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Chapter 1 

Preface 

1.1 

Within this personal project is a complete guide to the research, development, 

implementation and conclusions to creating a System on Chip, based on the Atari ST 

series of home microcomputer which spanned a production date of 1985-1993 [1].  The 

project is designed to be left open to continual work and extensions beyond the original 

Atari ST design. 

 

This document assumes prior knowledge of Microsystems design and the Motorola 

MC68000 CPU, and going in depth into these topics is beyond the scope of this 

document. 

 

Introduction and Overview 

1.2 

This project is inspired by other enthusiast’s attempts at creating systems on chip that 

faithfully reproduce early home microcomputers and arcade machines.  The development 

in the last few years in programmable logic devices, with increased logic elements and 

low development costs, has meant it is possible to fit entire computers into one 

semiconductor. 

 

1.2.1 

TV Boy 

One of the first commercially available products has to 

be the ‘TV Boy’, which was an unlicensed reverse 

engineered copy of the Atari 2600.  It first went on sale 

around the mid 1990s. The original Atari 2600 used 

4Kbyte game cartridges whereas the TV Boy used a 
Figure 1 - TV Boy 



Figure 2 - Flashback 2 Main PCB 

Figure 3 - NOAC SOC 

512Kbyte ROM as storage for the 127 internal games [2].  A spare 4Kbyte slot was used 

as the game menu selection.  As it was unlicensed by Atari the games had different 

names and some had very small changes to the graphical details.  All the digital 

electronics were designed into a single ASIC, intended for mass production and low cost. 

 

1.2.2 

Flashback 2 

There have been some official 

licensed Atari consoles recreated 

in modern silicon.  The Flashback 

2 is another Atari 2600 with 40 

games included.  The design of the 

case is reminiscent of the original 

Atari 2600, but being somewhat 

smaller and lighter.  The Flashback 

2 was designed by Curt Vendel and Legacy Engineering, and in an interview Curt Vendel 

remarked that the "Flashback 2 did exceptionally well with 860,000 sold in the 

U.S./domestic" [3]. 

 

1.2.3 

NOAC 

Another unlicensed reversed engineered copy of a console 

exists, based on Nintendo’s NES (Nintendo Entertainment 

System).   These are known as NOAC (Nintendo On A Chip) 

and originate from a variety of manufactures in China and are 

inaccurate in many ways to an original NES [4].  The Integrated 

Circuit is supplied without a real physical package, instead being 

covered with an epoxy glue material. 

 

 

 



Figure 4 - MSX Bazix Unit 

Figure 5 - Minimig PCB 

A brief look on the internet at current and past projects in this particular field has shown 

the following popular home computers being implemented into FPGAs. 

 

� Msx Bazix – MSX  (Japanese home computer)  

� Minimig – Amiga A500 

� Suska – Atari ST/STE 

� C-One – Reconfigurable Commodore 64 & Commodore VIC-20 

 

1.2.4 

MSX Bazix 

The MSX Bazix [5] was a project led to create 

primarily a clone of the technically advanced MSX 

home computer, which was very popular in Japan in 

the 1980s.  The MSX Bazix was also designed to 

pave the way for other developers to create projects 

on, with the design of the hardware being open 

source and an array of I/O ports to cater for most 

needs.  It’s future and success is unknown with no 

news on their website for over 2 years.   

 

1.2.5 

Minimig 

The Minimig (short for Mini Amiga) is based around 

a Xilinx FPGA and MC68SEC000 CPU.  It has some 

key changes from the original Amiga 500, including 

support for a PS/2 mouse and keyboard and games 

that load from a removable MMC Flash memory 

device [6].  The source code for both the FPGA and 

PIC microcontroller became available to download 

on 24/07/2007 and the hardware is available to buy 

through online resellers. 



1.2.6 

C-One/C64DTV 

Many other exist, at various stages of completion.  What are more interesting are the 

results of some of these projects.  The best example of this is the C-One.  The C-one was 

designed by Jeri Ellsworth in 2002, to replicate a Commodore 64 using an Altera FPGA 

[7].  By 2004 a marketing company had approached Jeri Ellsworth to use the design in a 

low cost hand held console to plug directly into a TV, the result being the C64DTV. 

 

The C64DTV hardware is all based on an ASIC, or 

Application Specific Integrated Circuit, which is like a 

fixed design FPGA.  These are commonly used in mass 

produced products.  The software comprised of 30 

games, originally produced for the Commodore 64 in 

the mid to late eighties and licensed to be used. The 

C64DTV was very successful on release, selling 

70,000 units in a single day via a TV shopping channel 

priced around £20[8]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - C64DTV 



Chapter 2 

In Depth Introduction   

2.1 

Atari was founded in 1972 by Nolan Bushnell and Ted Dabney firstly creating arcade 

games, and then moving onto home computers and home video game consoles.  Atari at 

the time had created groundbreaking games like Pong, and also designed an affordable 8 

bit home video game console, called the 2600 based around the Motorola 6502 CPU. 

 

By 1976 Atari was sold to Time-Warner and work had started on a replacement for the 

2600 video game console.  A shift towards people wanting to do more than play games 

meant the next computers, the Atari 800 & 400, had keyboards and the term ‘home 

computers’ arrived. 

 

In the early eights there was the crash of the US Video Games industry, where many 

companies producing video game consoles and home computers in North America either 

went bankrupt or lost a lot of money.   Some of the reasons for this were too much 

competition, a flood of poor software titles and not enough compatibility between 

consoles, even ones made by the same manufactures.  

 

It was then in 1984 Atari was sold by Time Warner to Jack Tramiel, who was the founder 

of Commodore.  Atari was restructured selling off old stock at reduced prices to fund a 

new home computer, which would be called the Atari ST and was released in 1985 

[9],[10]. 

 

2.1.1 

Atari ST Models 

The Atari ST was particularly strong in the music industry, with MIDI (Musical 

Instrument Digital Interface) ports being built in.  One of the video modes, being 

monochrome high resolution (for the time) also meant the Atari ST found its way in DTP 

(Desktop Publishing) and CAD (Computer Aided Design).  



 

The Atari ST stands for Sixteen/Thirty-two, as it was based around the powerful 

Motorola MC68000 which had a 16bit external data bus, but internal 32bit registers. 

 

The Atari ST range came in quite a few different flavours [10]. 

 

ST Original  

STM RF modulator for TV output 

STF Internal floppy drive 

STFM RF Modulator for TV output, internal floppy drive 

STE DMA Sound, Blitter chip, enhanced graphics, RF Modulator, internal 

floppy drive 

Mega ST Detachable keyboard, Blitter Chip, internal floppy drive, internal expansion 

bus 

Mega STE Detachable keyboard, Blitter Chip, internal floppy drive, internal VME 

expansion bus, optional FPU, 16 MHz CPU with L2 Cache 

Stacy Portable Laptop version, internal floppy drive, monochrome 9” LCD 

screen 

Table 1. List of different models Atari produced based around the original ST hardware 

 

Atari ST Hardware 

2.2 

The original prototype of the Atari ST was 

built by hand using discrete TTL logic 

devices using wire wrapping and prototyping 

printed circuit boards.  These were then 

integrated into four custom ASICs on the 

production models [11]. 

 
Figure 7 - Atari ST CPU Board Prototype  



Figure 8 - Atari STfm Motherboard 

 

1. Reset circuitry consisting of NE555 monostable 

2. FPM DRAM, consisting of two banks of 512kbytes 

3. RF Modulator to convert composite video and audio to RF 

4. Custom DMA chip  

5. Western Digital WD1772 Floppy Disk Controller   

6. Yamaha YM2149 Sound Chip 

7. Motorola MC68901 MFP 

8. Motorola MC6850 ACIA one for keyboard interface and another for MIDI 

9. Custom SHIFTER Video chip inside shielded enclosure 

10. Bus transceivers to bridge between Data Bus and RAM Data Bus 

11. Custom GLUE chip 

12. Motorola MC68000 CPU 

13. Custom MMU chip 

14. EPROM’s containing TOS (The Operating System) 

15. Cartridge Port for additional EPROM’s 

 



2.2.1 

MC68000 CPU 

The Atari ST was built around the Motorola 68000 CPU.  Some of the MC68000 features 

are listed below. 

  

� 16 bit data bus 

� 24 bit address bus 

� Asynchronous bus cycles (to allow for wait states) 

� Synchronous bus cycles to interface to older 8 bit 6800 peripherals  

� 32 bit internal registers 

� 7 Interrupt levels 

� Byte, Word and Long data transfers 

 

Listed below are the four custom integrated circuits, which are all closely linked together, 

and to operate rely on each other. 

 

2.2.2 

GLUE 

As the name suggests, this IC glues the system together.  It is responsible for address 

decoding and providing chip select lines.  It also handles the control of interrupt lines to 

the CPU, and bus arbitration between CPU and DMA.  It also creates the video timing 

signals. 

 

2.2.3 

MMU 

This integrated circuit controls the Dynamic RAM signals.  It is not as powerful as the 

name suggests, it doesn’t do any memory protection, translation from virtual to physical 

address or paging.  This would be better called a Memory Controller Unit.  It multiplexes 

the CPU address lines to Column and Rows.  It also contains a counter for sending video 

data from RAM to the SHIFTER and also a counter for DMA transfers.   

 



2.2.4 

SHIFTER 

This integrated circuit takes the data supplied by the MMU and uses a lookup table to 

display the colour from a palette.  All the Atari ST video modes are based on bit planes.  

There are 3 video modes, 320x200 16 colours (4 bit planes), 320x400 4 colours (2 bit 

planes) and 640x400 (1 bit plane).  The reason for using this method was because the 

memory bandwidth is not enough to support “chunky” graphic modes where each byte 

represents a pixel on the screen.   

 

2.2.5 

DMA 

The DMA (Direct Memory Access) controller is responsible for transferring chunks of 

data between the RAM and DMA port, which is used for connection of hard drives.  It 

also resizes the 16 bit data bus to the external 8 bit bus featured on the DMA port.  It is 

also used to carry out DMA transfers to and from the Western Digital WD1772 FDC 

(Floppy disk controller). 

 

2.2.6 

MFP 

The MFP is a MC68901 manufactured by Motorola and is an abbreviation for Multi 

Function Peripheral Chip.  In the Atari ST it is used to provide a RS232 serial port.  It 

also serves as an interrupt controller, allowing more interrupt sources than the Motorola 

MC68000 CPU provides.  It also contains four universal timers. 

 

2.2.7 

YM2149 

The YM2149 is manufactured by Yamaha and is primarily the sound generator. It 

contains 3 independent tone generators.  It also has two general purpose 8 bit data ports.  

In the Atari ST these are used for the Centronics printer interface and the other is used to 

help control the floppy disk and RS232 hardware flow control.  

2.2.8 



ACIA 

The ACIA is an abbreviation for Asynchronous Communications Interface Adapter. The 

Atari ST contains two MC6850.  Their task is to serialize data to communicate with the 

Keyboard and MIDI devices.  They were designed as a peripheral chip to the MC6800 

processor, and so they only feature an 8 bit wide bus and use the legacy synchronous bus 

that the MC68000 CPU can offer. 

 

2.2.9 

FDC 

The FDC is an abbreviation for Floppy Disk Controller.  It is a WD1772 made by 

Western Digital.  It is connected to the DMA chip so that all transfers are via DMA 

relieving the CPU from disk transfers.  It contains the logic for precise timing of the 

floppy disk drive heads and motors and sterilization of data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atari ST Operating System 

2.3 



After the hardware came close to being completed an operating system was needed.  

Atari decided to use a new operating system with a GUI (Graphical User Interface) from 

Digital Research, providing a WIMP (Windows, Icons, Menu, Pointing Device) 

environment, much like the Apple Macintosh.  This was essentially a port from the Intel 

8088 version they had developed for the IBM compatible machines.  The operating 

system was called TOS (The Operating System), and provided the programmer with 

many system calls by using the TRAP software exception calls.  In TOS there are three 

layers, called the BIOS, XBIOS and GEMDOS.  The BIOS and XBIOS are hardware 

dependant, while the GEMDOS layer is hardware independent.  The operating system on 

very early Atari ST models came on floppy disk, but the more common later versions 

placed this operating system on PROM memory devices [12]. 

 

With this project being mainly hardware based only the low level parts of the operating 

system, and particularly how the operating system starts up and boot straps.   

 

2.3.1 

Atari ST Boot Up Operation 

The Motorola 68000 on boot up requires initial 

values to load into its supervisor stack pointer 

and reset vector address.  These come in the 

form of two long words at address 0x000000 to 

0x000007.  

 

Figure 9 shows the path the operating system 

takes on boot up.  It was drawn from the 

reverse engineered commented source code 

[13],[14].   

 

 

 

Boot up sequence 

Figure 9 - Atari ST boot up sequence 



(1) 

� Load SSP with long word value from 0xFC0000. 

� Load PC with long word value from 0xFC0004 (Garbage value, memory not yet 

sized). 

� CPU Supervisor Mode Interrupts disabled (IPL=7). 

� RESET instruction to reset all peripheral chips. 

� Check for magic number 0xFA52235F on cartridge port, if present jump to 

diagnostic cartridge. 

 

(2).  

� Test for warm start, if memvalid (0x000420) and memval2 (0x00043A) contain 

the Magic numbers 0x7520191F3 and 0x237698AA respectively, then load the 

memconf (0xFF8001) contents with data from memctrl (0x000424).  

 

(3)  

� If the resvalid (0x000426) contains the Magic number 0x31415926, jump to reset 

vector taken from Resvector (0x00042A). 

 

(4) 

� YM2149 sound chip initialized (Floppy deselected).  

� The vertical synchronization frequency in syncmode (0xFF820A) is adjusted to 

50Hz or 60Hz depending on region.  

� Shifter palette initialized. 

� Shifter Base register (0xFF8201 and 0xFF8203) are initialized to 0x010000. 

� The following steps 5 to 8 are only done on a coldstart to initialize memory. 

 

(5) 

� Write 0x000a (2 Mbyte & 2 Mbyte) to the MMU Memory Configuration Register 

0xff8001). 

 

(6) 



� Write Pattern to 0x000000 - 0x000lff. 

� Read Pattern from 0x000200 - 0x0003ff. 

� If Match then Bank0 contains 128 Kbyte; goto step 7. 

� Read Pattern from 0x000400 - 0x0005ff. 

� If Match then Bank0 contains 512 Kbyte; goto step 7. 

� Read Pattern from 0x000000 - 0x0001ff. 

� If Match then Bank0 contains 2 Mbyte; goto step 7. 

� panic: RAM error in Bank0. 

 

(7) 

� Write Pattern to 0x200000 - 0x200lff. 

� Read Pattern from 0x200200 - 0x2003ff. 

� If Match then Bank1 contains 128 Kbyte; goto step 8. 

� Read Pattern from 0x200400 - 0x2005ff. 

� If Match then Bank1 contains 512 Kbyte; goto step 8. 

� Read Pattern from 0x200000 - 0x2001ff. 

� If Match then Bank1 contains 2 Mbyte; goto step 8. 

� note: Bank1 not fitted. 

 

(8) 

� Write Configuration to MMU Memory Configuration Register (0xff8001). 

� Note Total Memory Size (Top of RAM) for future reference in phystop 

(0x00042E). 

� Set magic values in memvalid (0x000420) and memval2 (0x00043A). 

 

(9)  

� Clear the first 64 Kbytes of RAM from top of operating system variables 

(0x00093A) to Shifter base address (0x010000). 

� Initialize operating system variables. 

� Change and locate Shifter Base register to 32768 bytes from top of physical ram. 

� Initialize interrupt CPU vector table. 



� Initialize BIOS. 

� Initialize MFP. 

 

(10)  

� Cartridge port checked, if software with bit 2 set in CA_INIT then start.  

 

(11) 

� Identify type of monitor attached for mode of operation for the Shifter video chip 

and initialize. 

 

(12)  

� Cartridge port checked, if software with CA_INIT clear (execute prior to display 

memory and interrupt vector initialization) then start.  

 

(13)  

� CPU Interrupt level (IPL) lowered to 3 (HBlank interrupts remain masked).  

 

(14)  

� Cartridge port checked, if software with bit 1 set in CA_INIT (Execute prior to 

GEMDOS initialization) then start.  

 

(15)  

� The GEMDOS Initialization routines are completed.  

 

(16)  

� Attempt boot from floppy disk if operating system variable _bootdev (0x000446) 

smaller than 2 (for floppy disks) is. Before a boot attempt is made bit 3 in 

CA_INIT (Execute prior to boot disk) checked, if set, start cartridge. 

� The ACSI Bus is examined for devices, if successful search and load boot sector. 

 



� If system variable _cmdload (0x000482) is 0x0000, skip step 17.  

 

(17)  

� Turn screen cursor on 

� Start any program in AUTO folder of boot device 

� Start COMMAND.PRG for a shell 

 

(18)  

� Start any program in AUTO folder of boot device 

� AES (in the ROM) starts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

Research  

3.1 

FPGA 

An FPGA is a programmable logic device, with the configuration being volatile.  The 

FPGA contains many complex logic blocks that have interconnects running between 

them in a grid like fashion.  There are also dedicated interconnects like global clock lines. 

The configuration is often programmed in a high level HDL (Hardware descriptive 

Language) like Verilog or VHDL, or sometimes as a schematic.  The majority of modern 

FPGAs contain embedded functions, such as adders, multipliers, memory, digital PLLs 

and even DSP cores.   There has been a recent trend in pushing soft core processors into 

designs for FPGA creating complete systems on chip that can be fine tuned for specific 

tasks [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 –Xilinx FPGA block layout 



3.2 

Base Hardware 

The design is to be based around a Xilinx FPGAs, as there are special free versions of the 

IDE (Integrated Development Environment) which are only slightly limited from the 

commercial versions.  The type of Xilinx fitted to the board needs to be large enough (in 

terms of logic elements) to fit the whole project, which is not something that can be 

estimated easily.  The Atari ST is based on a 5 volt logic platform, and so having some 5 

volt capabilities on the chosen development board will be a real bonus.    

