- Gutachten mit Fenigungsuggr{vzgchu%g%er VDE-Prufstelle ne 1633 UG sran 1

VDE-Priistelle, Merianstrafle 28, D-6050 Otfenbach P 2—/
Nur gultig mit [{_

umseiligen Bedingungen

Nama und Sitz des Gutachteninhabers

ASTEC Europe Ltd., Eduard-Pfeiffer-Str. 73, 7000 Stuttgart 1

Fartigungssiatle

-AA- ASTEC International Ltd., Hung Hom Kowloon, HK Hong Kong

Ausstellungsdatum

Zeichen des Antragstellers Antragsdatum Aktenzeichen
Be/rop Schr.v. 18.6.1984 11774-3336-1001/A1J W&/b 27.6,1984
Uberwachungs-Kennzeichen: Statistik: 1
JVDE-Reg.-Nr. 1633 " oder &
Beschreibung: Jahres-
3 gebuhren-
Einheiten
Gepriift nach DIN IEC 380/VDE 0806/8.81
Einbauschaltnetzteil
Bezeichnung: Modell AC 8151-01 V 25
Nennspannung: 115/230 v~, 50/60 Hz
Nennstrom:, 0,5 A (fir 230 U~) Dbzu.
i 1 A (fiUr 115 vn) A
Ausgangsspannungen
und -strdme: Siehe Datenblatt-Anlage Nr. 1 |

<

Zulassige Umgebungs- .
temperatur: max. 50 °C

Beim Einbau des Schaltnetzteiles, der entsprechend der zugehdrigen In-
stallationsanleitung zu erfolgen hat, muB sichergestellt werden, an
alle Anforderungen gemiB den Bestimmungen DIN IEC 380/VDE 0806/8.81 ein-
gehalten sind.

Weitere Angaben vergleiche Anlage Nr. 1 - 4.°

VDE-Prifstelle
Abt. TD

A A QD ) |
bd bl

T———— . —

VOE-Vd 81 0580






AC 8151-01

38 Watt Switching

Power Supply

DESCRIPTION

The AC 8151 is a 38 Watt, muitiple-
output switching power supply, pro-
duced on an open printed circuit board.
Itis ideally suited for use in small
microprocessor based systems, disc
drive systems, terminals, and other
mixed logic applications. Input voltage
is jumper selectable for either 115 VAC
or 230 VAC. The AC 8151 is UL, CsA,
and VDE approved.

FEATURES

U High Efficiency

'O Built-in EMI filter

O UL/CSA/VDE approved

< Meets European safety standards
Z 100% thermal cycle and burn-in
Vacuum impregnated transformers
~ Dual input voltage 115/230 VAC
— Convection cooling

(1

0

Over voltage protection

= Short circuit protection

(W]

Open PCB construction *

106
® 2

159
405

14%)

MOUNTING HOLE (ax)

Outputs:

+5V DC @ 2.5A

+12V DC @ 2.0A
-12V DC @ 0.1A

; o e e s e e e e o
I
7 7 . 1
: I
|
|
!
¥ I-— P
| ! ||
[ sz (=] L
19 38 28 ? Ir 1]
00 889 %0
|' sx3 : Ik
i (3]
|
i o [Eg : IE
i | [
i | MNPy : I'-__—’ 3]
| ——-@- 5Kt LrP?I-Q.. . ! L__ P2
L o | J
r ‘o L l b r = :u- ————————
T ] > |
2 w1 1.8 o
CECO. I!ioa 61
5 11 154 92 ' Oimensions i nn:‘r::s
6.3 .
I w0 T T

PIN ASSIGNMENT
SK1 P1 Neutral

P2 Live

SK2/3/4
P1 —-12v
P2 +12v
P3 Common

P4 +5v






AC 8151-01 ELECTRICAL. CHARACTERISTICS

Output Charactenstiics
Output current caapmzily

Qutput 8 areentf l Tolerance! Qutput
Voltage e | | Ripple?

