tmì o_exi t endp
tt

; tmio-sìnt
; Set i nterrupt vector
;

; Wi I I rep'l ace exi stì ng
; This routine uses int
; that power down will
: vector register

: Parameters:
i al: interrupt number
; Returns:
: N0NE

; Destroys: ;

; NONE ;

;^"--
tmio_sint proc near

push ax
Push bx
push cx
push dx

; check for vector aì ready bei ng set up
push ax
mov cl , 3 ; fi rst non-reserved entry

si nt-srch:
inc cl
cmp cì, 1l- ; max table entry+l
je sint-seti ; if got here then entry no exist
mov âX, 1c01h ; return tabìe entry
mov bh, cl ; table entry number
int 61h ; return table entry

; check if SIVR has been set up before
.cmp dx, INT-REG ; have we found ìocation in table
jne sint-srch ; no than a'lways repìace

.; have found location in table for interrupt vector number
sint-wral:

pop
mov
mov
mov
mov
int
jmP

; find an empty entry
si nt_seti :

mov
si nt-s r00 :

;

reg'ister ;

;
ent ry 'i f possi bì e ;
61h service 1ch to ensure ;

not corrupt serial port ;

;

ax ; i nterrupt number back
bl, al ; put value to write into bl
bh, cl ; table entry to use
dx, INT-REC ; address of SIVR
âX, 1c00h ; write entry number
61h
si nt_ex'i t
tabl e to use

: find empty table entry
cl, 3 ; fjrst entry to check

ìnc cl
. cmp cl , 11 ; max tabl e entry+1

je sint-bodg ; ìf got here then entry no exist
mov âX, 1c01h ; return table entry
mov bh, cì ; tabl e entry number
int 61h ; return table entry
cmp dx, 0 ; have we found empty location in table ?
jne sint-sr0O ; no than aìways replace
jmp sint_wral ; yes go and write it

sìnt-bodg: ; no tabìe entry
; no table entry has been found to do it the bad way

pop ax
mov dx, INT-REC ; corruption of SIVR may occur
out dx, al ; on power down

si nt_exi t :

pop dx
pop cx
pop bx
pop ax
ret

tmio-sint endp
It

; tmio-inpt i
; Initialise 80c50 (based on int 14h service 0) ;
It

; Parameters: ;

; al: port parameters (as int 14h) ;

; Bits 7, 6, 5 BAUD RATE ;

; 00 0 1l-0 |

: 00 1 150 i
; 01 0 300 i
; 01 1 600 ;

; L0 0 1200 |

; 10 1 2400 ;
; 11 0 4800 ;

; 11 1- 9600 i
;

; '' Bits 4, 3 PARITY
; x0 none
; 01 odd
; 11 even
t

t

t

I

Bit 2 STOP BITS
0 l- bit
l- 2 bits

t

; Bits 1, 0 WORD LENGTH

; 10 7 bits
; 11 B bits
; Returns:

; NONE

; Destroys:
; .. NONE

t

tmio_inpt proc near
push ax ; Preserve parameters
mov cl, 5 ; Set up shift count
shr aJ, cl ; Get bits to shift
jz ìnit-spec ; Specíal case of 110 baud
mov cl , al ; Get count i n CL
mov ch, 06h
shr cX, cl ; Get divisor in CX
jmp short 'i ni t-norm

mov cX, 4I7h ; Divisor for 1l-0 baud

mov dx, tmio-base : Base address
add dx, LCR ; Get line control reg port
mov al , 80h ; Access di vi sor regs
out dx, al
mov dx, tmio-base ; Lower divisor ìatch
mov al, cl ; Get ìow divisor
out dx, al ; Write divisor
inc dx ; Upper divisor latch
mov âì, ch ; Get high divisor
out dx, al ; Write divisor
pop ax ; Restore parameters
and aì, lfh ; 6et bits 4 to 0
mov dx, tmio-base ; Base address
add dx, LCR ; Line control register port
out dx, al ; llUrite data
ret

tmio-inpt endp
tmio-base dw 0 ; base address
tmio-offc dw 0 ; offset of old int Och
tmio-segcdwO ; segment of old int Och
code ends
' end

3. Internal Software

3.1 UPDAÎE 1.O7 \
Vfit,h this newsletter I am pleased to announce version 1.07 of
update. The version number is found by viewing the time of the
date stamp. Please distribute Update freel-y onto any and all
machines. The program works on both Àtari and DIP machines and
checks against the ROl4 number for what to install.