 

Board FPGA I/O’s Notes Price 

Xilinx Spartan-3 

Starter Kit 

XC3S200 100 Programming 

Cable, PS/2 

ports, VGA 

£80 plus 

shipping and 

customs 

Enterpoint 

Raggedstone 

XC3S1500 120 plus 50 

5v tolerant  

on PCI 

header 

Programming 

Cable, 7 

segment display 

£120 inc 

shipping 

(special student 

price) 

Inrevium TB-3S-

1400A-IMG  

XC3S1400A 128 4Mbyte DDR 

SDRAM, 

RS232 

£650 plus 

shipping and 

customs 

Philips PXPDKSP3 XC3S1000 80 PCI Express 

Bridge, 

Prototype Area. 

£700 plus 

shipping and 

customs 

Digilent Inc. Nexys-

2 

XC3S500E 59 Programming 

Cable, ps2 

ports, vga, 

SDRAM 

£50 plus 

shipping and 

customs 

Table 2 - Comparison of some of the available Xilinx development boards 

 

 

 



3.3 

IP Cores 

IP Core stands for Intellectual Property Core.  They are a block of logic as an element to 

design reuse, a trend towards repeated use of previously designed components.  IP cores 

may be licensed to another party or can also be owned and used by a single party alone.  

Some cores are only offered as netlists, to protect the vendor against reverse-engineering.  

Others are offered as synthesizable cores in hardware descriptive languages like Verilog 

or VHDL [16].   

 

There are already a couple of projects for putting an Atari ST inside an FPGA, thankfully 

both in the VHDL language.  There is MikeJ’s project, although only the source to his 

YM2149 Sound Chip is available.  There is also Wolfgang Forester’s project, which 

includes an IP Core of every Atari ST semiconductor. 

 

3.4 

Software Suite 

The Xilinx IDE comes in two flavours, ISE Foundation and ISE Webpack where the 

latter is a free version.  The free ISE WebPack is only restricted in the devices it supports, 

and that is generally the newest or largest devices like the Virtex 5 SXT family [17]. 

There are a range of tools included like Simulators, Timing Analysers and Power 

Analysis. There are additional options that can be bought for some of the more advanced 

features like ChipScope (FPGA probe) and Modelsim (Powerful Simulator). 

 

3.5 

Processor  

The processor can either be an IP Core or real genuine Motorola (now Freescale) 68000.  

At the time of writing no free 68000 IP Core is available that has been tested and verified.  

There are a few different incarnations of the 68000 to help keep it up to date as 

production has spanned almost 30 years now [18]. 

 

 



Model Technology Voltage  Details Manufactured 

68000 NMOS 5v Original No 

68HC000 CMOS 5v Low Power Yes 

68HC001 CMOS 5v Low Power, 8/16bit data 

bus 

Yes 

68EC000 CMOS 5v Embedded version, 8/16bit 

data bus 

No 

68SEC000 CMOS 3.3v Embedded version, 8/16bit 

data bus, static clock 

Yes 

68008 NMOS 5v 8bit data bus, 20/22bit 

address bus 

No 

68010 NMOS 5v Virtual machine & virtual 

memory instructions 

No 

Table 3 - Comparison of 68000 family processors 

 

3.6 

Books and literature 

 

• Atari ST Internals ISBN : 0-916439-46-1 

• Atari ST Profibuch ISBN : 3-88745-563-0 

• 68000 Microsystems Design ISBN : 0-534-94822-7 

 

• MC68000 Hardware Datasheet  

• MC68000 Programmers Reference Manual 

 

 

 

 

 

 

 



3.7 

Debugging 

 

There are many ways to debug and fault find hardware.  These range from the very basic 

up to monitoring registers in a CPU and data flow. 

 

A set of LEDs can be used to check that an FPGA has been programmed correctly.  By 

using a clock signal and diving it down to a signal of a one or two Hz this can be used to 

drive an LED and make it flash.  Another use of LEDs is to show the status of signals, 

like a reset line or processor state.  They are very often the first thing to get working 

when starting on a new development board. 

 

A 7 segment display can be used much in the same way as a single LED but allowing 

display of whole bytes, words of even long words if enough segments are available.  A 

bit more functionality is need in an FPGA to achieve this as quite often 7 segment 

displays need to be scanned one segment at a time at a fast enough rate for the eye not to 

see any flicker. 

 

Single Stepping is a way of stepping through the boot up code of a board, one instruction 

at a time.  It will usually be used in combination with a method to display bus signals to 

verify or diagnose a problem with the board.  Using this method needs hardware than can 

support halting the system.  

 

Xilinx Chipscope and Altera SignalTap are pieces of software to view any internal signal 

of an FPGA.  They manage this by using the JTAG interface and modifying the FPGA 

bitstream with some additional logic.  

 

A Monitor program is a utility that is loaded from ROM into an available processor.  It is 

designed to use little or no resources so it can run when some hardware isn’t fully 

functioning.  It usually communicates over a simple RS232 implementation and allows 



the user to write small assembling programs.  These can be used to test various parts of a 

system.   

 

3.8 

Operating System Versions and storage 

The operating system for the Atari ST went through various versions from TOS 1.00 to 

TOS 2.06 [19]. 

Version Date Computer Details 

1.00 20
th
 November 1985 ST Original Version 

1.02 22
nd
 April 1987 ST, Mega ST Mega ST Blitter & RTC support 

1.04 6
th
 April 1989 ST, Mega ST, 

Stacy 

Bug Fixes, faster disk I/O 

1.60 Unknown STE Support for STE hardware 

1.62 1
st
 January 1990  STE Bug Fixes 

2.05 Unknown Mega STE Support for Mega STE hardware 

2.06 14
th
 November 1991 Mega STE Features added to GUI, support 

for all ST range  

Table 4 - Comparison of different TOS versions 

 

The Operating System on the Atari ST 

is stored in PROMs which are rather 

out dated these days and not ideal for 

early stages of design.  Non Volatile 

Flash memory is now the norm and is 

being used as a replacement to 

PROM, many of the FPGA 

development boards contain some 

Flash memory. 

 

 
Figure 11 – Flash memory organisation 



Reading from Flash is the same as a PROM, but writing to Flash takes a little more work.  

Before writing to Flash memory command sequences need to be issued.  Also the data in 

the flash is organised into Blocks as shown in figure x. 

 

From the Atmel data sheet for the AT49BV040A 4-megabit flash memory chip it’s also 

worth noting that it is not possible to write bits that are currently 0s back to 1s, only erase 

commands can do that.  Below is the list of commands that the Atmel Flash memory 

uses. 

 

� Read 

� Full Chip erase 

� Sector erase (block erase) 

� Byte program (Write byte) 

� Boot block lockout 

� Product ID entry  

� Product ID Exit 

 

3.9 

System memory 

There are many types of RAM available, but they can be split into two types depending 

on the technology used to store the data.  Dynamic RAM uses capacitance to store a 

charge representing a bit of data, therefore it needs to be refreshed periodically.  Static 

RAM uses flip flops, and thus need more logic per data bit of storage [20]. 

 

Fast Page Mode (FPM) DRAM is the type of memory fitted to the Atari ST.  A row 

address only needs to be sent once, for many accesses to adjacent memory locations.  

They are only commonly available in 5v and usually come in a package called a SIMM 

with either 30 or 72 pins providing 8 bits or 32 bits respectively. 

 



EDO DRAM is essentially the same as FPM, except that the timing has altered slightly 

for a small access time improvement.  They are available in 5v and 3.3v and usually 

come packaged in a 32 bit wide 72 pin SIMM.  

 

Synchronous Dynamic RAM (SDRAM) was the first type of synchronous ram, spawning 

many newer types like Double Data Rate (DDR) SDRAM.  Data transfers are 

synchronised to the system clock.  To access the SDRAM commands are issued to be 

executed.  Due to their command structure and high clock speed (66Mhz and above) they 

are inherently more difficult to interface to. They are available in 5v and more commonly 

3.3v and usually come packaged in a 64 bit wide 168 pin DIMM. 

 

Static RAM (SRAM) is quite different from dynamic memory.  Rather than using 

capacitors to hold a charge to represent a state of a bit it uses flip flops.  This also means 

that it does not need the usual periodic refresh that dynamic RAM needs.  It is also 

addressed by its full address width in one transaction, the column and row decoding is 

done internally.  The disadvantage of static RAM is the cost.  It is generally faster than 

dynamic RAM and so is often used for cache memory. 

 

3.10 

Serial Port 

An RS232 serial port can have many uses from debugging, transferring data from a host 

computer and communications.  In the Atari ST it was primarily used for 

communications with Modem’s.  Interfacing a serial port to an FPGA is quite simple, the 

voltage levels of RS232 swing from -12 to +12v so a voltage level translator is needed 

like a Maxim MAX232.  The software overheads are very small which is why serial is 

still favoured over USB and other communication buses.  Serial Ports can be 

implemented by only three wires, ground, transmit and receive. 

 

 

 

 



3.11 

Video Output 

Conversions for video from digital to analogue are usually done by one of two methods, a 

specialist Video DAC or an inexpensive resistor ladder.  An example of the resistor 

ladder was found in the schematics of the Xilinx Spartan 3A start kit. 

 

 

The resistor ladder is easy to implement and is inexpensive but suffers from bad picture 

quality especially when used at higher resolutions, requiring higher video bandwidth.  

The resistors used in the schematic above are non standard values that appear in the E48 

and onwards range of resistor values.  They need to be of good quality and high degree of 

tolerance, but are still susceptible to drifting in value with temperature.  The video 

intensity will also change depending on the load that the resistor ladders are driving into.  

 

An example of a Video DAC was found in the schematics of the Xilinx Spartan-3 PCI 

Express Starter Kit.  It uses a Philips TDA8777 Video DAC and although requires little 

external circuitry, it does cost more than the resistor ladder.  It has a maximum 

conversion frequency of 330 MHz.  It also helps to protect the FPGA from possible 

electrical damage, as it is bad practice to use non buffered FPGA signals onto external 

ports or connectors. 

Figure 12 – Digital to Analogue using resistor ladders 



 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 13 – Digital to Analogue using specialised DAC 



Chapter 4 

Design 

4.1 

Components 

This section describes the components chosen and how they will interconnect with each 

other.  The components chosen have been based on the previous research and on 

availability. 

 

4.1.1 

Base Hardware 

It has been decided to use the Enterpoint RaggedStone development board.  Their 

reduced student price, large FPGA, and plentiful I/O including optional 5v I/O header 

will be ideal.  The RaggedStone was also designed to accept plug in daughterboard 

modules, one on each end of the board. 

 

 

 

 

 

 

Figure 14 – Enterpoint RaggedStone FPGA development board 



The board has the following features: 

 

� 4 Digit 7 Segment Display 

� 4Mbit Flash memory (524288 x 8) Atmel AT49BV040A 

� 16k Serial EEPROM 

� Temperature Sensor 

� Oscillator Socket 

� 4 LED’s and 2 momentary push switches 

� Voltage selectors for modules and associated FPGA bank (3.3v and 2.5v) 

� Self resetting Poly fuses 

 

4.1.2 

Processor  

The CPU chosen is the MC68SEC000, purely because it is the only version that is 3.3v.  

It is object-code compatible with the MC68000 but not entirely hardware compatible. 

 

Bus Arbitration (a method for allowing other devices on the system bus to take control) is 

handled with a 2 wire protocol, instead of the original overly complex 3 wire protocol.  

The differences are covered in depth in the MC68000 datasheet. 

 

The MODE pin selects 8 or 16 bit data bus operation, and is sampled at reset. 

 

Support for legacy MC6800 synchronous peripherals has been completely removed.  The 

missing signals are the E Clock, VPA  (Valid Peripheral Address) and VMA  (Valid 

Memory Address).  A VHDL component will replicate these signals, creating a 

synchronous bus from the more commonly used asynchronous MC68000 bus [21]. 

 

The processor will fit onto a daughterboard installed on the RHS (Right Hand Side) I/O 

pins. One of the momentary push switches will act as the system reset. 

 



4.1.3 

System memory 

The memory chosen is SRAM (Static RAM), because it simplifies a design and is 

available in a variety of voltages.  The ability to use it without refreshing means it is great 

for prototypes or in debugging situations, as the whole design can be halted without 

loosing the contents of the memory. 

 

The memory will fit onto a daughterboard installed on the LHS (Left Hand Side) I/O 

pins. 

 

Using SRAM for the memory will be transparent to the user and all software, and will not 

create any problems. 

 

4.1.4 

Debugging 

The following features will aid in debugging the system 

 

A 7 segment display will show the current status of the CPU data and address bus.  As 

the display can only show a maximum of 4 hexadecimal characters, the display will 

scroll. 

 

One of the onboard switches will be used to step through the operating system.  This will 

be achieved by intercepting DTACK  and BERR  bus cycle termination signals. This is 

an interpretation of the design from Microprocessor Systems Design  by Alan Clements. 

 

The four onboard LED’s will be used to show the status of the CPU or other parts of the 

design.  One useful signal is HALT   which the CPU drives when it has encountered a 

situation from which it can’t recover.  In this state it drives all its pins to high impedance. 

 



A set of 5 header pins will be dedicated as points to connect a dual channel oscilloscope.  

This will assist in finding timings errors, phase and cycle time of clock signals and 

general verification. 

 

4.1.5 

Operating System Versions and storage 

TOS 1.00 has been chosen as the initial Operating System to use.  Although is suffers 

from many bugs, the BIOS has been listed and fully commented in the book “Atari ST 

Internals” by Data Becker.  Combined with the ability to single step through each 

instruction will undoubtedly help finding any problems in the design. 

 

The operating system will be stored in the Flash memory that is part of the RaggedStone 

development board.  The Flash memory data bus is only 8 bits wide, therefore it will be 

necessary to design a VHDL component to wrap around the Flash memory and resize the 

data bus to 16 bit that the Atari ST uses. 

 

There also needs to be a way to load the Operating System into the Flash memory.  As 

the Flash memory is non-volatile once this has been programmed, the contents remain 

even after power is removed.  Xilinx have created for their own Spartan development 

board an FPGA design that uses the RS232 serial port to receive data from a host 

computer and load into the Flash memory.  Their design is based around the PicoBlaze 

system on chip and using the ST Microelectronics M29DW323DT Flash memory chip 

[22]. 

 

 

 

 

 

 

 

 



4.1.6 

5v PCI I/O 

The 5v tolerant I/O will be attached to a custom PCB at the rear of the enclosure for the 

following use: 

 

� VGA interface port 

� Floppy Disk Drive port 

� RS232 Serial port 

� Keyboard/Mouse interface 

 

4.1.7 

VGA 

VGA is a mix of analogue and digital.  The colour intensity is carried over three analogue 

signals for Red Green and Blue.  The horizontal and vertical synchronisation signals are 

digital 5v.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15 – VGA video timing 



The Atari ST can display colours from a palette of 4096 different colours.  Therefore 

each colour component can have 2^4 levels of intensity.  To convert from the digital 

output from an FPGA to the analogue input of a VGA monitor, a DAC (Digital to 

Analogue) converter will be used.  

 

4.1.8 

Floppy Disk Drive 

The floppy drive requires a minimum of 11 signals to function.  In the Atari ST these 

were the following, with reference to the pin number on the 34 pin 0.1” pitch IDC header 

[23]. 

 

To Floppy Drive 

• 10: Drive Select  

• 16: Motor On  

• 18: Step Direction When you step the head, this line must tell the drive whether to 

step in or out.  

• 20: Step. This line is briefly signaled to step the drive one track in the direction 

step direction specifies (in or out).  

• 22: Write Data. This is a bit stream data for the disk track at around 100,000 baud.  

• 24: Read/Write. When +5, the drive is reading. When +0, the drive is writing.  

• 32: Side Select. Pull to +0 volts to write to back side of diskette.  

 

From Floppy Drive 

• 8: Index Pulse. Goes to ground briefly each rotation, five times per second (300 

RPM). Otherwise +5.  

• 26: Track 0. +5 unless drive is at track 0, when this pin goes to +0 volts. This is 

how the drive tells the FDC to stop stepping it towards track 0.  

• 28: Write Protect. +0 volts if the write protect tab is set on the diskette; +5 volts if 

it is okay to write to the diskette.  



• 30: Read Data: This is the bit stream data from the track, at 100,000 baud, 

complete with wow and flutter. 

The floppy drive used in the Atari ST was in fact the same as used in many IBM Clone 

PCs.  The Atari ST from TOS v1.02 onwards even uses the FAT12 filing system, 

compatible with a PC formatted disk. 

 

 

 

4.1.9 

RS232 Serial 

The RS232 will serve two purposes.  Firstly it is used as 

an interface to a host computer to transfer the operating 

system into the Flash Memory.  Secondly, it will be used 

for the Atari ST serial port.  The more common 9 pin 

female D-Type connector will be used, instead of the 

Atari ST 25pin D-Type connector.  Flow control and 

specialist MODEM only signals will be omitted to reduce 

the number of FPGA I/Os needed from 9 down to only 2. 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 16 – RS232 to TTL level translator 

Table 5 – Serial port pin 

description 



4.1.10 

Keyboard and Mouse 

 

The Atari ST communicates to the keyboard via a simple serial interface.  The original 

keyboard contains a small Hitachi microcontroller that scans the keyboard matrix and the 

status of the mouse and joysticks.  It then creates packets of data to be sent over the serial 

connection to the MC6850 UART on the Atari ST motherboard.  The Atari keyboard and 

mouse contain mechanical components, and are one of the first parts to break or become 

faulty.  For this reason it has been decided to implement a conversion from PC PS2 

keyboard and mouse protocol.  A project called ‘Eiffel’ by Laurent Favard, and later 

Didier Méquignon does just that, using an inexpensive PIC Microcontroller [24].  

 

4.2 

Other differences between the original Atari ST and the design 

The Atari ST as mentioned previously has 3 different resolutions.  The monochrome high 

resolution has vertical and horizontal timings that are close to the VGA specification.  

The Low and Medium colour resolutions, which were designed to be displayed on a 

television, do not meet the VGA timing specification.  The problem arises from the slow 

pixel clock, resulting in a horizontal synchronisation frequency of 15 KHz, which is half 

of VGA timing.  To use the Atari ST in all three resolutions it meant you either need to 

have both a television and high resolution monitor, or a very expensive ‘Multisync’ 

monitor.  To overcome this, a device known as a ‘scan doubler’ will be designed to buffer 

the RGB data and resynchronise it to a higher pixel clock. 

 

The Atari ST didn’t have the facility for an internal hard drive, to keep the costs low.  