+5vDC | 0454 | 254 "+ 4% S0mV p-p
+12VDC | 034 ||2a2& + 5% 150mvV p-p
-12VOC | '0Dea || ¢ 1 +25%/ -8.3% 150mV p-p

Input Characteristics

AC Input voltage: 95 to 135 VAC, or 180 to 270 VAC
. (Seiectable by jumper on PCB)
AC Input frequenicy: 47 to 63Hz

AC Input current- 0.858A (rms)

NOTES:

1. The output tolerance refers to the nominal voltage and in-
cludes line regufation, load reguiation, temperature drift and
set-up tolerance.

2 The specified ripple is at the rated line voltage and load range.

Individual maximum ratings:

+5V DC: 5 amps if no load on + '12V output, or
2.5 amps if load draws 2.5 amps on + 12V
output.

+12V DC: 2.5 amps it + 5V output load draws
2.5 amps or less.

=12V DC: 0.5 amps

NOTE: The maximum continuous output power shall not
exceed 38 Watts. Specified voitage tolerances do nat
apply to the above individual maximum currents.

<4

JUMPER

230 VAC

JUMPER POSITION
---  —— FOR 115 VAC

DUAL AC INPUT VOLTAGES
(JUMPER SELECTABLE)

General Characteristics

Operating temperature:
Efficiency:

Input line reguiation:
Overvoitage protection:

Hold-up time:
Line regulation:
Overcurrent protection:

Line transient response:

Power line disturbances:

EMI Requirements:

Safety requirements:

Inrush current:

Size (Overall):

Weight:

Mating connectors:
AC input:
DC Output:

0to 50°C
65% (min) at full ioad
*=0.2% max.

5.8V min. to 6.8V max.
(+ 5V line anly)

15msec.

. =0.5% high line at full Inad

All outputs protected to
short circuit conditions

Meets |EEE standards

Output supply unaffected
through half cycle
absence of input power
during tull load and

95 VAC input.

Meets conduction limits of:
a) FCC Class “B" rules
b) VOE 0871 Class “8" rules

Meets or exceeds:

a) UL 1012 (File #E69016)

b) CSA 22.2 (File #LR42983-22)
C)IEC 435

d) CEE: Part 1 and Part 2P

30 amps @ 115 VAC, or
60 amps @ 230 VAC at 25°C
ambient cold start.

Mechanical Characteristics

length: 6.3 in. (160 mm)
width: 3.9 in. (100 mm)
height: 2.0 in. max (51.4 mm)

15.17 oz (0.43 kg)

Molex PIN 09-50-3031
Molex PIN 22-01-1043

ASTEC AGENCIES LTD
Taoer Liaison oftice

3F | 45 Sec 2, Fu-Msing S R
Taicer Tawan R O C

ASTEC (USA), LTD.

2880 San Tomas Expressway, Suite 200
Santa Clara, CA 35051 U.S.A

A CT:f TRI 14NRY 74R.12NN






: l s | 5 | ' | & | .
DHON DNOH ‘a T
dl] L “' " NG 2/"" L NI STIGI SHOGTA TS
T 7 e Y L I LGN LT
R 7 gE" | | vam s |ove
. MSIND Vbve | e ¢ /\ - e 73138 |0
1519 - i b g L ENYU0 ISTAY
v —rf > v o —t-—F 53 i P
s ON 1vva HO Dls:l)\ 1Swie ....‘ B -’r),;,, ¥ ¥ ”} . ik ‘-”‘_?-J-"
WYE Ry Ta| T Collbimy L4 W] 2HURH0 03514 JLETTY
HYHovYIO  INDyID . ADwraog ¥y DAY 10 0 35TA 38
e 38 | ne s ter sRoAvImG Y _— =
— Vi DNIMV‘IC!_!’LDE_AOM 00 | s1adies trwssings srwn

L

‘ EIE]