This progrem will update your internal software. The syntax is;

UPDATE installs update with reply returns;

UPDÀTE+OK installed successfully, or

UPDÀTE+FAIL Can not be installed lprobably because it
has already been installed)

To un-install the software from the machine. The syntax is;

UPDÀTE ./u Un-install UPDÀTE with reply returng i

UPDATE-OK Un-installed successfully

UPDATE-FAIL Can not be un-installed (probably because i

other TSR programs are loaded on LoP.)

To ensure update is always in use, please insert into your
autoexec.bat file.

3.2 Zero length fLles.

Users can find when they try to load zeÍo lengCh files that the
machine hangs. Update ñow õtops the saving of such files, but
Ioadlng in íe,ro tength f iles wif f still cause the error. If a
zero Iength f ile has become the default f ile within t'hat
applicatión you will need to delete C:\SISrnU\PERIIDATA.DAT.

Developers News-Ietter Page 4 Septcmber, 1990

3.3 Sector Size Problem.

out the complete Data fil
required, and adding the d
no file extended is usedt
alternative is to add a bYte to
multiple wiII be reached) and c
next multiPle.

To find the sector s Lze of the card you are using you should call
rNT 2I functián-ión-.-lc"t f;; ãir"óution table'¡ cx-wlLl ret'urn
the numb"r ot-nytãå- iïeactr """io..

Here is a iimpte assémbler
example to demonstrat'e.

ItrrE sssA.Aslt

cmtent 'tlritten by J0
l{rltten on 22.08.1990

Check agalnst int 2l for sector slze.

Code segrcnt bße
assuæ cs:code

Publ ic

. *tltttttltatlltt*ltaatraalt*ttltt*t*tttl*ttlr***tt ¡

V0l0 sssa_n¡lno

Calt fnt 2l and retunì sector slze

Reglsters preserved:
sl.0I

Paranpters:
none

Returns:
er sector size

. rrtt t rrñr rrltt*t lt tllt*t*tt ****tt* tltf t*lttf* t r *t '
a

publlc sssa_main pnoc near
push St
push 0I
push CX

iliv Al{.lCh :get allocðtlon table info
¡ìov OL,l ;set to drive A

int zlh ;call function
mov ax.cx ;glve to fu\ for return
pop CX
pop 0l
pop SI
ret

ssa main
codõ ends

end

Developers Newsletter Page 5 Septr:mber, 1990

¿. Developers Hlnts-

of any such warning. No one w
DIP release a new version and
run.

1.2 A couPle of developers
some compilers. The Problem
able to load files of cer
message 'EXEC error' and not
wl-th any comPiler. Please'trY
change to the Program/data si
have.

¿.3 Take note that the Pocket
machiner not DOS 3.x l{anY develo
require DOS 3.0 or higher, so
thãt use DOS 3 services and are
of any Problems You havg. l'lost m¿

we wiII help you to achieve this'
t[.4 lfany develoPers are
IBM version and a DIP
funct,lons etc. Software maY be
and DIP products. This tYPe
which maõhine it is working
problems it the machine is
á DIP Pocket Pc or Atari.
copyright notice ln the, ma
F000:FFE6 and the following
check that INÎ61H is Present b
before the SEG:OFF pointed to by the vector'

Developers Newsletter Page 6 September,1990

TTTLE CLIDR.ASH

cofimnt r
tlritten by 8RI
l{ritten on 31.10.1989

Set the t{Z if ne are not running with 0IP's ROH's'

0ata segnent byte Public
cl| drtxtdio db '(c) olP'

Ct-t oRrxrtrl equ $--cll-drtxtdip
datã ends

Code segrent byte Public
assr¡æ cs:code,ds:data

\

¡*ttitift*ttt*lltlatllll*lll*Atttttll*l'tt'l-ltlllt'*tlttt'tlttf,f,ttt'
a-

¡ cll_drcrn
:
i Set Zn lf we are running on a olP machine.