However, a DMA port was available for connecting to external hard drives.  The Atari 

ST was designed just before the SCSI (Small Computer System Interface) command 

protocol was finalised, and thus Atari used the ACSI (Atari Computer System Interface) 

command protocol. 

 



As the IDE (Integrated Disk Electronics) hard drives became popular on IBM PC Clones, 

their price dropped compared to the SCSI equivalent.  Atari realized that and on their last 

home computers, the Falcon and Stacy, they added IDE support.  

 

The design will use a simple IDE interface, to use a Compact Flash card in IDE mode as 

they are 3.3v tolerant which enables direct linking to the Xilinx FPGA.  As an IDE 

interface is to be designed, the original ACSI port will be left out of the design [25].    

 

The Atari ST featured a port for a cartridge, sometimes known as the ROM port.  As the 

name suggests this is a read only direct connection to the CPU data and address bus.  The 

design will not include this, as although easy to implement in logic, the required 2mm 

pitch edge connector is not available.  It is also not needed for the Atari ST to function, it 

rarely used for software protection dongles and most recently Ethernet and USB 

interfaces. 

 

The MIDI ports are only use by music sequencing software and are not an essential part 

of the Atari ST design.  They are based around the same UART that the keyboard uses.  

MIDI uses a current loop, where the current, not the voltage level defines the logic state.  

Therefore, MIDI ports require quite a bit of additional external circuitry. 

 

The external 2
nd
 floppy drive port will not be 

implemented as no software requires two 

drives.  The only case where one may be 

useful is duplicating floppy disks, but the 

majority of floppy disk copying software use 

the system RAM as temporary storage of 

files. 

 

The design will be built into a standard Micro 

ATX enclosure.  This will provide physical 

protection for the delicate electronics and Figure 17 – ATX pin description 



allow use of an ATX power supply.  The ATX power supply provides a wide range of 

voltages.  One in particular, the +5v Standby can be used to provide power to additional 

circuitry on a motherboard. This is used to support soft-off or standby and can be used for 

remote wake up through Wake-on-Ring or Wake-on-LAN.  It has been chosen that the 

‘Eiffel’ Keyboard and Mouse microcontroller will be powered from this +5v standby 

voltage and use modified firmware to control the ATX power supply.  This allows the 

Power On key on many extended PS2 keyboards to turn on the computer.            

 

 

To summarise, the design will follow the original Atari ST, but make use of more 

common and readily available components from IBM PC Clones.   

Figure 18 – Design Block diagram 



4.3 

Process of Implementation 

 

The implementation will be created in stages, logically from a small system with minimal 

IP Cores to the final version.  Below is a brief proposal of stages involved.  The order 

may change during implementation due to certain stages requiring later parts of the 

design. 

 

� A simple LED Flash 

� Verify Video Digital to Analogue works 

� A project to transfer Operating System into Flash memory 

� Test reading from Flash memory 

� A new project with support logic, reset and clock generation 

� A debug control and display 

� Add Glue IP Core and verify 

� Add MMU IP Core, SRAM memory and verify 

� Add Shifter IP Core and verify 

� Add MFP IP Core and verify 

� Add Yamaha IP Core and verify 

� Add Keyboard/Mouse ACIA IP Core  

� Add Eiffel interface and verify 

� Add DMA IP Core and verify 

� Add FDC IP Core and verify 

 

 

 

 

 

 

 

 



architecture Behavioral of main was 

signal counter : std_logic_vector(24 downto 0); 

begin 
  
 process(clock) was 
  begin 
  if rising_edge(clock) then 
   counter <= counter + '1'; 
  end if; 
 end process; 
 
LED2 <= counter(24); 
 
end Behavioral; 

Chapter 5 

Implementation 

5.1 

Flashing LED 

The first task was to make sure that the oscillator clock works and that the JTAG 

programming works.  To do this a simple LED flash routine was written.  However, 

before this was done, constraints for the I/O pin mapping and a top level component 

needed to be written.  This was done by looking at the schematics of the RaggedStone 

development board and laboriously assigning names for each I/O pin.  Appendix A lists 

the constraints file and component file. 

 

Shown right was the VHDL 

architecture for flashing an 

LED at approximately 1Hz 

using a 32MHz oscillator 

clock. 

 

 

 

 

5.2 

VGA Colour pattern 

The next step was to implement a Digital to Analogue Converter (DAC) for the Red, 

Green and Blue signals to drive the VGA port.  The converter being used was an ST 

Microelectronics STV8438, which is capable of 3 x 8bit colour.  As the Atari ST can only 

produce 3 x 4bit colour, the MSB (Most Significant Bits) are used and the rest are tied 

low.  Appendix B shows the schematic. 

 

To drive the VGA monitor a colour pattern generator was discovered written by MikeJ 

[26].  The colour pattern generator was designed for the Xilinx Spartan-3E Starter Kit 

Figure 19 – Architecture for LED Flash 



development board, so using the project on the Raggedstone will not work as the pin 

constraints are wrong.  To rectify this, the top level of the project was instantiated as a 

component using the same constraints from the previous LED Flasher stage.   

 

Another change that needed to be made 

was to exchange the 32 MHz oscillator 

for a 50 MHz oscillator as mentioned in 

the comments in the colour pattern 

generator project.  If this isn’t changed the 

signals will not adhere to the VGA 

specification and a monitor will unlikely 

be able to ‘sync’ to the reduced 

frequencies. 

 

 

Once the project was built a colourful test pattern was displayed on an attached VGA 

monitor.  This verifies that the video DAC was functioning correctly and the conversion 

from 3.3v to 5v works well, even for high speed digital signals.  

 

5.3 

Writing bytes to Flash Memory 

Next on the list was to load data into the 

RaggedStone onboard Flash memory.  

A design was found on the Xilinx 

website for the Spartan-3A/3AN 

Development Starter Kit.  This design 

was intended to be used with the ST 

Microelectronics M29DW323DT Flash 

memory that was featured on the Xilinx 

Spartan-3A/3AN development board.  It uses 

the Xilinx Picoblaze embedded 

Figure 20 – Colour test display 

Figure 20 –Flash Programmer menu 



microcontroller, and by using a simple terminal program over an RS232 serial connection 

you can manually program individual bytes, download complete files, erase the flash, 

read the memory to verify contents, and display the Flash memory device identifier and 

64-bit unique device numbers. 

 

An RS232 serial port was added as mentioned in the Design. (Paragraph 4.1.9) 

 

After building the project for the RaggedStone board, it became apparent that it didn’t 

work.  The menu choices were available proving the serial connection worked fine but 

programming a single byte didn’t work, let alone the entire Flash memory space.  The 

only real difference between the Xilinx Spartan-3A/3AN development board and the 

RaggedStone was the type of Flash memory device. The RaggedStone uses an Atmel 

AT49BV040A and the Xilinx board uses an ST Microelectronics M29DW323DT, both 

configured as 8 bit wide data bus.  The difference becomes quite clear when reading the 

data sheets provided by the manufacturers. 

 

 

 

 



Table 6 – Comparison of different Flash memory commands 

 

Flash Memory works with commands that are passed on the address bus, and it can be 

seen that the commands vary from different manufacturers.  However, as the project uses 

a PicoBlaze microcontroller it was quite easy to change the software that it runs to use 

different commands.  Luckily, the assembler source code for the PicoBlaze was provided 

and was commented and structured cleanly.  The commands with ‘AAA’ are changed to 

‘555’ and the commands with ‘555’ are changed to ‘AAA’.  The assembler source was 

then assembled with the PicoBlaze assembler which generates a VHDL ROM file. 



: [ Address ] [ Data ] [ CR ] [ LF ] 

 

After these changes were made the individual bytes of the Flash memory could be 

programmed and read back.  However, the Atari ST operating system was 192K bytes, so 

there needs to be a method of programming an entire file to the Flash memory. 

 

5.4 

Writing file to Flash Memory 

The programmer menu does accept entire files, but of the MCS type.  MCS was a file 

format by Xilinx for storing the FPGA configuration inside a PROM.  It’s formatted as an 

ASCII file with each line following the format below. 

 

 

 

The PicoBlaze project expects this file format, so the project was changed with a new 

choice in the menu to read raw bytes from the serial port and program the Flash memory, 

incrementing the address on each byte.  A test was then done after each byte programmed 

to see if the address had reached 196608.  This way a raw binary file can be transferred 

and programmed. Appendix C shows the assembler source code for this part of the 

program.   

 

It’s important to use a terminal program that is capable of sending raw binary data.  It 

was found Microsoft’s HyperTerminal interprets some of the raw data as terminal control 

codes and these won’t get sent out over the serial port.  A rather good freeware program 

called Realterm which has a vast array of options was used instead of HyperTerminal. 

 

After these changes were made the Flash memory was successfully programmed with the 

Atari ST operating system, version 1.00. 

  

 

 

Figure 22 – MCS file format  



5.5 

CPU 

Now it was time for the CPU to be connected to the FPGA.  A daughter board was 

created to be used on the RaggedStones right hand I/O bank.  The MC68EC000 and 

MC68SEC000 feature a MODE pin which selects the data bus, and as the Atari ST uses 

a 16 bit data bus this was tied to VCC.  Any bidirectional signals, like the CPU data bus 

are terminated with Xilinx internal pull-ups that were added as constraints into the 

design. 

 

5.6 

Reset 

Next was to provide the new CPU with a clock and reset.  The Atari ST uses an NE555 

timer chip to produce the reset signal.  This is activated on power up and whenever the 

reset button is pressed.  A VHDL component was created with a couple of counters, one 

for a power up reset signal and the other to produce a reset signal when the reset button is 

pressed. 

 

It is important to have these two different reset signals, as some parts of the design only 

need to be reset on power up to known states.  One of these components was the clock 

signal component.  It was important for the CPU that the clock was running while a reset 

is issued, and that the reset was active for at least 132 clock cycles [27]. 

Appendix D lists the VHDL reset component with the RaggedStone switch S1 used as the 

reset button. 

 

5.7 

Clock  

The clock component was necessary for generation of clock signals from the master 

clock, which in the Atari ST was 32 MHz. Below, was the clock frequencies that each 

component of the Atari ST needs. 

• CPU – 8 MHz 

• GLUE – 8 MHz 



• MMU – 16 MHz 

• SHIFTER – 32MHz 

• MFP – 4 MHz and 2.4576 MHz  

• YM2149 – 2 MHz 

• ACIA – E Clock and 0.5 MHz 

• FDC – 8 MHz 

• DMA – 8 MHz 

 

It was found that it’s very important to use the dedicated DCM (Digital Clock 

Management) PLLs (Phase Locked Loops) that are provided inside the Xilinx Spartan.  

Using these reduces clock skew and jitter, and also use dedicated global clock routes 

inside the FPGA.  This was to help prevent the clock edges arriving at different times to 

various components in the FPGA.  The DCM can divide a clock from the master 

frequency and/or multiply it.  Without using DCMs the Xilinx ISE software was 

producing warnings about non dedicated clock routing, and building the project with only 

small changes was resulting in very significant changes in system stability.  As a result of 

using DCM and dedicated clock routing there was a twofold increase in maximum clock 

frequency [28], [29], [30]. 

 

The MFP in the Atari ST used a dedicated crystal to achieve the 2.4576 MHz frequency.  

This was used by the MFP for the serial port baud rate.  In the FPGA it was possible to 

use a DCM to create this frequency.  The most accurate was to synthesize a 27 MHz 

clock from the 32 MHz master clock and then divide by 11 to get 2.4545 MHz. 

 

5.8 

Synchronous Bus interface 

The ACIA uses the E Clock, which unfortunately the MC68SEC000 CPU doesn’t 

provide.  The E Clock was at one tenth of the CPU frequency with a 60/40 duty cycle. 

The 68SEC000 also doesn’t have connections for the VPA  or VMA  signals. 

 



The E Clock was created by 

a counter that counts from 0 

to 9 and then rolls over.  If 

the value of the counter was 

0 to 5 then the E clock was 

0, otherwise it will be 1.  The 

Glue component of the Atari 

ST then asserts the VPA  

signal to tell the CPU an 

access to a 6800 synchronous 

device has been made, which 

in the Atari ST was an access to the Keyboard or Midi ACIA MC6850.   The  VPA  

signal was checked when the E Clock counter was 2, and if it was active then VMA  was 

asserted.  DTACK  was then asserted later when the E Clock counter was 8 or 9 to end 

the bus cycle.  By asserting DTACK  late, the CPU automatically inserts wait states.  

Appendix E shows the Clock VHDL component. 

 

5.9 

Flash data bus resizing 

Now that the clock and reset was provided to the CPU, next was to make the connection 

between CPU and Flash memory 

where the operating system was 

located.  As previously 

mentioned, the Atari ST had 16 

bit wide ROM, but the 

Raggedstone Flash memory was 

only 8 bit wide. 

 

 

Figure 23 – Synchronous bus interface 

Figure 24 – Flash State machine  



As the MC68000 completes a bus cycle in 4 cycles (500ns at 8 MHz), and the Atmel 

AT49BV040A has an access time of 70ns it’s quite possible to fit two 8 bit accesses to 

the Flash to make it appear 16 bit wide to the CPU.  To achieve this, a wrapper VHDL 

component was created with a FSM (Finite State Machine) controlling latching of data 

and the LSB of the address.  Appendix F shows the VHDL component. 

 

5.10 

7 Segment Display 

As part of debugging, a VHDL component was created to use the RaggedStone onboard 

7 segment display.  The RaggedStone has four of these 7 segment displays, enabling 4 

hex characters (or 16 bits) to be displayed.  This was perfect for displaying the 16 bit data 

bus, but not the 24 bit address bus.  To overcome this limitation, the display will 

sequence through the upper portion of the address bus, then the lower portion of the 

address bus and lastly the data bus.   

 

The VHDL component will also be responsible 

for changing the 4 bit hex value into a value to 

drive the 7 segment display.  The 7 segment 

displays on the RaggedStone, are just a set of 

LEDs with no intelligence.  Another part it will 

cater for was scanning the digits of the 7 

segment display.  Only one digit can be displayed at one time, and thus it needs to scan 

through the digits quick enough for the human eye not to see any flicker.  Appendix G 

shows this VHDL component.  One problem encountered was that the mapping for the 

digits to FPGA pins listed in the RaggedStone user manual appears to be wrong.   The 

table below shows the correct pin mapping. 

 

Digit 1 Digit 2 Digit 3 Digit 5 

FPGA U14 FPGA AA17 FPGA U17  FPGA U16 

Table 7 – FPGA connections for 7 segment display 

 

Figure 25 – 7 segment display  



 

5.11 

Single Step 

Having the address and data bus displayed was only good if there was a way to slow the 

system down, or even single step through each instruction.  A solution was available, 

with the idea taken from ‘Microprocessors System Design’ by Alan Clements.  Alan 

Clements design was for a single board computer based on the MC68000, where one can 

pause the CPU and by pressing a push button, single step through instructions.  His 

design was based on four TTL logic flip flops. Appendix H shows the schematic design. 

 

Quite simply there was a switch to bypass and let the system run normally.  In single step 

mode the DTACK signal was intercepted.  When the MC68000 starts a bus cycle it will 

insert wait states until it receives the DTACK signal.  A momentary push switch 

controls the assertion of DTACK , with flip flops used to de-bounce the push button and 

insure only one bus cycle was executed no matter how long or short the button was held 

down for. 

 

The VHDL component in Appendix I for single step works on the same principles.  

However, the BERR signal was also intercepted as this signal was also used to terminate 

a bus cycle in the event of a bus cycle error, e.g. no device at address specified.  One of 

the RaggedStone buttons, S2 was used as the single step button.  The Run/Stop was 

implemented as a ‘jumper’ across two spare I/O pins on the RaggedStone. 

 

5.12 

Glue IP core 

Before trying the system the Glue VHDL IP Core had to be added.  It was at this point 

that I noticed the IP Cores at the top level used bit and bit_vector signal types and all the 

other components that I had written used std_logic and std_logic_vector.  It is possible to 

convert between the two types, but this can become untidy because it is no possible to do 

the conversion within the component port maps.  A decision was made to alter the 



ROM_2n <= '0' when ST_RD = '1' and ADR_HI >= x"FC" and ADR_HI < x"FD" else 
-- ST TOS ROM LOW. 

      '0' when READx = '1' and ADR_INT < x"000008" else '1';  
-- TOS mirroring. 

  
ROM_1n <= '0' when ST_RD = '1' and ADR_HI >= x"FD" and ADR_HI < x"FE" else
 -- ST TOS ROM MID. 
  
ROM_0n <= '0' when ST_RD = '1' and ADR_HI >= x"FE" and ADR_HI < x"FF" else                      
          '1';  -- ST TOS ROM HI. 

 

previous components to use bit and bit_vector which creates a cleaner implementation.  

The only parts to use std_logic and std_logic_vector are when the signals leave the FPGA 

and need to be bi-directional or tri-state. 

 

The Glue is needed for address decoding, and it is responsible for generating the chip 

select for the Atari ST ROM space.  An excerpt from the Glue component 

wf25915ip_adrdec.vhd is shown in figure 24. 

 

 

The Atari ST used 6 small 8 bit wide 32KB PROMs to make up the 192KB size of the 

operating system.  With the ROM being accessed as 16 bit, this requires the three chip 

select lines shown in the above VHDL code.  The ROM space was located from 

0xFC0000 to 0xFEFFFF.  A special mirror, or sometimes known as shadow was created 

for the first 8 bytes of the operating system, located at address 0x000000 to 0x000007.  

The purpose of this was explained in the 9
th
 Edition of the MC68000 User Manual 

 

 

 

Inspecting the start of the Operating System with a hexadecimal editor shows the values 

that get loaded into the SSP (Supervisor Stack Pointer) and PC (Program Counter).  After 

Figure 26 – Address decoding in Glue 

Figure 27 – MC68000 Start up sequence 



the CPU has fetched these two long words, it continues execution from the address in the 

PC.  The address was 0xFC0020 which was a jump into the ROM space.  It can be seen 

that absolute addresses are 32 bit, even though the external address bus was only 24 bit.    

 

The RaggedStone has four onboard LEDs.  These 

are assigned to the following signals, BERR , 

DTACK , RESET  and HALT .  The system 

was then powered up and the start up sequence of 

the RESET  and HALT remaining active for 1 second was observed.  The 7 segment 

display then shows the address as 0x000000 and data as 0x601E.  Pressing the single step 

button showed the address change to 0x000002 and the data as 0x0100.   