HOLSISIY 1SAFOY INGINO AlLt £ ASH 3y

14

ALI-O

]!!!.[—.—.
- (3]
A-1e)
- Lont

-
“_.o—-'
LN
1

i
L

1

+3
w2,

’{F‘ y 3ol 3 L 1t
IUJE!I I;I‘ 14 HJ'} (‘, + K
A5 O— \QDJ

Hig L5 i e Ly

e . m T L o U= ——%
(S L3N] 50 1SH 168 7] %
Wunaevo nosaso w 0 wid “;‘5
';1 $; 0 l u . o (9] A nn T —l:‘_. N
AL 0L (R SR aININI uy ud B} 62 WS 9 $3 ) 183 1) 1 3
o T L2y SLuSIY N Ly Lty Oy €y Wiy Ly %Y iy iy iy HWNE0ie 6 Su LW Y S id 1y ’ . _—_l;

: I 3 | " ' | v I € | ]






Cl Cap-MPR .0lU +-20% 250 VAC
 —
c2 Cap-MPR .1U +-20% 250 VAC
C3 Cap-C 4700p +-20% 400 VvaAC
C4 Cap-C 4700p +-20% 400 VAC
C5 Cap-MP 0.2Zu +-20% 250V
C6 Cap-E 100U +-20% 250V
c7 Cap-E 100U +-20% 250V
c8 Cap-E 220U +50 -10% 10V
< o c9 Cap-C 470p +-20% 3KV
Cl10 Cap-C .01U +-20% 1KV
cli Cap-MPR .01U +-20% 250VAC r
C12’ Cap-P 0.22u +-20% 100V
c13 Cap-P .022U +-20% 50V
Cl4 Cap-P .22U +-20% 100V
C15 Cap-E 1000U +50 -10% 25V
Cl$ Cap-E 1000U +50 -10% 25V
C17- Cap-E 1000U +50 -10% 25V .
C18 Cap-E 330U +-20% 16V
~ C19 Cap-E 330U +-20% 16V
c20 Cap-E 470U +50 -10% 25V
c21 Cap-E 2200UF +-20% 16V
C24 Cap-UP 0.22u +-20% 250V
PROPRIETARY STATEMENT
Dl Rect RGP 104 THIS DOCUMENT CONTAINS DATA AND INFORMATION
PROPRIETARY TO ASTEC COMPONENTS LTD. THIS
D2 ReCt RGP lOJ UATA AND INFCRMATION SHALL NOT BE DISCLOSED.
DISSEMINATION DR REPRODUCED IN WHOLE OR IN PART
D3 Rect RGP 1OM LGl THE TXTRY S POIOR WRITTEN AUTHORIZATION
i ASTELC CULOMPUNENTS Ll
L D4 Rect 1N4001 GP
é%»f A|27JUN83 [E TITLE I |
8 . COMPONENT CODE LIST ACS15]
c G 1
» W Shest ] of 4 A4
1° H ASTEC HONG KONG

AE 20220 P






DS Diode-SI 1N4606
D6 Rect RG3B
D7 Rect RG3B
D8 Rect RG3B
Do Rect RGPI1OB
D11 Diode-SI 1N4606
D12 Diode-SI 1N4606
D13 . Rect 1N4001GP
DB1 Bridge Rect KBP1O .,
Fl Fuse F2A 250V
ICl IC
L1 Toroid
L2 Toroid
L3 Base choke
14 Choke
L5 Choke Coil
. PROPRIETARY STATEMENT
L6 . Choke Coil .
L7 ChOke C011 THIS DOCUMEMNT CONTAINS DATA AND INFORMATION
PROPRIETARY TO ASTEC COMPONENTS LTD. THIS
DATA AND INFORMAT!ON SHALL NOT BE DISCLOSED.
DISSEMINATION OR REPRODUCED IN WHOLE OR IN PART
WITHOUT THE EXPRESS PRIOR WRITTEN AUTHORIZATION
Ql TRS-NPN 28D467 NF ASTEC ;ouﬁo~c~1s LTO.
Q2 : TRS-NDN 2SD467
Q3 TRS~-PNP 2SD561 _
A|27JUN83 |& TITLE
8 B COMPONENT CODE LIST AC8151
2 G
W Shast 2 of 4
L? H ASTEC , HONG KONG