õñõci'-t'f on OlP machlne-by looking for '(C) OlP"'
roi-us to run. the Rü{ ¿ff000:ftE6 must contôin the above

7 characters.
To call thls functlon:

JSR cli drq¡
i . Je on-îhe-dlP-machine
:
: Paramters:
¡ llone
: Retums:
i - -

ttZ lþans we are runnlng on a forelgn machine'
".t*aaltttl{ttrrt¡rtr..ii*iüiri."i*¡**Útt¡ll-trt*titrttrtl'lrtrtttt*t'

a

cli drm proc neôr- push ds
push es

mv ax.0t00oh
mv esrð(qþv di.0tFt6h : get Ptr to where (C) olP should be'

: bytes in test string.

; coilpare strlngs

: RETURT{ lll ZERO FIAGI

püsh cs

ffig li.orrrr, -cri-drtxtdrp ; î:Ïi'i"t:"ïo*ffi" '"s*"t'

tmv cX.CLI-ORTXTLEII
cld
rep oPsb

pop €s
pop ds
ret

cli_drqn endP

code ends
end

Septcmberr l990
Developers Newsletter Page 7

5.O DIP PC Dlsplay

The DfP Pocket PC disp)-ay currentJ-y supports both standard ltDA
text, and a proprietar| Giaphics Foirnat.-The Video\Ram is located
at segment õgO0Oh. te-xt iJ stored as for ¡'IDA' with Lhe first
charaðter at 08000h:0H and its attribute byte at 08000:lh. Tlte
Pocket PC provides a single 80 x 25 text page using exactly 4000
bytes of Rãm. There are 96 bytes remaining above this video RÀM

wñictr are used by the BIOS. Át y attempt to ,select a second text
page will set the default page.

There are 2 graphics pages suppo
and the second page at 08000:7
using a símpì.e 8 horizontal pixe
byte being the left most pixel
the Graphics Screen is 24O by 6

tilhen the BIOS writes to the scre
RA}f and the f,CD disp1ay.. This
automatically refreshed (To sav
information on the screen has to
scrolls, then the entire Video

graphics to the
service (Fn 0Ch).
, and refresh the
latter may not be

compatÍ.ble.with future machines.

To find which screen Ís installed in the Pocket PC caII function
INT61 function 36. The values returned are shown below' As any
future screens are Ínst,alled, the return values produced wiII be
released.

INT 51h - Configuration Status (S 36)

Parameters:
AH 36h

Returns:
AX Configuration

Note
This serv.Lce returns the machine build configuration, and

may be used to detect which video adapter is used'
If À¡(bits OCh and QDh are set'to 0, Lhen the service exists'
IF A)(bits OCh and QDh are not set to zero, then service does not
exist and screen must be MDA.
If Ð(bit 02h is set to 0, the screen is l'lDA.

DeveJ.opers Newsletter Page I Septcmber' 1990

5.O DIP PC Dlsplay

The DIP Pocket PC display currently supports bogh st,rndard MDÀ
text, and a proprietary Graphics Format. The Video-Ram iq located
at segment õgO0Ott. re-xt iJ stored as for MDA, with the first
character at 08000h:0H and its attribute byte at 08000;tlh. Tire
Pocket PC provides a single 80 x 25 text page using ex.rQlly 4000
bytes of Ram. There are 96 bytes remaining above this rlf.deo nÀM
which are used by the BIOS. Àny attempt to .select a soC-ond text
page will set the default page

There axe 2 graphics pages supported. The first. page ac 0p000:0h,
and the second page at 08000:7D0h. Graphics pixels are stored
using a simple 8 horizontal pixels per byte, wÍth the !1S9 of each
byte belng the left most pixel of the eignt. The res<>Iþtion of
the Graphics Screen is Z4O Ay 6+, mapped ãs 30 by 64 b*tes.