 

The components verified as working are the CPU, GLUE address decoding, 7 segment 

debug display, Flash memory and the single step component.  At this stage other sub 

components of the GLUE, like the interrupt controller and video timing generation are 

left unconnected, or in VHDL terms ‘open’ in the port map. 

 

When building the project with the Glue added to the project, the Xilinx ISE software 

would crash with an exception error and consequently exit.  After a lot of trial and error it 

was found that upgrading from Xilinx ISE v8.2 to Xilinx ISE v9.2 solved this problem!  

 

The system can now be stepped through, up until the address 0xFC05DA.  At this point a 

BERR  (bus error) is signalled for the bus cycle.  Looking through the commented 

assembler source code of the Operating System it can be seen that a read was attempted 

from RAM.  Without the MMU implemented to generate a DTACK  response, the 

GLUE time out counter issues a BERR  response. 

 

 

 

Table 8 – Start of Operating System 



M_ADR <=  ADR when MCU_PHASE = RAM and DMAn = '1' else 
  DMA_ADR when MCU_PHASE = RAM and DMAn = '0' else 
  VIDEO_ADR when MCU_PHASE = VIDEO else 
  SOUND_ADR when MCU_PHASE = SOUND else  
  -- Lyndon Amsdon Removed refresh 
  --"00000000000" & REF_ADR; -- Refresh cycles. 
  (others => '0'); 

5.13 

MMU IP core 

Next to implement was the MMU to 

enable the system to run further through 

the operating system.  The SRAM main 

memory chosen was the BS616LV8017 

512K by 16 bit SRAM used in 

conjunction with a Roth Elektronik 

TSOP to DIL adapter.  This was 

mounted onto the RaggedStones left 

hand I/O bank. 

 

One of the MMUs tasks was to keep the Atari ST DRAM memory refreshed.  As the 

design was using SRAM this refreshing must be disabled.  This also makes debugging far 

easier as the only accesses to RAM will be memory accesses, not refresh cycles as well.  

To remove the refreshing the refresh address counter was removed from the multiplexer 

in wf25912ip_ram_adrmux.vhd. 

 

 

 

 

 

 

 

Figure 28 – SRAM and adapter PCB 

Figure 29 – Removed refresh address generation 



--RAS0n <='0'when(RAS_Pn = '0' and RAS_Nn = '0' and BANK_SWITCH = BANK0)else 
--'0' when (MCU_PHASE_I = REFRESH and RAS_Pn = '0' and RAS_Nn = '0') else '1'; 
 
--RAS1n <='0'when(RAS_Pn = '0' and RAS_Nn = '0' and BANK_SWITCH = BANK1) else 
--'0' when (MCU_PHASE_I = REFRESH and RAS_Pn = '0' and RAS_Nn = '0') else '1'; 
 
RAS0n <= '0' when (RAS_Pn = '0' and RAS_Nn = '0' and BANK_SWITCH = BANK0) else 
         '1'; 
 
RAS1n <= '0' when (RAS_Pn = '0' and RAS_Nn = '0' and BANK_SWITCH = BANK1) else 
         '1'; 

--MMU section 
SRAM_OEn <= '0'; 
SRAM_CEn <= '0'; 
SRAM_UBn <= dram_cas0hn AND dram_cas1hn; 
SRAM_LBn <= dram_cas0ln AND dram_cas1ln; 
SRAM_ADDR <= bank_bit & dram_madh(8 downto 0) & dram_madl(8 downto 
0); 
SRAM_WEN <= dram_wen; 

Also, when in the MCU_PHASE = REFRESH state the assertion of RAS was removed in 

wf25912ip_ctrl.vhd. 

 

 

 

As the Atari ST used DRAM memory with multiplexed address into rows and columns it 

was necessary to take the address from the MMU prior to this multiplexing.   The CAS 

lines are now used as byte selection for the SRAM.  The WE (Write Enable) was used to 

control the SRAM Write Enable.  The address for the SRAM was constructed from the 

non multiplexed address and the top address bit was taken from the bank selection inside 

the MMU. 

 

 

 

Now the MMU and SRAM was implemented another run of the system was made.  This 

time when the MPU makes an access to the RAM, the MMU generates a DTACK  

response.  This allows the system to progress further into booting the Operating System, 

by doing an initial RAM test to figure out the size of RAM installed in each bank.  It 

achieves this by a loop of writing data to RAM and reading back the data from RAM 

with a comparison.  At the end of the test it programs the MMU with the RAM 

Figure 30 - Removed refresh RAS generation 

Figure 31 – 1MB SRAM signal creation 



configuration. It does this many times; therefore single stepping through this section 

would be laborious.   

 

A problem was found in the RAM test however which took a great deal of time to figure 

out. The CPU has its Stack Pointer loaded right at the start upon reset, and with TOS 1.00 

that is 0x601E0100 (paragraph 5.12).  In TOS 1.00 there is a complex RAM test that 

follows from 0xFC014A onwards.  It first modifies the bus error vector to point to a 

hander routine (0xFC0188). It starts at 128k and increments by 128k reading and writing 

checking if the RAM is there.  When it reaches 1MB or more it goes out of the RAM 

range and a BERR  is signalled to the CPU from the MMU. 

 

The CPU then goes to save the program counter and copy the status register onto the 

stack, before it fetches the vector address from address 0x000008.  The problem is that 

the stack pointer is still 0x601E0100 and that creates another bus error.  Two bus errors 

in close succession create what Motorola call a double bus fault happens, and the CPU 

signal it has halted [27]. 

  

To mitigate this issue the MMU was fixed to generate a DTACK for a small address 

region from 0x1E0100 to 0x1E00F0. 

 

At this stage it was also evident that the SRAM memory can hold its contents for a few 

seconds after power has been removed.  On the original Atari ST a ‘cold reset’ can be 

performed by powering on and off the power supply, and with the refreshing of the 

DRAM not being performed, the contents are lost.  With the SRAM memory and the fact 

that the design takes less power than the original Atari ST powering on and off the power 

supply may not be enough to force a cold reset.  

 

 

 

 

 



CPU_DTACK <=  
 '0' when system_dtackn = '0' and (CPU_ADDR & '0' < x"FC01AA" 

and CPU_ADDR & '0' >= x"FC0200") 
else 
'0' when ss_dtack = '0'  
else   

 '1'; 

  

5.14 

Hardware Breakpoint 

A change was made to the single step unit, adding in address ranges to qualify for the 

single step mode.  In other words, some portions of the Operating System can run at 

normal speed and when a certain address was encountered a break was made into Single 

Step mode.  To enable this, the following code was entered into the top level of the 

project.  

 

 

 

With this modification in place the system was once again tested.  After a brief flicker on 

the 7 segment display the breakpoint was hit at address 0xFC01AA after the memory test, 

but before the Operating System programs the MMU with the RAM configuration.  It’s 

now possible to single step and view the value written to the MMU register at address 

0xFF8001.  The value was 0x05 which according to the memory map from ‘ST Internals’ 

is a total of 1MB, arranged as two banks of 512KB.   

 

 

 

 

 

 

 

 

 

 

Figure 32 – Single Step DTACK generation 

Table 9 – Memory Configuration register 



Single stepping further through the Operating System shows the system variables 

MEMTOP and PHYSTOP being correctly set to 0x0F8000 and 0x100000 respectively.  

The 32KB gap between the top of available RAM and the physical top of RAM is due to 

reserved space for the graphics screen buffer.  

 

A bug was discovered in the 7 segment display at this point, where it doesn’t display the 

odd addresses.  This is because the MC68000 CPU doesn’t have A0, but instead two data 

strobes ( UDS  and LDS ).  The Upper Data Strobe ( UDS ) can be used to identify an 

odd address bus cycle.  

 

5.15 

Shifter IP Core 

Now the RAM test was passed it was time to implement the Shifter graphics chip.  The 

Shifter takes the data directly from RAM bypassing the data bridge transceiver.   It was 

important at this stage to recognise that the FPGA can not have internal tri state logic 

states.  All the data buses are driven by multiple internal components and external 

devices, and for this a large multiplexer was used.   Tri-state buffers are used when the 

data bus leaves the FPGA to become an external data bus for the CPU and SRAM. 

 

Testing the Shifter at this stage was not possible, as the Operating System sets up the 

screen late in the boot up sequence.  The next point where the Operating System fails was 

at address 0xFC21B4 where it attempts to initialise the currently unimplemented MFP. 

 

5.16 

MFP IP Core 

Implementing the MFP allowed the Operating System to boot further, but a continuous 

loop was occurring at address 0xFC0CE4 to 0xFC0D1E.  Inspecting the commented 

source code shows the MFP internal Timer B was loaded with the value of 240 and is 

polled to ensure the value has changed.  The Timer was not running due to an error in the 

IP Core.  It was found the strobe signal that was responsible for decrementing the timer 

was not running.  This was verified by taking the strobe signal out to an external FPGA 



I/O pin and using an oscilloscope to view the signal, which clearly identifies the signal 

was always at logic level ‘0’. 

 

The strobe goes to ‘1’ when the counter value was “00”.  However, at the point of being 

less than “01”, it was immediately loaded with the prescale value.  Therefore the MFP 

implementation requires a small change to the IP Core as listed in Appendix J.  The same 

change was made to all four instances of the Timer strobe signal generation.  The result 

was verified with an oscilloscope in relation to the master clock. 

 

Now the system was restarted and the MFP test passes fine.  Removing the breakpoint for 

debugging the MFP allows the Operating System to start and load the AES (Application 

Environment System).  The AES was the graphical environment that the Atari ST uses.   

At this point it was worth noting that the design has managed to boot up to a desktop 

environment without the following components. 

 

• Keyboard/Mouse ACIA 

• Yamaha YM2149 sound chip 

• Midi ACIA 

• DMA  

• WD1772 floppy controller 

• Interrupts still disabled 

 

 

In the middle of implementing the MFP, the Xilinx ISE software began to report an error. 

 

  

 

Figure 33 – Photo of Desktop 

Figure 34 – Xilinx ISE DLL error 

FATAL_ERROR:Portability:PortDynamicLib.c:358:1.27 - dll open of library 
   <C:/Xilinx92i\bin\nt\libGenParTask.dll> failed due to an unknown 
reason.   
   Process will terminate. For more information on this error, please 
consult 
   the Answers Database or open a WebCase with this project attached at 
   http://www.xilinx.com/support. 



Even reverting back to a previous build version this error kept on appearing when trying 

to build the project.  The Xilinx ISE software was reinstalled, but this didn’t fix the 

problem.  It was found that the AVG antivirus software had miss detected one of the 

Xilinx DLLs as a Trojan horse virus and stored it in the AVG virus vault.  Marking the 

DLL as safe and restoring it to its previous location prevented the error.   

  

5.17 

ACIA IP Core 

At this stage the keyboard ACIA was added to the project.  Interrupts are required for this 

component to work, so the relevant connections between the Glue (which contains a 

simple interrupt priority encoder) and the CPU IPL(2..0) signals are made.  Only three of 

the CPU interrupt levels are used in the Atari ST as shown in the table below.  The MFP 

acts as an additional cascaded interrupt controller. 

 

Level Source CPU IPL(2..0) 

2 Horizontal Blank 101 

4 Vertical Blank 011 

6 MFP 001 

  

 

Now the ACIA was built into the project and an original Atari ST keyboard was 

connected, the keyboard and mouse worked but screen redraws were not occurring 

properly.  Screen redraws are part of the VBL ISR (Interrupt Service Routine) and an 

error was found in the Glue component wf25915ip_interrupts.vhd.  The error was that the 

HBL and VBL encoding was the wrong way around.  Appendix K shows the fix for the 

Glue subcomponent. 

 

 

 

 

 

Table 10 – IPL encoding 



5.18 

YM2149 IP Core 

Next to implement was the Yamaha YM2149 sound 

generator.  This IP core differs in the fact that the 

original semiconductor has an analogue output stage, 

but in a Xilinx Spartan FPGA (and the vast majority of 

other FPGAs) are not mixed signal.  Instead the IP core 

uses a fast PWM (Pulse Width Modulation) and an 

external low pass discrete filter to create the ‘shape’.  

In the implementation the 3 channels of sound are 

externally mixed with resistors and then into a simple 

RC low pass filter.  

 

The first test of the sound chip didn’t work very well with a lot of background noise.  It 

later turned out that the Glue address decoded chip select had not been connected to the 

YM2149 chip select, so the YM2149 was enabled all the time and acting on all the 

random data bus signals.  

 

After fixing the previous issue, and powering up the system, each time a key was pressed 

a ‘bell’ sound was clearly heard as per the original Atari ST but this wasn’t testing all the 

different envelope shapes.  Further testing can only be achieved by using a program, and 

without a floppy drive implemented to load a program in, further testing had to wait. 

 

While adding the YM2149 IP Core more problems crept up with the internal FPGA clock 

routing.  Small insignificant changes were making the system refuse to boot up.  While 

looking at differences in a previous working version, and a non working new version it 

became apparent that the placement tool was moving a lot of the global clock routes and 

DCM usage around the FPGA.  A test was made by reverting back to a previous version 

and locking the usage of DCMs and global clock routes as a constraint to the project.  

This fixed the issues, but only warns of the importance of fixed and dedicated clock 

Figure 35 – PWM sound 



signals within the FPGA and how difficult it could be in very high speed FPGA designs 

[31]. 

 

5.19 

DMA IP Core 

At this point the DMA IP Core was added.  The requirement for the DMA to take over 

and master the system bus required quite a large change to the way the components were 

connected together at the top level.  Instead of just the CPU driving the control signals for 

bus cycles ( AS , R/ W , UDS  and LDS ) the Glue also needs to be able to drive these 

signals.  Even on a DMA bus cycle, it is the Glue that drives the control signals and does 

the bus arbitration with the CPU.  The MMU also helps out by providing the address and 

DMA counter.  It’s at this point that you realise how closely linked all the custom 

semiconductors in the Atari ST are.  The control signals from the CPU and Glue are now 

fed through a multiplexer. 

 

The DMA IP core is implemented and the signals for bus arbitration between the CPU 

and Glue are joined, with a test made to make sure the system still functions as it did 

before.   Without anything currently connected to the ACSI DMA bus, no further tests 

can be done. 

 

Just after adding this component IP core the RaggedStone board developed a fault.  

While trying to identify devices on the JTAG boundary scan, the RaggedStone kept on 

reporting an infinite number of ‘unknown devices’.  The three devices in the chain 

(Xilinx Spartan, XCF02 configuration PROM and XCF04 configuration PROM) were 

separated and scanned individually. The fault was identified as the XCF02 configuration 

PROM and luckily it was not the FPGA. The faulty XCF02 was simply removed and a 

new one soldered in place. 

 

 

 

 



5.20 

FDC IP Core 

The Floppy Drive Controller (FDC) IP Core was added to the project, along with the 

physical port for the floppy disk drive to attach to.  In the project the FDC connects 

directly to the ACSI DMA bus as in the design there is no external ACSI bus, unlike the 

original Atari ST. 

 

After adding the FDC IP Core to the project the system now failed to boot to a desktop 

environment.  The interrupts to the CPU had to be disabled, and breakpoints set up in 

hardware to start debugging the operating system at the point it initialises the floppy disk 

drive controller.  After a lot of time tracing through pages of the operating system 

assembly code it appeared the CPU could not read from the FDC status register.  The 

read is attempted at address 0xFC1CA6 as shown in figure 36. 

 

 

With the help of an attached oscilloscope it was found the timing of the chip select 

(FDCSn) in relation to the window of valid data was wrong and this was changed as 

shown below.  The CTRL_MASK signal is essentially a counter to synthesise signal 

timings for the DMA ACSI bus.  The alteration makes the FDCSn signal active for 

longer. 

 

 

Figure 36 – Excerpt from OS 

-- with CTRL_MASK select  FDCSn <= FDCSn_I when "110" | "101",  
-- Phases 6, 5. 
-- '1' when others; 
 
with CTRL_MASK select  FDCSn <= FDCSn_I when "111" | "110" | "101" | "100", 
-- Phases 7,6,5,4.         
     '1' when others; 

Figure 37 – FDCSn from wf25913ip_ctrl.vhd  



Upon powering up the system the floppy drive was detected and the desktop appeared 

with the floppy drive icons.  Trying to read a floppy disk still failed however, with the 

floppy drive light remaining on and the system locking up by not responding to mouse of 

keyboard actions. 

 

The FDC IP Core was examined and the main control is implemented as a very large 

state machine with 73 possible states in a file called wf1772ip_control.vhd.  A decision 

was made to see if it was this state machine that was locking up.  The four LEDs on the 

RaggedStone were used to show the current state of the state machine, but that only 

provide a maximum of 16 different states.  The 73 states were split into groups of 16 

states and the project re-built each time to test the next group.  The offending state was 

T1_VERIFY_CRC and the only action that controls the exit from this state are DELAY = 

True as shown in figure 38. 

 

 

 

 

To rectify this, in the section for generation of the delay signal (line 747 to 860) the 

T1_VERIFY_CRC state was added. 

 

After this the floppy drive works for small files at the start of the disk, nearest track 00.  

Anything larger and it reports the disk as unreadable.  Two fixes were found that 

appeared to help.  The operating system in the Flash memory was upgraded to TOS v1.04 

that has some important fixes to hard drive and floppy disk drive handling.  The other 

change made was in the FDC IP Core.  In the IP Core there is a settling delay after each 

disk drive head step command of 30ms to allow the physical mechanism to move and 

Figure 38 – T1_VERIFY_CRC state 

when T1_VERIFY_CRC => 
-- The CRC logic starts during T1_SPINDOWN (missing clock transitions). 

if DELAY = true then 
  if CRC_ERR = '1' then 
   NEXT_CMD_STATE <= T1_SPINDOWN; -- CRC error. 
  else 
   NEXT_CMD_STATE <= IDLE; -- Operation finished. 
  end if;   
 else 
 -- Wait until CRC logic is ready. 
  NEXT_CMD_STATE <= T1_VERIFY_CRC;  
 end if; 



settle in the correct place.  After reading the WD1772 data sheet it became clear the 30ms 

settling delay is only true for the WD1770 device, for the WD1772 it is 15ms 

[23],[32],[33],[34].   