AE 2022 0 P,






MATIO!
THIZ

N PART
ZATION

R1 THMTR 4R +-20%
R2 RES-CF 330K +-5% 1/2W
R3 RES-MOF 180R +-5% 1W
R4 RES-MOF 33R +-5% 2
RS RES-CF 1K +-5% 1/4W
R6 RES-CF 27R +-5% 1/4W
R7 RES-CF 68R +-5% 1/4W
R8 RES-MOF 120R +-5% 1W
RO RES-CF 10R +-5% 1/4W
R10 RES-CF 10R +-5% 1/4W
R11 RES-MF .75R +-5% 1V g
R12’ RES-MF 1R +-5% 1W
R13 RES-CF 5.6R +-5% 1/4W
R14 RES-CF 68R +-5% 1/4W
R15 RES-CF 270R +-5% 1/2W '
R16 RES-CF 270R £-5% 1/2W
R17 RES-CF 8.2R +-5% 1/4W
R18 RES-CF 560R +-5% 1/4W
R19 RES-CF 56R +-5% 1/4W
R20 RES-CF 68R +-5% 1/4W
r21 RES-CF 12K +-5% 1/4W
R22 RES-CF 470R +-5% 1/4W
R23 RES-MF 4.7K +-2% 1/4W !- PROPRIETARY  STATEMENT
R24 RES-MF 2.7K +-2% 1/4W |1us socument conrams onra ano mrcl
R25 RES-MF 22K +-2% 1/4W | iursune mramismen s s Jf: Tt
R26 RES-CF 68K +-5% 1/4W :H-iiioﬁul: ::{?:xcf:::;::?oufii;:r::?.ﬁ:;m
Ul ASTEC COMPONENTS LTO,
R27 ___ RES-CF 12R +-5% 1/4W — .
A|27JUN83 |E TITLE
" - COMPONENT CODE LIST AC8151
c G
|° H ?A?S?fgg HONG KONG R

"AE 2022 O.P.






SCR 1 SCR Ci22U

T1 COM MODE TRF
T2 PWR TRF

T3 CONTROL TRF

Z1 DIODE-Z 5.6V +-5% 40MA

PROPRIETARY  STATEMENT

THIS DOCUMENT CONTAINS DATA AND INFORMATION
. PROPRIETARY TO ASTEC COMPONENTS LTD. THIS
' GATA AND INFORMATION SHALL NOT BE DISCLOSED.
DISSEMINATION OR REPRODUCFED IN wHQOLE OR IN PART
~ITHOUT THE EXPRESS PRIOR WRITTEN AUTHORIZATION

P ASTEC COMPUNESTS LD

A T‘TLE_' — — — - e
27JUN83l E
8 £ COMPONENT CODE LIST AC8151
C
- 00000
D H Shee 4 4
. ASTEC HONG KONG ' o A

~F 20022 D.P.



e —



PROPRIETARY STATEMENT

i
.

ITHIS OOCUMENT CONTAINS BATA AND INFORMATION
EFROPRIE‘ARY TO ASIEC COMPONENTS LTD. THIS

Ir..,\rA AND INFORMATION Sit&LL NOT 8E DISCLOSED,

. [IQISSEMINATION OR REPRODUCED IN WHOLE OR IN PART

R [ W4T HOUT THE EXPRESS PRIGR WRITTEN AUTHORIZATION

jOF ASTEC COMPONENTS L3O. -

PSI0 — PLEN-12Y
P2TT22V
PIAI IO,
" rrerrery

21

A
7523
5 OI®: m]'
C B el s
o Uom Sl
NG: 1
O“SV =2 - WARERP?{ICE GONLY WITH ¢ A% b4l 0
SAME TYPE FUSE !3?50\"— P14
= e
=
| et OF 5
:u::g‘\: ?::wuo"‘z (© 1980 astec CoMrosenTS LTO
9
f
G| aers2 Hh . | . C L /gf,\/ -
. I:u/a/ml D 6/1/81 TITLE U vova
. B. SPECIFICATION -
8 o400 |E[111/5/8) P. C _
| C "‘L_?)/J_l/so FN9/7/H1
) A-4
W Sheat 4 of 7
ASTEC COMPONENTS LID. HONG KONG