:
When the BIOS writes to the screen, it has to write to bciJh Video
RÀlI and the LCD disptay¿ This is because the display is not
automatically refreshed (To save power). If a large ahount of
information õn the screen-has to chãnge, as happens if Lde screen
scrolls, then the entire Video RÀM may be copied to thà LCD.

There are normatly only two $¡ays to write graphicsi: to the
display. The first is to use BIOS write pixel service (Fn 0Ch).
The second is to write directly to video RAlf, and re:ffesh the
IÆD. The former method is the recommended. The latter iltáy not be
compatible.with future machines.

To find which screen is installed in the Pocket PC call function
INT61 funct.ion 35. The values returned are shown belot{. As any
future acreens are installed, the return values produc<:{ will be
released.

INT 61h - Configuration Status (S 36)

Parameters:
ÀH 36h

Returns:
AX Configuration

Note
This service returns the machine buitd configuration, and

may be used to detect which video adapter is used.
If ÀJ(bits OCh and ODh are set'to 0, then the service exists.
IF À)(bÍts OCh and QDh are not set to zero, then servic<: does not
exist and screen must be MDA.
If Àx bit 02h is set to 0, the screen is MDA.

Developers NewsLetter Page I Septenrber, f990

6.O SecurÍty protectlon for Memory Cards.

+o -
pr:oduce and

may be a genuÍne
loss oI revenue.

method of .protection is to sety card where the program isthis control_ byte is -wit-hin
the

have a ROM card you could
can then be checked by

tion if the co,ìcrol bytäputting such a characier
disk' messaçIe, whi<..h is not

Dlsplay of Ram Card soot

lf;å" ll.'ff:åïl :l ff,[ïit,;:o"lls*i:m :
apart fro'

000¡x0: 00 00 00 0O O0 0O O0 0O OO 00 O0 0O 00 0O 55 MU.

2t 30 00 00 02 02 02 00
0{l 00 02 00 00 00 00 0o
l0 88 01 13 88 07 o0 33
39 00 90 c0 l0 32 E4 C0
79 73 74 65 60 20 64 69
73 60 20 6s t2 t2 6F 72
63 65 20 61 6E 64 20 70
20 68 65 79 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

Sector.
.".0tP 2.0......

...... ..3
....c...9....2..
...flon-Systee di
sk or disk error
...Replace and p
ress any key....

The following assembler routines areco protect software. please adapt to
being employed by <tevelopers
suit. your own requtrements.

September,1990Deve lopers . News I etter Page 9

TITLE HPRO.ASII

cofirlìent r
Hritten by JD
Hrltten on 21.08.1990

Test for.controì byte in absolute sector.

q.-

data segnrent byte

boot sector db

data ends

code segnent byte
assune cs:code.ds:data

org l00h

;Hhere to store boot sector

publ i c

512 DUP(0)

pubì i c

f ttattttf lltf*tt*ii*f tiitriitttrtia*ttt*ÍrrtrÈtrtrl* *r-lt*rr*ratf ar
wpro_main ;

;
fest for control byte tn absolute sector. i
Paramters:

l{one :
Returns: :

ALD. ol
*ttt*t*tiatttr*t* ttrÊr**r**t*******rr'a

-
publ ic wpro_nnin

rrpro_maìn proc near
; Ini tial i se
;push any other required
; regi sters
;Preserve stack

;Drlve Nunber. A:
:l{o. of sectors to write
:Sector l{umber
;0TA pointer
:Preserve BX