 

 

 

 

Both these fixes made the floppy drive much better in operation and now programs can 

be loaded to further the testing of the system. 

 

5.21 

Eiffel PS/2 conversion 

A Microchip PIC Microcontroller was finally added to provide an interface for a PS/2 

Keyboard and Mouse.  The firmware for the PIC, called ‘Eiffel’ which is a GPL project 

was also modified to control the ATX power supply.  The original project supports a 

temperature sensor and control of a CPU Fan, but this was removed to create some spare 

I/O pins [24].   Bit 0 of Port A was used for the power switch, and Bit 5 of Port C was 

used to drive the ATX power supply on signal.   See appendix L for the modified 

schematic. 

 

The PIC firmware was altered so that either a transition on the power switch or the 

keyboard scan code for the Enter key (0x73) will enable the power supply [35].  Another 

change was made to the firmware, which deviates from the originally planned Design.  It 

was decided that using Sony Playstation controllers would be better than the original 

Atari style joysticks.  The reasoning behind this is that the original Atari style joysticks 

are getting increasingly harder to find, and you certainly can’t buy new ones.  The Atari 

joysticks are simply a set of five push switches, one for fire and the other four for 

direction.  The Sony Playstation controllers use a five wire serial communication bus to 

when DELAY_30ms | T1_VERIFY_DELAY => 
case DELCNT is 

  -- when x"75300" => DELAY <= true; -- 30ms 
  when x"3a980" => DELAY <= true; -- 15ms 
  -- when x"1d4c0" => DELAY <= true; -- 7.5ms 
  when others => DELAY <= false; 
 end case; 

Figure 39 – WD1772 delay state 



send commands to the Playstation controller and receive status data of the controller.  

The ATT stands for attention, and this is a signal to define the start of the sequence.  The 

ACK stands for Acknowledge, and is a confirmation that the controller received the 

command byte.  The data and commands are sent LSB (Least Significant Bit) first.  

 

 

 

The first three bytes of the transmission are used for a handshake protocol.  The next two 

bytes of the transmission are used to transmit the data representing the button presses.  

An extension was made to the protocol when Sony released the dual analogue version of 

their controller, and this uses the last four bytes with each byte representing the position 

[36]. 

 

 

 

  

 

 

 

 

 

The digital directional pad was used to emulate the original Atari joystick direction, and 

the X button for the original Atari fire button. 

 

 

Figure 40 – Playstaion controller protocol 

Table 11 – Playstation controller packet  



5.22 

IDE Compact Flash 

 

This was not implemented as there was not an easy way to implement the 40 way header 

anywhere on the RaggedStone board.  There are just enough I/O pins, but these are 

separated across the board and would require a lot of trailing wires running to these 

various points.   The IDE bus is simply memory mapped into the address space from 

0xF00000 to 0xF00039 and used in PIO (Programmed Input Output) Mode [37],[38].  

The interrupt request from IDE is made with a logical OR with the original Atari ACSI 

hard disk interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 

Verification and Testing 

6.1 

Benchmarking 

Benchmarking software are useful tools to identify the performance of a computer.  By 

running benchmark software on the system, it should be possible to identify any errors 

either in performance or functionality.   The program used is called Gembench written by 

Ofir Gal in 1995, along with another program called SysInfo by Thorsten Bergner in 

1997.  Gembench benchmarks the AES (opening dialog boxes, scrolling text etc), CPU 

speed (maths routines) and memory bandwidth.  SysInfo reports information on system 

variables, memory configuration and size.  Appendix M shows the results of these two 

tests.  The Gembench scored 99% of a real Atari ST, probably due to the real PAL Atari 

ST having a 32.08 MHz master clock.  The 102% score for VDI Scroll is probably due to 

using TOS v1.04 where certain areas of the operating system were optimised slightly.  

The SysInfo results are exactly the same as a 1MB Atari ST, and this verifies it has 

detected the size of SRAM memory correctly and set up all the associated system 

variables and configuration registers. 

 

6.2 

Colour Palette 

In the colour resolution modes the 

colours were incorrect compared to an 

Atari ST.  At first the connection 

between the FPGA and Video DAC 

were checked and these were correct.  

The connections between the Video 

DAC and VGA connector were also 

correct.  With the floppy drive now 

operational, it was possible to load 

Figure 41 – Degas Elite 



if SH_MOD = "00" then -- Low resolution. 
-- SR(3) <= YINT_D(15 - H_SHIFT); 
-- SR(2) <= YINT_B(27 - H_SHIFT); 
-- SR(1) <= YINT_C(23 - H_SHIFT); 
-- SR(0) <= YINT_A(19 - H_SHIFT); 
 SR(3) <= YINT_D(15 - H_SHIFT); 
 SR(2) <= YINT_A(19 - H_SHIFT); 
 SR(1) <= YINT_C(23 - H_SHIFT); 
 SR(0) <= YINT_B(27 - H_SHIFT); 

 

programs in.  An art drawing program called “Degas Elite” written by Tom Hudson in 

1987 was loaded from the floppy drive.  With this program it is possible to change the 

shade of colour in the palette registers of the Shifter graphics IP Core.  It was found that 

adjusting certain palettes changed the wrong colour on the screen.  A table was made to 

figure out what was happening. 

 

Palette changed 
Bit pattern 

(3..0) 
Actual change 

Bit pattern 

(3..0) 
Correct? 

0 0000 0 0000 YES 

1 0001 4 0100 NO 

2 0010 2 0010 YES 

3 0011 6 0110 NO 

4 0100 1 0001 NO 

5 0101 5 0101 YES 

6 0110 3 0011 NO 

7 0111 7 0111 YES 

8 1000 8 1000 YES 

9 1001 12 1100 NO 

10 1010 10 1010 YES 

11 1011 14 1110 NO 

12 1100 9 1001 NO 

13 1101 13 1101 YES 

14 1110 11 1011 NO 

15 1111 15 1111 YES 

   

 

By looking at the bit patterns or 

bit planes, it can be seen bits 0 

and 2 are around the wrong way. 

The Shifter IP Core has a file 

Table 12 – Colour palette error 

Figure 42 – Change to Shifter 



called wf25914ip_cr_shift_reg.vhd and within that is a process called shift_out where the 

colour creation is made.  This was modified based on the previous findings. 

 

6.3 

Sound Techniques 

The sound from the YM2149 IP Core is next 

tested.  The sound generator is very simple, 

just 3 channels of square wave, which can be 

mixed with white noise and fed into envelope 

filters.  Many programmers developed new 

ways of using the YM2149 to produce better 

sounds by carefully timed writes to the 

YM2149 registers.   

 

The program used to test it is a freeware program called ‘SND Player’ written by Odd 

Skancke and Anders Eriksson in 2006 and comes with a few demo songs to try.  After 

playing a few of the demo songs and comparing to a real Atari ST, it was apparent some 

had problems with some channels not 

having the right sound. One of these 

songs was ‘Chu Chu Rocket’ by 

Malcolm Grant which was chosen as the 

problem is evident while only using one 

sound channel.  The envelope register 

was routed to be displayed on the four 

LEDs on the RaggedStone board.  It was 

found the sound was incorrect only on some envelope shapes, namely ‘1010’ which is a 

repeating sawtooth.  

 

From looking at the process which generates the envelope shape (in the file 

wf2149_wave.vhd) it became apparent what the error was. On the rising slope of the 

envelope when it reaches the highest peak (VOL_ENV = “11111”) it should start falling 

Figure 43 – SND Player 

Figure 44 – Envelope Shapes 



when "1110" | "1010" => 
 if ENV_UP_DNn = '0' then 
  VOL_ENV <= VOL_ENV - '1'; 
 else 
  VOL_ENV <= VOL_ENV + '1'; 
 end if; 
 
 if VOL_ENV = "00001" then 
  ENV_UP_DNn := '1'; 
 elsif VOL_ENV = "11110" then 
  ENV_UP_DNn := '0'; 
 end if; 

 

when "1110" | "1010" => 
 if ENV_UP_DNn = '0' then 
  VOL_ENV <= VOL_ENV - '1'; 
 else 
  VOL_ENV <= VOL_ENV + '1'; 
 end if; 
 
 if VOL_ENV = "00000" then 
  ENV_UP_DNn := '1'; 
 elsif VOL_ENV = "11111" then 
  ENV_UP_DNn := '0'; 
 end if; 

 

back down again.   The way the VHDL 

is structured, the signal to control the 

volume decrement occurs too late and 

the VOL_ENV rolls over.  The effect is 

a very fast repeating square wave, rather 

than the desired sawtooth wave.  The 

changes made are shown in figure 46.   

 

Some of the special effect techniques 

used to achieve better sounds have been 

given names like Sync-Buzzer, Digidrum 

and Sid Voice [39]. 

 

 

 

 

 

 

6.4 

Software Over Scan 

Although not deemed as necessary, using software 

that attempts to use the hardware in ways that were 

not specified by Atari is a good test of compatibility.  

Just like the special effects for the sound chip, as 

mentioned in paragraph 6.2 there were also 

techniques to gain special graphics.  One of these is 

software over scanning.  The Atari ST low resolution 

mode is 320 x 200 pixels, but in fact displays a lot 

more in the form of borders around the working 

screen area as shown in figure 47.   

 

Figure 46 – New envelope generator  

Figure 45 – Old envelope generator 

Figure 47 – Screen borders 



It was discovered in 1988 by a team of people called ‘TNT’ that by switching graphics 

modes (ST Low/Medium/High or 50/60Hz) on certain line numbers the graphics sub 

system can be fooled into displaying graphics within the borders. 

 

A good piece of test software was found called ‘Hallucinations’ released by RG in 2003 

(although the over scan technique is much older).  The current implementation of the 

Atari ST failed trying to run this software, with the screen borders remaining intact.  

From looking at the hardware the DE (Display Enable) signal generated by the Glue 

informs the Shifter and MMU when to display the graphics, otherwise they will display 

the border.  Inside the Glue IP Core (file wf25915ip_video_timing.vhd), there are two 

main counters, one for the horizontal position and the other for the vertical line number.  

The DE signal is controlled by relational operators (less than and greater than) as shown 

in Appendix N and this precisely where the problem stems from.  In a real Atari ST, if the 

software switches to a different screen mode at precisely the right time, the Glue then 

misses the qualifier to end the DE signal, and it remains active for longer displaying more 

pixels from RAM.  Because the IP Core of the Glue uses less than and greater than, this 

doesn’t work.  After changing all these to simple equality relation operators, and basing 

all the timings on a document by Dr Sengan Baring-Gould published in the French ‘ST 

Magazine’ in 1991 the system now correctly displayed the over scan technique [40]!  

Another point that backs up the use of equality operators is that they require a lot less 

transistors, and this would be how the original Atari semiconductors would have been 

constructed.  As well as changing the generation of the DE signal, the V Sync, H Sync 

and video Blanking were changed.  

 

 

 

 

 

 

 



Future Additions and Possibilities 

7.1 

Floppy Drive Emulation 

 

Nowadays floppy drives are being phased out.  Many PC manufactures don’t supply 

floppy drives, and Apple Inc scrapped the floppy drive in 1998 with introduction of iMac.  

It is quite easy to see why after implementing the floppy drive and reading the Western 

Digital WD1772 data sheet.  Many commands given to the floppy drive have to be 

followed by delays.  It is advised to wait for five Index Pulses after the Spin Up 

command before reading data.  At a disk revolution of 300 rpm, five index pulses are 

equal to one second.  More delays are needed when stepping the floppy drive head to a 

different track, 15ms for the WD1772.  15ms in computer terms is a long time, the 

MC68000 can execute up to 30,000 instructions in that time. 

 

There exists a project called hXc (that replaces the physical floppy drive and allows a 

host computer to mimic a floppy drive [41].  Going one step further it would be possible 

to remove the WD1772 floppy controller altogether, with an image of a floppy disk 

stored on a removable media like an SD (Secure Digital) Card communicating directly to 

the DMA bus.  The delays could be added for possible compatibility problems, or 

allowed to run at full speed.  

 

7.2 

MIDI 

 

Midi was included as standard from the very first Atari St throughout the entire series and 

played an important role in establishing the computer as a serious computer for music 

production.  In the Atari ST MIDI is implemented with another ACIA MC6850 as used to 

communicate with the keyboard.  It uses a 31250 baud serial protocol over a current loop 

and is optically isolated.  The MIDI could be provided with another instance of the 

MC6850 IP Core.  The game port to MIDI adapters that is commonly available for PCs 

could easily be used to provide the electrical specification MIDI needs.  The game port is 



a 15 way D-Type connector and the panel cut out is provided on many PC cases, unlike 

that of the 5 pin DIN connectors MIDI uses.  

 

7.3 

IDE 

 

Although there exists a simple IDE interface for the Atari ST that is compatible to the 

Atari Falcons IDE port, it only works in programmed I/O mode.  This is where the CPU 

has to do the work of moving the data to and from the IDE bus to RAM.  Although this is 

fine for most small chunks of data, large files will inevitably tie up the CPU stopping it 

from doing more useful processing.  A solution could exist in using the original DMA 

component with a bridge layer to IDE protocol.  This would provide complete software 

compatibility, appearing as a DMA device to the Atari ST but using plentiful and 

inexpensive IDE drives.  The conversion from Atari’s own protocol of the DMA bus, 

ACSI could be converted to IDE internally as a custom IP Core.  It also opens up the 

possibility for more than one IDE port, as ACSI protocol can support 7 devices.  

 

7.4 

Unification of mass storage 

 

In the design there were a lot of areas and different device technologies for storage of 

data.   

 

• Floppy drive using 3.5” floppy disks 

• Configuration of the FPGA held in custom Xilinx serial PROM 

• Operating System held in parallel FLASH memory 

• PIC microcontroller firmware held within itself 

 

Each of the above could be contained in one single device like an inexpensive SD Card.  

The PIC microcontroller could contain firmware to read a FAT 32 formatted SD Card to 

program its self with new firmware, program the FPGA configuration and store the 

Operating System in a portion of RAM.  The floppy drive image could be retrieved on 



request from the Floppy Drive Controller with the PIC acting as a bridge.  This greatly 

reduces cost and component count at the expensive of development time to guarantee 

correct functionality [42], [43]. 

 

7.5 

Reconfigurable systems 

 

The previous paragraph leads nicely onto the ability for reconfigurable systems.  By 

allowing the PIC to read from an SD Card, it is possible to store multiple versions for 

each part of the system.  This could allow the system to change functionality entirely 

within seconds.  Using an SD Card also removes the need for special programming 

hardware for the various parts onboard and simplifies any updates needed to a system.  It 

would be as simple as inserting the SD Card into a PC to copy new firmware packages on 

[44], [45]. 

 

7.6 

Commercial viability 

 

There is scope for a design like this to be made in to a sellable item.  By having a design 

that supports many projects needs, and a framework wrapper to ease migration and 

porting from other development boards it could attract many designers.  From looking at 

other FPGA development boards and needs for projects the following specification ahs 

been concluded. 

 

• Composite Video/ S Video for connection to domestic Televisions 

• VGA connection with high quality DAC for high resolution monitors 

• SD Card for storage of data 

• One fixed clock, one software programmable for pixel clocks etc 

• PS/2 mouse and keyboard ports 

• LCD header pins for embedded designs 

• Ethernet port 

• Audio Codec for sound in and out 



• IDE interface port 

• CPU expansion slot to allow for different CPU architectures and/or addition IO 

• SDRAM main memory 

• PIC Microcontroller for standby operation 

 

A design with these features opens the market to many diverse applications, not just an 

Atari ST design.  The addition of a wrapper for using the inexpensive Analogue and 

Digital Sony Playstation controllers could very be useful for the control in robotics.  

 

Even with an Atari ST design, it is possible to run the 68k Debian Linux port, or uClinux 

are even Atari’s own UNIX derivative, MultiTOS/MINT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 

Summary 

8.1 

I personally found implementing an entire computer system in an FPGA highly 

challenging and incredibly rewarding.  From the overall design blocks to the intricate 

details at logic gate level presented many opportunities for problem solving. 

 

Every IP Core (bar the ACIA) of the system had to be studied in great detail to 

understand the inner workings and fixing numerous problems.  Not every detail that was 

changed could be mentioned, as some of them took so long to discover the root of the 

problem and the length of detailing the solution.  The best example of this is the Floppy 

Drive Controller IP Core. Even in its current state it is not fully functional, it has 

problems with games that have complex copy protection techniques or formatted with 

non standard numbers of sectors per track.  Writing to a disk was not even attempted and 

was disabled in hardware for fear of ruining many disks.  The FDC IP Core is by far the 

most complex IP Core in the design, having to deal with a MFM encoded bit stream from 

the floppy drive that varies every so slightly in bit rate as the disk drive motor RPM 

fluctuates. 

 

One point I found from doing this project is understanding how far computing has come, 

the amount of complexities there are in modern computer chipsets, graphics and micro 

processors.  One thing I feel is that by understanding the past, an insight into the future of 

computing can be seen clearer and many ideas will come back around. 

 

A few things that could have helped greatly would be better access to tools.  Having 

something along the lines of a logic analyser embedded into the design, like Xilinx’s  

own ChipScope would have been incredibly useful.  A normal logic analyser would help 

to some extent, but every time you want to view a different internal signal it requires a 

rebuild of the project.  On that point, even on my relatively new computer the process of 



building the project and programming through the JTAG interface took approximately 20 

minutes.  In total there were approximately 15000 lines of VHDL code. 

 

I found the internet a great resource of information, as there were very few books 

published about the hardware of the Atari ST.  Much of the information has come from 

archives of past magazines articles and documents written about certain aspects of the 

hardware. 

 

Although the design did not feature the CPU as an IP Core, I feel this was a wise decision 

as it was the one part of the design that could be trusted as working from the very start.  

Trying to debug a CPU IP Core along with everything else would have been incredibly 

time consuming.   

 

I’ve learnt a lot about the inner workings of FPGAs, and the VHDL language.  Most 

importantly is that FPGAs are in some ways like a group of individual integrated circuits. 

It is just as important to make sure that the interconnections between these blocks of logic 

are constrained to certain paths, distances and delays as it is with a traditional design. 

 

Overall I’ve found systems on chip incredibly interesting and something of real 

importance for the future.  Their ability is to make designs smaller, consume less power 

and most importantly faster.  
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Appendices  

A 

MAIN.UCF constraints file  

MAIN.VHD component file 

 

 
#PACE: Start of Constraints generated by PACE 
 
#PACE: Start of PACE I/O Pin Assignments 
NET "CLK_PCI"  LOC = "A11"  ;  
NET "EEPROM_SCL"  LOC = "U7"  ;  
NET "EEPROM_SDA"  LOC = "U10"  ;  
NET "EEPROM_WP"  LOC = "V7"  ;  
NET "FLASH_A<0>"  LOC = "Y10"  ;  
NET "FLASH_A<10>"  LOC = "U12"  ;  
NET "FLASH_A<11>"  LOC = "AB15"  ;  
NET "FLASH_A<12>"  LOC = "AB9"  ;  
NET "FLASH_A<13>"  LOC = "AB14"  ;  
NET "FLASH_A<14>"  LOC = "AA13"  ;  
NET "FLASH_A<15>"  LOC = "AB10"  ;  
NET "FLASH_A<16>"  LOC = "AB11"  ;  
NET "FLASH_A<17>"  LOC = "AB13"  ;  
NET "FLASH_A<18>"  LOC = "Y12"  ;  
NET "FLASH_A<1>"  LOC = "W10"  ;  
NET "FLASH_A<2>"  LOC = "V10"  ;  
NET "FLASH_A<3>"  LOC = "W9"  ;  
NET "FLASH_A<4>"  LOC = "W8"  ;  
NET "FLASH_A<5>"  LOC = "AB8"  ;  
NET "FLASH_A<6>"  LOC = "AA8"  ;  
NET "FLASH_A<7>"  LOC = "AA9"  ;  
NET "FLASH_A<8>"  LOC = "V9"  ;  
NET "FLASH_A<9>"  LOC = "AA15"  ;  
NET "FLASH_CE"  LOC = "V14"  ;  
NET "FLASH_IO<0>"  LOC = "AA10"  ;  
NET "FLASH_IO<1>"  LOC = "W11"  ;  
NET "FLASH_IO<2>"  LOC = "Y11"  ;  
NET "FLASH_IO<3>"  LOC = "U11"  ;  
NET "FLASH_IO<4>"  LOC = "W13"  ;  
NET "FLASH_IO<5>"  LOC = "V13"  ;  
NET "FLASH_IO<6>"  LOC = "Y13"  ;  
NET "FLASH_IO<7>"  LOC = "W14"  ;  
NET "FLASH_OE"  LOC = "U13"  ;  
NET "FLASH_WE"  LOC = "W12"  ;  
NET "J01_2"  LOC = "AA12"  ;  
NET "J01_3"  LOC = "AB12"  ;  
NET "J01_4"  LOC = "V16"  ;  
NET "J01_5"  LOC = "W16"  ;  
NET "J02_2"  LOC = "V8"  ;  
NET "J02_3"  LOC = "Y6"  ;  
NET "J02_4"  LOC = "AA6"  ;  
NET "J02_5"  LOC = "U6"  ;  
NET "J2_1"  LOC = "B19"  ;  



NET "J2_10"  LOC = "C17"  ;  
NET "J2_11"  LOC = "B17"  ;  
NET "J2_12"  LOC = "E15"  ;  
NET "J2_13"  LOC = "D17"  ;  
NET "J2_14"  LOC = "E13"  ;  
NET "J2_15"  LOC = "D15"  ;  
NET "J2_16"  LOC = "F13"  ;  
NET "J2_17"  LOC = "D14"  ;  
NET "J2_18"  LOC = "A15"  ;  
NET "J2_19"  LOC = "F12"  ;  
NET "J2_20"  LOC = "B14"  ;  
NET "J2_21"  LOC = "B15"  ;  
NET "J2_22"  LOC = "F16"  ;  
NET "J2_23"  LOC = "A14"  ;  
NET "J2_24"  LOC = "D13"  ;  
NET "J2_25"  LOC = "F17"  ;  
NET "J2_26"  LOC = "A13"  ;  
NET "J2_27"  LOC = "C13"  ;  
NET "J2_28"  LOC = "E12"  ;  
NET "J2_29"  LOC = "B13"  ;  
NET "J2_3"  LOC = "A19"  ;  
NET "J2_31"  LOC = "A12"  ;  
NET "J2_32"  LOC = "D12"  ;  
NET "J2_33"  LOC = "A9"  ;  
NET "J2_34"  LOC = "B12"  ;  
NET "J2_35"  LOC = "B10"  ;  
NET "J2_36"  LOC = "C10"  ;  
NET "J2_37"  LOC = "A8"  ;  
NET "J2_38"  LOC = "B9"  ;  
NET "J2_39"  LOC = "F11"  ;  
NET "J2_4"  LOC = "C18"  ;  
NET "J2_40"  LOC = "E10"  ;  
NET "J2_41"  LOC = "F10"  ;  
NET "J2_42"  LOC = "E9"  ;  
NET "J2_43"  LOC = "F9"  ;  
NET "J2_44"  LOC = "B8"  ;  
NET "J2_45"  LOC = "D7"  ;  
NET "J2_46"  LOC = "E7"  ;  
NET "J2_47"  LOC = "C6"  ;  
NET "J2_48"  LOC = "B6"  ;  
NET "J2_49"  LOC = "E6"  ;  
NET "J2_5"  LOC = "D18"  ;  
NET "J2_50"  LOC = "D6"  ;  
NET "J2_51"  LOC = "A5"  ;  
NET "J2_52"  LOC = "B5"  ;  
NET "J2_6"  LOC = "B18"  ;  
NET "J2_8"  LOC = "E17"  ;  
NET "J2_9"  LOC = "A18"  ;  
NET "JL1_10"  LOC = "M21"  ;  
NET "JL1_11"  LOC = "K19"  ;  
NET "JL1_12"  LOC = "K20"  ;  
NET "JL1_13"  LOC = "K22"  ;  
NET "JL1_14"  LOC = "K21"  ;  
NET "JL1_15"  LOC = "G19"  ;  
NET "JL1_16"  LOC = "F19"  ;  
NET "JL1_17"  LOC = "F20"  ;  
NET "JL1_18"  LOC = "F21"  ;  



NET "JL1_19"  LOC = "E21"  ;  
NET "JL1_2"  LOC = "Y21"  ;  
NET "JL1_20"  LOC = "E22"  ;  
NET "JL1_3"  LOC = "T22"  ;  
NET "JL1_4"  LOC = "T21"  ;  
NET "JL1_5"  LOC = "T18"  ;  
NET "JL1_6"  LOC = "R18"  ;  
NET "JL1_7"  LOC = "M17"  ;  
NET "JL1_8"  LOC = "M18"  ;  
NET "JL1_9"  LOC = "M22"  ;  
NET "JL2_1"  LOC = "W21"  ;  
NET "JL2_10"  LOC = "T17"  ;  
NET "JL2_11"  LOC = "M19"  ;  
NET "JL2_12"  LOC = "M20"  ;  
NET "JL2_13"  LOC = "L20"  ;  
NET "JL2_14"  LOC = "L19"  ;  
NET "JL2_15"  LOC = "G18"  ;  
NET "JL2_16"  LOC = "G17"  ;  
NET "JL2_17"  LOC = "F18"  ;  
NET "JL2_18"  LOC = "E18"  ;  
NET "JL2_19"  LOC = "D19"  ;  
NET "JL2_2"  LOC = "W20"  ;  
NET "JL2_20"  LOC = "D20"  ;  
NET "JL2_3"  LOC = "V22"  ;  
NET "JL2_4"  LOC = "V21"  ;  
NET "JL2_5"  LOC = "V19"  ;  
NET "JL2_6"  LOC = "W19"  ;  
NET "JL2_7"  LOC = "V20"  ;  
NET "JL2_8"  LOC = "U19"  ;  
NET "JL2_9"  LOC = "U18"  ;  
NET "JL3_10"  LOC = "L21"  ;  
NET "JL3_11"  LOC = "L22"  ;  
NET "JL3_12"  LOC = "L18"  ;  
NET "JL3_13"  LOC = "L17"  ;  
NET "JL3_14"  LOC = "G21"  ;  
NET "JL3_15"  LOC = "G22"  ;  
NET "JL3_16"  LOC = "E20"  ;  
NET "JL3_17"  LOC = "E19"  ;  
NET "JL3_18"  LOC = "D22"  ;  
NET "JL3_19"  LOC = "D21"  ;  
NET "JL3_2"  LOC = "Y22"  ;  
NET "JL3_20"  LOC = "C22"  ;  
NET "JL3_3"  LOC = "W22"  ;  
NET "JL3_4"  LOC = "U21"  ;  
NET "JL3_5"  LOC = "U20"  ;  
NET "JL3_6"  LOC = "N19"  ;  
NET "JL3_7"  LOC = "N20"  ;  
NET "JL3_8"  LOC = "N21"  ;  
NET "JL3_9"  LOC = "N22"  ;  
NET "JR1_10"  LOC = "L2"  ;  
NET "JR1_11"  LOC = "L1"  ;  
NET "JR1_12"  LOC = "K3"  ;  
NET "JR1_13"  LOC = "K4"  ;  
NET "JR1_14"  LOC = "G1"  ;  
NET "JR1_15"  LOC = "G2"  ;  
NET "JR1_16"  LOC = "D3"  ;  
NET "JR1_17"  LOC = "D2"  ;  



NET "JR1_18"  LOC = "D1"  ;  
NET "JR1_19"  LOC = "C1"  ;  
NET "JR1_2"  LOC = "W4"  ;  
NET "JR1_20"  LOC = "C2"  ;  
NET "JR1_3"  LOC = "W3"  ;  
NET "JR1_4"  LOC = "V3"  ;  
NET "JR1_5"  LOC = "V4"  ;  
NET "JR1_6"  LOC = "N4"  ;  
NET "JR1_7"  LOC = "N3"  ;  
NET "JR1_8"  LOC = "N2"  ;  
NET "JR1_9"  LOC = "N1"  ;  
NET "JR2_1"  LOC = "W1"  ;  
NET "JR2_10"  LOC = "T6"  ;  
NET "JR2_11"  LOC = "M4"  ;  
NET "JR2_12"  LOC = "M3"  ;  
NET "JR2_13"  LOC = "L3"  ;  
NET "JR2_14"  LOC = "L4"  ;  
NET "JR2_15"  LOC = "H5"  ;  
NET "JR2_16"  LOC = "G5"  ;  
NET "JR2_17"  LOC = "G6"  ;  
NET "JR2_18"  LOC = "F5"  ;  
NET "JR2_19"  LOC = "E4"  ;  
NET "JR2_2"  LOC = "W2"  ;  
NET "JR2_20"  LOC = "D4"  ;  
NET "JR2_3"  LOC = "V5"  ;  
NET "JR2_4"  LOC = "U5"  ;  
NET "JR2_5"  LOC = "V2"  ;  
NET "JR2_6"  LOC = "V1"  ;  
NET "JR2_7"  LOC = "U4"  ;  
NET "JR2_8"  LOC = "T4"  ;  
NET "JR2_9"  LOC = "T5"  ;  
NET "JR3_10"  LOC = "M2"  ;  
NET "JR3_11"  LOC = "L5"  ;  
NET "JR3_12"  LOC = "L6"  ;  
NET "JR3_13"  LOC = "K1"  ;  
NET "JR3_14"  LOC = "K2"  ;  
NET "JR3_15"  LOC = "F4"  ;  
NET "JR3_16"  LOC = "E3"  ;  
NET "JR3_17"  LOC = "F2"  ;  
NET "JR3_18"  LOC = "F3"  ;  
NET "JR3_19"  LOC = "E2"  ;  
NET "JR3_2"  LOC = "Y1"  ;  
NET "JR3_20"  LOC = "E1"  ;  
NET "JR3_3"  LOC = "U2"  ;  
NET "JR3_4"  LOC = "U3"  ;  
NET "JR3_5"  LOC = "T1"  ;  
NET "JR3_6"  LOC = "T2"  ;  
NET "JR3_7"  LOC = "M6"  ;  
NET "JR3_8"  LOC = "M5"  ;  
NET "JR3_9"  LOC = "M1"  ;  
NET "LED1_1"  LOC = "AA17"  ;  
NET "LED1_11"  LOC = "AA18"  ;  
NET "LED1_12"  LOC = "Y18"  ;  
NET "LED1_13"  LOC = "V18"  ;  
NET "LED1_14"  LOC = "AB20"  ;  
NET "LED1_15"  LOC = "W18"  ;  
NET "LED1_16"  LOC = "AA20"  ;  



NET "LED1_2"  LOC = "U17"  ;  
NET "LED1_3"  LOC = "Y17"  ;  
NET "LED1_4"  LOC = "V17"  ;  
NET "LED1_5"  LOC = "AB18"  ;  
NET "LED1_6"  LOC = "U16"  ;  
NET "LED1_7"  LOC = "W17"  ;  
NET "LED1_8"  LOC = "U14"  ;  
NET "LED2"  LOC = "AB5"  ;  
NET "LED3"  LOC = "AA5"  ;  
NET "LED4"  LOC = "AA4"  ;  
NET "LED5"  LOC = "AB4"  ;  
NET "S1"  LOC = "AA3" | PULLUP ;  
NET "S2"  LOC = "Y4" | PULLUP ;  
NET "TEMP_A<0>"  LOC = "V12"  ;  
NET "TEMP_A<1>"  LOC = "V11"  ;  
NET "TEMP_A<2>"  LOC = "V6"  ;  
NET "TEMP_INT"  LOC = "W5"  ;  
NET "TEMP_SCL"  LOC = "Y5"  ;  
NET "TEMP_SDA"  LOC = "W6"  ;  
NET "USER_CLK"  LOC = "AA11"  ;  
 
#PACE: Start of PACE Area Constraints 
 
#PACE: Start of PACE Prohibit Constraints 
 
#PACE: End of Constraints generated by PACE 
 

 

 
library IEEE; 
use IEEE.std_logic_1164.ALL; 
use IEEE.std_logic_ARITH.ALL; 
use IEEE.std_logic_UNSIGNED.ALL; 
 
entity main is 
    Port( 
     -- JL1 Header (pin 1 0v) BANK3&2 
   JL1_2 : in std_logic; 
   JL1_3 : in std_logic; 
   JL1_4 : in std_logic; 
   JL1_5 : in std_logic; 
   JL1_6 : in std_logic; 
   JL1_7 : in std_logic; 
   JL1_8 : in std_logic; 
   JL1_9 : in std_logic; 
   JL1_10 : in std_logic; 
   JL1_11 : in std_logic; 
   JL1_12 : in std_logic; 
   JL1_13 : in std_logic; 
   JL1_14 : in std_logic; 
   JL1_15 : in std_logic; 
   JL1_16 : in std_logic; 
   JL1_17 : in std_logic; 
   JL1_18 : in std_logic; 
   JL1_19 : in std_logic; 
   JL1_20 : in std_logic; 



    
   -- JL2 Header BANK3&2 
   JL2_1 : in std_logic; -- CCLK with R999 
   JL2_2 : in std_logic; 
   JL2_3 : in std_logic; 
   JL2_4 : in std_logic; 
   JL2_5 : in std_logic; 
   JL2_6 : in std_logic; 
   JL2_7 : in std_logic; 
   JL2_8 : in std_logic; 
   JL2_9 : in std_logic; 
   JL2_10 : in std_logic; 
   JL2_11 : in std_logic; 
   JL2_12 : in std_logic; 
   JL2_13 : in std_logic; 
   JL2_14 : in std_logic; 
   JL2_15 : in std_logic; 
   JL2_16 : in std_logic; 
   JL2_17 : in std_logic; 
   JL2_18 : in std_logic; 
   JL2_19 : in std_logic; 
   JL2_20 : in std_logic; 
   
   -- JL3 Header (pin 1 3.3v) BANK3&2 
   JL3_2 : in std_logic; 
   JL3_3 : in std_logic; 
   JL3_4 : in std_logic; 
   JL3_5 : in std_logic; 
   JL3_6 : in std_logic; 
   JL3_7 : in std_logic; 
   JL3_8 : in std_logic; 
   JL3_9 : in std_logic; 
   JL3_10 : in std_logic; 
   JL3_11 : in std_logic; 
   JL3_12 : in std_logic; 
   JL3_13 : in std_logic; 
   JL3_14 : in std_logic; 
   JL3_15 : in std_logic; 
   JL3_16 : in std_logic; 
   JL3_17 : in std_logic; 
   JL3_18 : in std_logic; 
   JL3_19 : in std_logic; 
   JL3_20 : in std_logic;    
    
   -- JR1 Header (pin 1 0v) BANK6&7 
   JR1_2 : in std_logic;  
   JR1_3 : in std_logic;  
   JR1_4 : in std_logic;  
   JR1_5 : in std_logic;  
   JR1_6 : in std_logic;  
   JR1_7 : in std_logic;  
   JR1_8 : in std_logic;  
   JR1_9 : in std_logic;  
   JR1_10 : in std_logic;  
   JR1_11 : in std_logic;  
   JR1_12 : in std_logic;  
   JR1_13 : inout std_logic;  



   JR1_14 : in std_logic;  
   JR1_15 : in std_logic;  
   JR1_16 : in std_logic;  
   JR1_17 : in std_logic;  
   JR1_18 : in std_logic;  
   JR1_19 : in std_logic;  
   JR1_20 : in std_logic;  
    
   -- JR2 Header BANK6&7 
   JR2_1 : in std_logic;  
   JR2_2 : in std_logic;  
   JR2_3 : in std_logic;  
   JR2_4 : in std_logic;  
   JR2_5 : in std_logic;  
   JR2_6 : in std_logic;  
   JR2_7 : in std_logic;  
   JR2_8 : in std_logic;  
   JR2_9 : in std_logic;  
   JR2_10 : in std_logic;  
   JR2_11 : in std_logic;  
   JR2_12 : in std_logic;  
   JR2_13 : in std_logic;  
   JR2_14 : in std_logic;  
   JR2_15 : in std_logic;  
   JR2_16 : in std_logic;  
   JR2_17 : in std_logic;  
   JR2_18 : in std_logic;  
   JR2_19 : in std_logic;  
   JR2_20 : in std_logic;  
   
   -- JR3 Header (pin 1 3.3v) BANK6&7 
   JR3_2 : in std_logic;   
   JR3_3 : in std_logic;   
   JR3_4 : in std_logic;   
   JR3_5 : in std_logic;   
   JR3_6 : in std_logic;   
   JR3_7 : in std_logic;   
   JR3_8 : in std_logic;   
   JR3_9 : in std_logic;   
   JR3_10 : in std_logic;  
   JR3_11 : in std_logic;  
   JR3_12 : in std_logic;  
   JR3_13 : in std_logic;  
   JR3_14 : in std_logic;  
   JR3_15 : in std_logic;  
   JR3_16 : out std_logic;  
   JR3_17 : out std_logic;  
   JR3_18 : out std_logic;  
   JR3_19 : inout std_logic;  
   JR3_20 : inout std_logic;  
    
   -- J01 (pin 1 0v) R99 links pin2&3   
   J01_2 : in std_logic; 
   J01_3 : in std_logic; 
   J01_4 : in std_logic; 
   J01_5 : in std_logic; 
    



   -- J02 (pin 1 3.3v)   
   J02_2 : in std_logic; 
   J02_3 : in std_logic; 
   J02_4 : in std_logic; 
   J02_5 : in std_logic; 
    
   -- JB1-4 ????   
 