;Absolute sector read

;off we go
¡pop flags
;Hrite to sector

;preserving 8X

:Check drive not ready

:Return [h for General error

;Card ready
;pop flags
;Preserving BX

:Get sector char

push
push
mv
m0v
ír¡v
mov
push
il{r

jnc
popf

pop bx

cmp al,02h
Je wpro_notready

mov ax,01h
Jmp wpro_flrrish

bp
ds
al .@h
cx.0lh
dx,00h
bx.OFFSËI boot sector
bx
25h

ïpro_success

bx
al . [bx+!i1h]

al .': '
wpro_set

ax.09h
wpro firrish

wprc_success:
popf
pop
fllov

cmp
je

¡nov
jmp

$pro_set:

Developers Newsletter Page 10 Septenrber, f 990

fnov
jmp

wPro_notready:
lfÍ¡v

wpro_flni sh:
Pop
pop

ret
wpro_rBin

code ends
end

ax.OAh
wpro_f i ni sh

¿x.03h

ds
bp

endp

;return A for card ready

¡0rive not ready r
;return 3 for drive not ready-

:Preserve registers

;presevre any others pushed

; & return

Septernber, 1990

I

Developers Newsleùter Page 11

TITLE HI4RO.ASII

cfillìent .
t{rl tten by J0
Itritten on 21.8.1990

To set up a control byte

data segnent byte

boot sector db

data ends

code segncnt byte
¿ssune cs:code,ds:data

org f00h

llone
Returns:

At:

in the card

pubì i c

5t2 0UP(0) ;l{here

pubì i c

to store boot sector

\

.ltta*tlltlatittt**t**ta*fitrrt*t*ti***Ê*ra**r*irrÍ.rrt**frtf taa a tt r.a-
wmo maln

fÙsoìute Sector Read and Hrlte to Create a protect character
Para¡eters:

OAh Protected.O2h write protect, 03h not ready
0lh; Olh general error :¡ttttttltttlttf*tt**t*r*iriiri*r*ti*trritrrrrrrtrit*r*t*rrrrrrftraar.

public rmro mainrnro_maln 'proC near

push bppush dstmv al.ü)h
mov cx,01hmv dx,00hrmv bx.OFtSEI boot sectorpush bxIltT 25h
Jnc r,,mro success

¡firo effor:
popf
pop bxot'p al .00hje rrmo_writepro

cnp al.02h
Je wrno_notready

nlov ax.Olh
Jmp rrmro_f i ni sh

Hmo success:- popf .
pop bx
mov al.'l'
nþv [bx+Slh].al

rþv aì.00h
mv cx.0lh
mv dx.00hpush bx
tt{T 26h
Jnc tvmro set

Developers Newsletter

;push any other requlred
; regl sters
:Preserve stack

;0rlve lltmber. A:
:llo. of sectors to write
;Sector tlunber
;0TA pointer
:Preserve 8X
;Absolute sector read
;off we go

;pop flags
;preserving BX

;Check for vrrite protect

;Check drive not ready

;Return lh for General error

:Card ready
;pop flags
;preserving 8X

:control character
;Give sector the char

;0rive l{unrber, A:
;l{o- of sectors to write
;Sector t{umber
¡Preserve 8X

;Absolute sector write
.'set i t ok

Page L2 Sèptenrber, 1990

Jmp

rrrnro set:
popf
pop
fiþv
jr¡p

*mro_tritepro:
nov
jmp

unro_notrea(y:
IIþV

srro_flnish:
poP
pop

r€t
¡rmro_main

code ends
end

wmro error

bx
ax.OAh
vrnro fini sh

ax.02h
wnro finish

ax.03h

ds
bp

endp

;pop fìags
;Preserving BX

:return A for card ready

;Card write protected
:return 2 for card irr¡te protected

;Orive not ready
:return 3 for drive not ready

:Preserve

;Þieserve ¿ny other pushed

:reglsters

; t. return

Septemberr 1990Developers Newsl_etter Page 13