 
         ------------ PCI IO ----------------------- 
    
   -- J2 (pin 2 is just PCI clock) 
   -- last pin is NC   
   J2_1 : in std_logic;   
           --J2_2 : out std_logic; 
   J2_3 : in std_logic; 
   J2_4 : in  std_logic; 
   J2_5 : in  std_logic; 
   J2_6 : in  std_logic; 
      --J2_7 : out std_logic; NC 
   J2_8 : in  std_logic; 
   J2_9 : out std_logic; 
   J2_10 : out std_logic; 
   J2_11 : in  std_logic;   
   J2_12 : in  std_logic; 
   J2_13 : in  std_logic; 
   J2_14 : in  std_logic; 
   J2_15 : in  std_logic; 
   J2_16 : in  std_logic; 
   J2_17 : out std_logic; 
   J2_18 : out std_logic;   
   J2_19 : in  std_logic;  
   J2_20 : in  std_logic; 
   J2_21 : in  std_logic; 
   J2_22 : in  std_logic; 
   J2_23 : in  std_logic; 
   J2_24 : in  std_logic; 
   J2_25 : out std_logic; 
   J2_26 : out std_logic; 
   J2_27 : out std_logic;   
   J2_28 : out std_logic;   
   J2_29 : in std_logic; 
      --J2_30 : out std_logic; NC 
   J2_31 : in std_logic; 
   J2_32 : in std_logic; 
   J2_33 : in std_logic; 
   J2_34 : in std_logic; 
   J2_35 : in std_logic; 
   J2_36 : in std_logic; 
   J2_37 : in std_logic; 
   J2_38 : in std_logic; 
   J2_39 : in std_logic; 
   J2_40 : in std_logic; 
   J2_41 : in std_logic; 
   J2_42 : in std_logic; 
   J2_43 : in std_logic; 
   J2_44 : in std_logic; 



   J2_45 : in std_logic; 
   J2_46 : in std_logic; 
   J2_47 : in std_logic; 
   J2_48 : in std_logic; 
   J2_49 : in std_logic; 
   J2_50 : in std_logic; 
   J2_51 : in std_logic; 
   J2_52 : in std_logic; 
   --J2_53 : out std_logic; NC   
    
   ----------  Stuff onboard  ---------------- 
    
   -- Clocks 
   --CCLK : in std_logic; 
   USER_CLK : in std_logic; 
   CLK_PCI : in std_logic;    
    
   -- U12 (Flash?)    
   FLASH_A : out std_logic_VECTOR(18 DOWNTO 0); 
   FLASH_WE : out std_logic; 
   FLASH_OE : out std_logic; 
   FLASH_CE : out std_logic; 
   FLASH_IO : in std_logic_VECTOR(7 DOWNTO 0);  
    
   -- Temp Sensor  
   TEMP_SDA : in std_logic; 
   TEMP_SCL : in std_logic; 
   TEMP_INT : in std_logic; 
   TEMP_A : in std_logic_VECTOR(2 DOWNTO 0); 
    
   -- Serial EEPROM 
   EEPROM_WP : in std_logic; 
   EEPROM_SCL : in std_logic; 
   EEPROM_SDA : in std_logic; 
      
   -- On board switchs (active low)  
   S1 : in std_logic; 
   S2 : in std_logic; 
    
   --  On board LEDs (active high) 
   LED2 : out std_logic; 
   LED3 : out std_logic; 
   LED4 : out std_logic; 
   LED5 : out std_logic; 
    
   -- LED display  
   LED1_1 : out std_logic; --Active high column 1 select 
   LED1_2 : out std_logic; --Active high column 2 select 
   LED1_3 : out std_logic; --Active low digit D select 
   LED1_4 : out std_logic; --Active high dots select 
   LED1_5 : out std_logic; --Active low digit E select 
   LED1_6 : out std_logic; --Active high column 3 select 
   LED1_7 : out std_logic; --Active low DP select 
   LED1_8 : out std_logic; --Active high column 4 select 
   LED1_11 : out std_logic; -- Active low digit F select 
   LED1_12 : out std_logic; -- NC???!!! 
   LED1_13 : out std_logic; -- Active low digit C select 



   LED1_14 : out std_logic; -- Active low digit A select 
   LED1_15 : out std_logic; -- Active low digit G select 
   LED1_16 : out std_logic  -- Active low digit B select 
   ); 
end main; 
 
architecture rtl of main is 
 
 
begin 
 
 
end; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



B 

Schematic of ST Microelectronics Video DAC for 3 x 4bit colour use 

 



C 

An excerpt from the PicoBlaze source code for programming a 192K byte raw binary file 

to a parallel Flash memory device. 

 
                          
;**********************************************************************                           
; Program BIN Command - Program FLASH memory with data defined in an  
; BIN file               
;********************************************************************** 
 
program_bin_command: CALL send_CR 
                     CALL send_Waiting_MCS_file 
                LOAD s9, 00   ;load start address of programming 
                     LOAD s8, 00 
                     LOAD s7, 00 
                     CALL program_BIN 
                     CALL send_OK 

         JUMP prompt 
                           
                           
;********************************************************************** 
; Program FLASH memory with data defined in an BIN file                          
;********************************************************************** 
; 
; Reads the BIN file from the UART and programs the FLASH device at  
; 00000 location. 
;  
; 
; This routine will continue until an end of file record is detected. 
; For each line of BIN received, the current address will be output so 
; that progress can be monitored. 
 
program_BIN:         CALL read_from_UART  ;read character 
                       
                     LOAD sB, UART_data   ; load in data 
     
      CALL program_byte 
 
                     ADD s7, 01           ;increment address 
                     ADDCY s8, 00 
                     ADDCY s9, 00 
 
 
      COMPARE s9, 03  ; check for 196608 bytes 
      ;COMPARE s9, 04 ; check for 262144 bytes 
                     
                     JUMP NZ, program_BIN 
 
                     RETURN   ;finnished 
 

 

 

 



D 

Startup.vhd, a VHDL component for reset and power up reset generation. 

 
----------------------------------------------------------------------- 
-- Company:  
-- Engineer: Lyndon Amsdon 
--  
-- Create Date:    00:02:39 10/10/2007  
-- Design Name:  
-- Module Name:    startup - Behavioral  
-- Project Name:  
-- Target Devices:  
-- Tool versions:  
-- Description:  Holds reset line low for n clocks on powerup or when -
-  reset pressed 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Revision 0.02 - Changed to run from master clock 
-- Revision 0.03 - Added an extra reset output that only occurs during 
-- powerup 
-- Revision 0.03 - Changed powerup reset to be shorter than normal  
-- reset 
-- Additional Comments: 
--  
----------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity startup is 
    Port ( 
   RESET_IN : in bit; 
         CLOCK : in bit; 
   POWER_UP_RESET_OUT : out  bit; 
   RESET_OUT : out  bit 
   ); 
end startup; 
 
architecture Behavioral of startup is 
 
signal r_counter       : std_logic_vector(24 downto 0);  
signal pwr_counter       : std_logic_vector(25 downto 0);  
signal int_resetn       : bit; 
 
begin 
 process(RESET_IN,CLOCK) is 
  begin 
  if (RESET_IN = '0' or int_resetn = '0') then -- if reset 
switch pushed, reset counter 
   r_counter <= (others => '0'); 
   RESET_OUT <= '0'; 



  elsif r_counter = '1' & x"ffbeef" then -- timer 
   RESET_OUT <= '1'; 
  elsif CLOCK = '1' and CLOCK' event then 
   RESET_OUT <= '0'; 
   r_counter <= r_counter + 1; 
  end if; 
 end process; 
 
 process(CLOCK) is 
  begin 
  if pwr_counter = "11" & x"ffcafe" then -- powerup timer 
approx 1sec 
   POWER_UP_RESET_OUT <= '1'; 
   int_resetn <= '1'; 
  elsif CLOCK = '1' and CLOCK' event then 
   int_resetn <= '0'; 
   POWER_UP_RESET_OUT <= '0'; 
   pwr_counter <= pwr_counter + 1; 
  end if; 
 end process; 
 
end Behavioral; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



E 

Clock.vhd, a VHDL component for clock and synchronous bus cycle generation. 

 
----------------------------------------------------------------------- 
-- Company:  
-- Engineer: Lyndon Amsdon 
--  
-- Create Date:    12:22:03 10/10/2007  
-- Design Name:  
-- Module Name:    clocks - Behavioral  
-- Project Name:  
-- Target Devices:  
-- Tool versions:  
-- Description: Distributes Clocks of different frequencies from master 
-- 32MHZ clock 
-- E_CLK is simulated version of old 6800 8bit clock.  Frequency 1/10 -
-- of CPU clock, 
-- Duty cycle 60% low, 40% high.  
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Revision 0.02 - Strange issue in simulation using counter(1) as  
-- clock for process 
-- Changed to an internal signal 
-- Revision 0.03 - Changed the 8, 2 and 0.5 MHz clock to be inverse in 
-- relation to master clock 
-- Revision 0.04 - Changed to use the DCM/PLL for 8 and 16 MHz clocks 
-- Revision 0.04 - Added 27Mhz divide by 11 = 2.45 Mhz clock for MFP  
-- Additional Comments:  
-- 
----------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity clocks is 
 Port ( 
   RESET : in bit; 
   CLOCK_IN : in bit; 
   CLOCK32 : out  bit; 
   CLOCK16 : out  bit; 
   CLOCK8 : out  bit; 
         CLOCK4 : out  bit; 
         CLOCK2 : out  bit; 
         CLOCK0_5 : out  bit; 
   CLOCK24576 : out  bit; 
   CLOCK_E : out bit; 
   VPAn : in bit; 
   VMAn : out bit; 
   DTACKn : out bit 
        ); 
end clocks; 



 
architecture Behavioral of clocks is 
 
signal pcounter          : std_logic_vector(3 downto 0); 
signal e_counter         : std_logic_vector(3 downto 0); 
signal dcmreset,dcmclock : std_logic; 
signal dcm8,dcm16,dcm32  : std_logic; 
signal int_vman    : bit; 
signal dcm27,dcm24576  : std_logic; 
 
component dcm_16 
 PORT 
 ( 
  CLKIN_IN    : IN STD_LOGIC  ; 
  RST_IN    : IN STD_LOGIC  ; 
  CLKDV_OUT   : OUT STD_LOGIC ;  
  CLKFX_OUT     : out   std_logic;  
  --CLKIN_IBUFG_OUT : OUT STD_LOGIC ; 
  CLK0_OUT    : OUT STD_LOGIC ; 
  LOCKED_OUT   : OUT STD_LOGIC  
 ); 
end component; 
component dcm_8 
 PORT 
 ( 
  CLKIN_IN    : IN STD_LOGIC  ; 
  RST_IN    : IN STD_LOGIC  ; 
  CLKDV_OUT   : OUT STD_LOGIC ;  
  --CLKIN_IBUFG_OUT : OUT STD_LOGIC ; 
  CLK0_OUT    : OUT STD_LOGIC ; 
  LOCKED_OUT   : OUT STD_LOGIC  
 ); 
end component; 
component dcm_24576 
 PORT 
 ( 
  CLKIN_IN    : IN STD_LOGIC  ; 
  RST_IN    : IN STD_LOGIC  ; 
  CLKDV_OUT   : OUT STD_LOGIC ;  
  --CLKIN_IBUFG_OUT : OUT STD_LOGIC ; 
  CLK0_OUT    : OUT STD_LOGIC ; 
  LOCKED_OUT   : OUT STD_LOGIC  
 ); 
end component; 
 
 
begin 
  
 process(dcm8,RESET) is 
  begin 
  if RESET = '0' then  
   pcounter <= "0000"; 
  elsif rising_edge(dcm8) then 
   pcounter <= pcounter + '1'; 
  end if; 
 end process; 
 



 process(RESET,dcm8) is 
  begin 
  if RESET = '0' then  
   e_counter <= "0000"; 
  elsif e_counter = "1010" then 
   e_counter <= "0000"; 
  elsif rising_edge(dcm8) then 
   e_counter <= e_counter + 1; 
  end if; 
 end process; 
  
-- DCM PLL clock management 
dcmclock <= to_stdulogic(CLOCK_IN); 
dcmreset <= not to_stdulogic(RESET); 
clock32 <= to_bit(dcm32); 
clock16 <= to_bit(dcm16); 
clock8  <= to_bit(dcm8);  
clock24576  <= to_bit(dcm24576); 
 
I_DCM_16 : dcm_16 
 port map  
  ( 
  CLKIN_IN => dcmclock,  
      RST_IN => dcmreset,  
      CLKDV_OUT => dcm16, 
  CLKFX_OUT => dcm27, 
      CLK0_OUT => dcm32,  
      LOCKED_OUT => open    
  );  
   
I_DCM_8 : dcm_8 
 port map  
  ( 
  CLKIN_IN => dcm32,  
      RST_IN => dcmreset,  
      CLKDV_OUT => dcm8, 
      CLK0_OUT => open,  
      LOCKED_OUT => open    
  );  
 
I_DCM_24576 : dcm_24576 
 port map  
  ( 
  CLKIN_IN => dcm27,  
      RST_IN => dcmreset,  
      CLKDV_OUT => dcm24576, 
      CLK0_OUT => open,  
      LOCKED_OUT => open    
  );     
  
--CLOCK16 <= to_bit(pcounter(0)); 
--CLOCK8  <= to_bit(ncounter(1));  
CLOCK4  <= to_bit(pcounter(0)); 
CLOCK2  <= to_bit(pcounter(1)); 
CLOCK0_5  <= to_bit(pcounter(3)); 
 
-- Produce 60/40 6800 syncronous E clock 



CLOCK_E <= '1' when e_counter = "0110" or e_counter = "0111" or  
                    e_counter = "1000" or e_counter = "1001" else '0'; 
 
--SR FlipFlop 
process(dcm8,RESET) 
begin 
 if RESET = '0' then  
  int_vman <= '1'; 
 elsif rising_edge(dcm8) then 
  if (e_counter = "0010" and VPAn = '0') then  
   int_vman <= '0'; 
  elsif VPAn = '1' then  
   int_vman <= '1'; 
  end if; 
 end if; 
end process; 
 
--Generate DTACK to end bus cycle 
DTACKn <= '0' when (int_vman ='0' and (e_counter = "1000" or e_counter 
="1001")) else '1'; 
 
VMAn <= int_vman; 
 
end Behavioral; 
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rom_control.vhd, a VHDL component for resizing 8 bit Flash memory bus to 16 bit. 

 
-----------------------------------------------------------------------
-- Company:  
-- Engineer: Lyndon Amsdon 
--  
-- Create Date:    00:34:12 10/12/2007  
-- Design Name:  
-- Module Name:    rom_control - Behavioral  
-- Project Name:  
-- Target Devices:  
-- Tool versions:  
-- Description: A small state machine to use 8 bit flash ROM on a 16bit 
-- bus 
-- Stores low byte then increments A0 
-- 2x CPU clock needed  
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - Changed Endian as file is transferred to target from 
-- Intel Host 
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
----------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity rom_control is 
 Port (  
   FLASH_DATA : in  bit_VECTOR (7 downto 0); 
         FLASH_ADDR : out bit_VECTOR (17 downto 0); 
         D_BUS : out std_logic_VECTOR (15 downto 0); 
         CLOCK : in  bit; 
         A_BUS : in  bit_VECTOR (17 downto 1); 
         CS : in  bit; 
   RESET : in  bit 
   ); 
end rom_control; 
 
architecture Behavioral of rom_control is 
 
-- define states 
type state_type is (idle,botbyte,topbyte,incaddr); 
signal state : state_type; 
 
signal a0 : bit; 
signal lowbyte : bit_vector(7 downto 0); 
signal highbyte : bit_vector(7 downto 0); 
 
begin 



 
process (RESET,CLOCK) 
  begin      
 if RESET = '0' then state <= idle; 
 elsif CLOCK = '1' and CLOCK' event then 
      case state is 
   
        when idle => 
          if CS = '0' then -- cycle started 
            a0 <= '0'; 
            state <= botbyte; 
          else 
    a0 <= '0'; 
            state <= idle; 
          end if; 
     
        when botbyte => 
    highbyte <= FLASH_DATA; 
    a0 <= '0'; 
    state <= incaddr; 
     
    when incaddr => 
    a0 <= '1'; -- increment address 
    state <= topbyte; 
     
    when topbyte => 
    a0 <= '1'; 
    lowbyte <= FLASH_DATA; 
    if CS = '0' then -- cycle not finnished yet 
     state <= topbyte; 
    else 
     state <= idle; 
    end if; 
    
        when others => null; 
      end case; 
    end if;                              
end process; 
 
FLASH_ADDR <= A_BUS & a0; -- add the new A0 to the bus 
D_BUS <= to_stdlogicvector(highbyte) & to_stdlogicvector(lowbyte) when  
         CS ='0' else (others => '0'); 
 
end Behavioral; 
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led_debug.vhd, a VHDL component for driving the value of the CPU address and data 

bus onto 7 segment displays.  Hex2seg.vhd is a subcomponent. 

 
----------------------------------------------------------------------- 
-- Company:  
-- Engineer: Lyndon Amsdon 
--  
-- Create Date:    16:41:38 10/12/2007  
-- Design Name:  
-- Module Name:    led_debug - Behavioral  
-- Project Name:  
-- Target Devices:  
-- Tool versions:  
-- Description: Displays current data and address but on a 7 Segment  
-- Also provides a flashing led to show clocks are up and running 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.09 - Support to show data bus on bus error cycles 
-- Revision 0.08 - Data byte enables used to display blank character in 
-- byte transfers 
-- Revision 0.07 - UDSn used to display missing A0 
-- Revision 0.06 - Improved so data is latched one CPU cycle after  
-- dtackn low 
-- Two clocks needed, one for display (slow ~0.5Mhz) and another for 
-- CPU clock speed 
-- Revision 0.05 - Added latch for data bus as data from RAM is cyclic 
-- Revision 0.04 - Slowed display down a little bit 
-- Revision 0.03 - Modified to display full address and data buses  
-- Revision 0.02 - Modified to display current address 
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
----------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity led_debug is 
    Port (  
  ADDRESS : in  bit_VECTOR (23 downto 1); 
  DATA : in  std_logic_VECTOR (15 downto 0); 
       LEDCOL : out  bit_VECTOR (4 downto 0); 
  LEDROW : out  bit_VECTOR (7 downto 0); 
          CLOCK : in  bit; 
  CLOCK8 : in  bit; 
  LEDFLASH : out  bit; 
  UDSn: in  bit; 
  LDSn: in  bit; 
  DTACKn: in  bit; 
  BERRn: in  bit; 



          RESET : in  bit 
  ); 
end led_debug; 
 
architecture Behavioral of led_debug is 
 
signal counter       : std_logic_vector(20 downto 0); 
signal temphex :  bit_vector (3 downto 0); 
signal tempseg :  bit_vector (6 downto 0); 
signal blank :  bit; 
signal temp_latch :  bit_vector (15 downto 0); 
 
-- define states 
type state_type is (S4,S6,S8); 
signal state : state_type; 
 
 
-- LED Driver 
begin 
process(RESET,CLOCK) is 
 begin 
 if (RESET = '0') then -- reset signals 
  counter <= (others => '0'); 
 elsif CLOCK = '1' and CLOCK' event then 
  counter <= counter + 1; -- increment counter 
  LEDFLASH <= to_bit(counter(18)); 
   case  counter(1 downto 0)  is 
   when "00" => --DIGIT1 
    blank <= '0'; 
    if counter(20 downto 19) = "00" then 
     blank <= '1'; -- display blank char  
    elsif counter(20 downto 19) = "01" then 
     temphex <= ADDRESS (15 downto 12); 
    else 
     blank <= UDSn; 
     temphex <= temp_latch (15 downto 12); 
    end if;       
    LEDROW <= '1' & tempseg; 
    LEDCOL <= "00001";  
   when "01" => --DIGIT2 
    blank <= '0'; 
    if counter(20 downto 19) = "00" then 
     blank <= '1'; -- display blank char 
    elsif counter(20 downto 19) = "01" then  
     temphex <= ADDRESS (11 downto 8); 
    else 
     blank <= UDSn; 
     temphex <= temp_latch (11 downto 8); 
    end if; 
    LEDROW <= '1' & tempseg; 
    LEDCOL <= "00010";   
   when "10" => --DIGIT3 
    blank <= '0'; 
    if counter(20 downto 19) = "00" then 
     temphex <= ADDRESS (23 downto 20);  
    elsif counter(20 downto 19) = "01" then  
     temphex <= ADDRESS (7 downto 4); 



    else 
     blank <= LDSn; 
     temphex <= temp_latch (7 downto 4); 
    end if; 
    LEDROW <= '1' & tempseg; 
    LEDCOL <= "00100";   
   when "11" => --DIGIT4 
    blank <= '0'; 
    if counter(20 downto 19) = "00" then 
     temphex <= ADDRESS (19 downto 16); 
    elsif counter(20 downto 19) = "01" then 
     temphex <= ADDRESS (3 downto 1) & UDSn; 
    else 
     blank <= LDSn; 
     temphex <= temp_latch (3 downto 0); 
    end if; 
    LEDROW <= '1' & tempseg; 
    LEDCOL <= "01000";       
  
   when others => 
    null; 
   end case; 
  end if; 
 end process; 
 
process (CLOCK8) 
  begin      
 if CLOCK8 = '0' and CLOCK8' event then 
      case state is  
        when S4 => 
   if DTACKn = '0' or BERRn = '0' then -- cycle started 
            state <= S6; 
          else 
            state <= S4; 
          end if; 
   when S6 => 
    temp_latch <= to_bitvector(DATA); 
    state <= S8; 
   when S8 => 
   state <= S4; 
        when others => null; 
      end case; 
    end if;                              
end process; 
  
I_HEX2SEG : entity work.hex2seg 
 port map  
  ( 
  BLANK => blank, 
    HEX => temphex,    
    SEG => tempseg        
  ); 
 
 
end Behavioral; 

  



----------------------------------------------------------------------- 
-- Company:  
-- Engineer: Lyndon Amsdon 
--  
-- Create Date:    21:53:10 10/15/2007  
-- Design Name:  
-- Module Name:    hex2seg - Behavioral  
-- Project Name:  
-- Target Devices:  
-- Tool versions:  
-- Description: Converts a Hex value to a 7 segment display 
-- Dependencies:  
-- Revision:  
-- Revision 0.02 - Added option to display a '-' character 
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
----------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity hex2seg is 
    Port (  
   BLANK : in bit; 
   HEX : in bit_vector (3 downto 0); 
         SEG : out bit_vector (6 downto 0) 
   ); 
end hex2seg; 
architecture Behavioral of hex2seg is 
signal conversion : bit_vector (6 downto 0); 
begin 
 
SEG <= "1111110" when BLANK = '1' else conversion; 
with HEX select 
  conversion <= "0000001" when "0000", 
     "1001111" when "0001", 
     "0010010" when "0010", 
     "0000110" when "0011", 
     "1001100" when "0100", 
     "0100100" when "0101", 
     "0100000" when "0110", 
     "0001111" when "0111", 
     "0000000" when "1000", 
     "0000100" when "1001", 
     "0001000" when "1010", 
     "1100000" when "1011", 
     "0110001" when "1100", 
     "1000010" when "1101", 
     "0110000" when "1110", 
     "0111000" when "1111", 
     "0111000" when others; 
 
      
end Behavioral; 
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Schematic from ‘Microprocessor System Design’ by Alan Clements showing single step 

control of the Motorola MC68000. 
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Single_step.vhd, a VHDL component for controlling single stepping of the CPU through 

bus cycles. 

 

----------------------------------------------------------------------- 
-- Company:  
-- Engineer:  
--  
-- Create Date:    15:09:37 01/15/2008  
-- Design Name:  
-- Module Name:    single_step - Behavioral  
-- Project Name:  
-- Target Devices:  
-- Tool versions:  
-- Description:  
-- Used to intercept the bus cycle handshaking to the CPU so 
-- that a switch can be used to single step the SPU 
-- 
-- Dependencies:  
-- 
-- Revision: 
-- Revision 0.04 - Added reset for state machine 
-- Revision 0.03 - Modified to work with pulsing dtack in (eg from mmu)  
-- Revision 0.02 - Getting stuck in Busend State, changed to delay  
-- rather 
-- than checking for AS going high.  
-- Revision 0.01 - File Created, use state machine 
-- Additional Comments:  
-- 
----------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
 
entity single_step is 
    Port ( CLK16 : in  bit; 
     CLK8 : in  bit; 
     RESET : in  bit; 
     RAM : in  bit; 
     AS : in  bit; 
           DTACK_I : in bit; 
           BERR_I : in  bit; 
           SWITCH : in  bit; 
           DTACK_O : out  bit; 
           BERR_O : out  bit); 
end single_step; 
 
architecture Behavioral of single_step is 
 
signal counter       : std_logic_vector(23 downto 0); 
 
 



-- define states 
type state_type is (idle,button,busend,delay,ramaccess); 
signal state : state_type; 
 
begin 
 
process (CLK16,RESET) 
begin  
if reset = '0' then  
 state <= idle; 
 BERR_O <= '1'; 
      DTACK_O <= '1'; 
elsif CLK16 = '1' and CLK16' event then   
 
case state is  

when idle => 
 BERR_O <= '1'; 
      DTACK_O <= '1'; 
 counter <= "000000000000000000000000"; --reset counter 
       if AS = '0' then -- cycle started 
             state <= button; 
           else 
             state <= idle; 
           end if; 
     
when button => 
 if switch ='0' and RAM ='0' and CLK8 ='0' and DTACK_I ='1' then 
  DTACK_O <= DTACK_I; 
  BERR_O <= BERR_I; 
  state <= ramaccess; 
 elsif switch='0' and RAM='1' and (DTACK_I='0' or BERR_I='0') then 
  DTACK_O <= DTACK_I; 
  BERR_O <= BERR_I; 
  state <= busend; 

else 
  state <= button; 
 end if; 
     
when busend => 

--if AS = '1' then -- cycle ended 
 DTACK_O <= DTACK_I; 
 BERR_O <= BERR_I; 

state <= delay; 
          --else 
          --  state <= busend; 
          --end if; 
   
when delay => 
 if counter = "111111111111111111111111" then -- debounce counter 
  state <= idle; 
 else 
  BERR_O <= '1'; 
     DTACK_O <= '1'; 
  counter<=counter+1; --increment for 1 second delay counter 
  state <= delay; 
 end if; 
       



when ramaccess => 
 DTACK_O <= DTACK_I; 
 BERR_O <= BERR_I; 
 if RAM = '1' then -- wait for cycle to end 
  state <= delay; 
 else 
  state <= ramaccess; 
 end if;         
     
when others => null; 
end case; 
end if;                              
end process; 
 
end Behavioral; 
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Change to MFP IP core wf68901ip_timers.vhd for correct generation of x_CNTSTRB 

where x is the Timer letter. 

 

Old: 

 
wait until CLK = '1' and CLK' event; 
if PRESCALE > x"00" and XTAL_STRB = '1' then 
 PRESCALE := PRESCALE - '1'; 
else 
 case TACR(2 downto 0) is 
  when "111" => PRESCALE := x"C7"; -- Prescaler = 200. 
  when "110" => PRESCALE := x"63"; -- Prescaler = 100. 
  when "101" => PRESCALE := x"3F"; -- Prescaler = 64. 
  when "100" => PRESCALE := x"31"; -- Prescaler = 50. 
  when "011" => PRESCALE := x"0F"; -- Prescaler = 16. 
  when "010" => PRESCALE := x"09"; -- Prescaler = 10. 
  when "001" => PRESCALE := x"03"; -- Prescaler = 4. 
  when "000" => PRESCALE := x"00"; -- Timer stopped or event                
                                             -- count mode. 
 end case; 
end if; 
case PRESCALE is 

when x"00" => A_CNTSTRB <= '1'; 
 when others => A_CNTSTRB <= '0'; 
end case; 

 

 

 

New: 

 
wait until CLK = '1' and CLK' event; 
if PRESCALE > x"00" and XTAL_STRB = '1' then 
 PRESCALE := PRESCALE - '1'; 
elsif XTAL_STRB = '1' then 
 case TACR(2 downto 0) is 
  when "111" => PRESCALE := x"C7"; -- Prescaler = 200. 
  when "110" => PRESCALE := x"63"; -- Prescaler = 100. 
  when "101" => PRESCALE := x"3F"; -- Prescaler = 64. 
  when "100" => PRESCALE := x"31"; -- Prescaler = 50. 
  when "011" => PRESCALE := x"0F"; -- Prescaler = 16. 
  when "010" => PRESCALE := x"09"; -- Prescaler = 10. 
  when "001" => PRESCALE := x"03"; -- Prescaler = 4. 
  when "000" => PRESCALE := x"00"; -- Timer stopped or event                      
                                             -- count mode. 
 end case; 
end if; 
case PRESCALE is 

 when x"00" => A_CNTSTRB <= XTAL_STRB;   

 when others => A_CNTSTRB <= '0'; 

end case; 
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Change to Glue IP core wf25915ip_interrupts.vhd for correct generation of IPL level 

from  interrupt sources, MFP, HBL and VBL. 

 

 

Old: 

 
PRIODECODER: process(EINT3n, EINT5n, EINT7n, GI_In) 
 begin 
  if EINT7n = '0' then -- Highest priority. 
   IPLn <= "000"; 
  elsif GI_In(1) = '0' and GI_In(2) = '0' then -- MFPINT. 
   IPLn <= "001"; 
  elsif EINT5n = '0' then 
   IPLn <= "010"; 
  elsif GI_In(1) = '0' and GI_In(2) = '1' then -- H-Blank. 
   IPLn <= "011"; 
  elsif EINT3n = '0' then 
   IPLn <= "100"; 
  elsif GI_In(1) = '1' and GI_In(2) = '0' then -- V-Blank. 
   IPLn <= "101"; 
  else 
   IPLn <= "111"; 
  end if;   
end process PRIODECODER; 

 

 

 

New: 

 
PRIODECODER: process(EINT3n, EINT5n, EINT7n, GI_In) 
    begin 
        if EINT7n = '0' then -- Highest priority. 
            IPLn <= "000"; 
        elsif GI_In(2) = '0' and GI_In(1) = '0' then -- MFPINT. 
            IPLn <= "001"; 
        elsif EINT5n = '0' then 
            IPLn <= "010"; 
        elsif GI_In(2) = '0' and GI_In(1) = '1' then -- V-Blank. 
            IPLn <= "011"; -- 011 
        elsif EINT3n = '0' then 
            IPLn <= "100"; 
        elsif GI_In(2) = '1' and GI_In(1) = '0' then -- H-Blank. 
            IPLn <= "101"; -- 101 
        else 
            IPLn <= "111"; 
        end if;        
end process PRIODECODER; 
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Schematic of the revised Eiffel project, to support control of an ATX power supply and 

use of Sony Playstation controllers. 
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Gembench and SysInfo Results. 
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Two sections from wf25915ip_video_timing.vhd, first is the original and the second is 

the revised version with equality relational operators.   

 

DE_CTRL: process(CLK, RESETn) 
begin 
if RESETn = '0' then 
 HDE <= '0'; -- Blanking out. 
 VDE <= '0'; -- Blanking out. 
elsif CLK = '1' and CLK' event then 
 -- Horizontal controls: 
 if SHIFTMODE = "10" then -- 35.714 kHz. 
  if HTEMP > "000101000" and HTEMP <= "001101000" then 
   HDE <= '0'; -- 8us low, 3.0 before and 2.0 after HSYNC. 
  else 
   HDE <= '1'; 
  end if; 
 else -- 15.625 kHz. 
  if HTEMP > "010110100" and HTEMP <= "101110100" then 
   HDE <= '0'; -- 24us low,14 before and 5 after HSYNC. 
  else 
   HDE <= '1'; 
  end if; 
 end if; 
 
 -- Vertical controls: 

if SHIFTMODE = "10" then -- 72Hz. 
  if VTEMP > "011010001" and VTEMP <= "100110010" then 
   VDE <= '0'; -- 97 lines low,47 before and 49 after VSYNC. 
  else 
   VDE <= '1'; 
  end if; 
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and SYNCMODE(1) = '0' then  
             -- 60.00Hz. 
  if VTEMP > "000011000" and VTEMP <= "001010111" then 
   VDE <= '0'; -- 63 lines low,40 before and 20 after VSYNC. 
  else 
   VDE <= '1'; 
  end if; 
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and SYNCMODE(1) = '1' then  
             -- 50.00Hz. 
  if VTEMP > "000000111" and VTEMP <= "001111010" then 
   VDE <= '0'; -- 115 lines low,72 before and 40 after VSYNC. 
  else 
   VDE <= '1'; 
  end if; 
 else 
  VDE <= '1'; 
 end if; 
end if; 
end process DE_CTRL; 

 

 

 

 



DE_CTRL: process(CLK, RESETn) 
begin 
if RESETn = '0' then 
 HDE <= '0'; -- Blanking out. 
 VDE <= '0'; -- Blanking out. 
elsif CLK = '1' and CLK' event then 
 -- Horizontal controls: 
 if SHIFTMODE = "10" then -- 35.714 kHz. 
  if HTEMP = "000000100" then --4 
   HDE <= '1'; -- 8us low, 3.0 before and 2.0 after HSYNC. 
  elsif HTEMP = "010100100" or HTEMP = "010101100" then --164 or 172  
   HDE <= '0'; 
  end if; 
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and SYNCMODE(1) = '0' then  
       -- 60.00Hz. 
  if HTEMP = "000110100"   then --52  
   HDE <= '1'; -- 24us low,14 before and 5 after HSYNC. 
  elsif HTEMP = "101110100" or HTEMP = "111001100" then --372 or 460 
   HDE <= '0'; 
  end if; 
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and SYNCMODE(1) = '1' then  
       -- 50.00Hz. 
  if HTEMP = "000111000"  then --56  
   HDE <= '1'; -- 24us low,14 before and 5 after HSYNC. 
  elsif HTEMP = "101111000" or HTEMP = "111010000" then --376 or 464 
   HDE <= '0'; 
  end if; 
 end if; 
 
 -- Vertical controls:  
 if SHIFTMODE = "10" and HTEMP = "011010000" then -- 72Hz. 
  if VTEMP = "111000000" or VTEMP = "111011001" then -- 448 or 473 
   VDE <= '0'; -- 97 lines low,47 before and 49 after VSYNC. 
  elsif VTEMP = "000110000" then --48 
   VDE <= '1'; 
  end if; 
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and HTEMP = "111101100" and 
SYNCMODE(1) = '0' then -- 60.00Hz. 
  if (VTEMP = "011101010" or VTEMP = "100000010") then --234 or 258 
   VDE <= '0';  
  elsif VTEMP = "000100010" then --34 
   VDE <= '1'; 
  end if; 
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and HTEMP = "111110000" and 
SYNCMODE(1) = '1' then -- 50.00Hz. 
  if (VTEMP = "100000111" or VTEMP = "100110100")  then --263 or 308  
   VDE <= '0';  
  elsif VTEMP = "000111111" then --63 
   VDE <= '1'; 
  end if; 
 end if; 
end if; 
end process DE_CTRL; 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 