BDO1022







A User's Guide to FSMGDOS

Copyright 1991 by Atari Corporation

Introduction:

‘This document describes the new features of FSMGDOS and FONTGDOS.
We should begin with a quick review of what GDOS is and what it allows
you to do. GDOS is actually an extention of your operating system. It
allows the programs that you run to output text and graphics to printers and
other devices besides the screen. GDOS also enables you to print text in
many different font faces. Instead of typing characters in the standard
system font, you now have access to Swiss, Times, Lucida and 2 multitude
of other fonts.  GDOS is run when you first turn on your machine. For
now, don't worry about where to put it or what it needs to run. Qur install
program will set your system up so that everything will be placed in the
correct location.

Basic Concepts:

FSMGDOS represents the latest and by far the most powerful release of
Atari GDOS. Your first question is probably, "What's the difference between
the GDOS that I have now and FSMGDOS" The nuin difference between
the two is that FSMGDOS allows programs to print in scalable outline fonts
instead of bitmap fonts. Outline fonts offer high-quality text at all sizes,
whereas bitmap fonts are limited to a small number of sizes that become
unappealing when crudely scaled by the system. Furthermore, unlike
bitmap tonts, which are found in GDOS, outline fonts allow you to use the
same font file to print any size character on almost any output device. This
is because the description of the characters and not the character data is
stored in the font file. An *a" for cxample is built using the same set of rules
whether it's built at 10 point or at 24 point. “This means you no longer need
a separate font for the different screen resolutions and, more importantly,
you no longer need separate tonts for your printers and other devices.
FSMGDOQOS can create all of these characters for all devices and all sizes
using the same font description.

If you want to continue using some of the bitmap fonts that came with
GDOS, that's tine. FSMGDOS will still support bitmap fonts. In fact,
another new feature in FSMGDOS is "font caching". With old versions of
GDOS. every bitmap font that you used took up memory, and your
machine would quickly run out of space. With font caching, you tell
ESMGDOS how much memory that you wish to devote to storing your
bitmap fonts. This memory is called a cache. FSMGDOS will load in the



188

font as it's used. When there is no longer any room for the next tont,
FSMDOS will get rid of one of the fonts to make room. As long as the
memory that you allocate is bigger than the largest font, FSMGDOS will be
able to use as many bitmap fonts as you wish in a limited amount of space.
For those of you who are using STs without enough memory to support
FSMGDOS, ( an ST with less than a megabyte of ram) we have included a
GDOS called FONTGDOS. FONTGDOS does not work with fsm fonts, but
does have all of the font caching capabilities mentioned above.

Getting Started

Installing FSMGDOS or FONTGDOS onto your svstem is 4 simple task.
Either you already have FSMGDOS pre-installed on your hard drive, or you
have to install it from floppies. In the former case, you don't need to do
anything. In the latter, put disk #1 into your floppy drive. Run install.prg to
put a new GDOS onto your system. The install program will walk you
through the steps needed to install your GDOS. When the installation is
completed, you will have all of the necessary files on your system to begin.

After the installation is completed, you must reboot your machine to enable
the new edition of GDOS. If you've installed it correctly, you'll get the new
FSMGDOS or FONTGDOS sign-on message while you boot up. If all went
well, GDOS was installed and you should be seeing a4 normal desktop. If
GDOS gives you an error message while booting up, run the install
program again paying close attention to any installation error messages
which may come up. Note that the installation program will install brand
new device drivers, and that old drivers will not work with either FSMGDOS
or FONTGDOS.

Try running the demo program which was placed in your FSM directory.
Unlike your old GDOS programs, this program was written espedially for
FSMGDOS and its scalable fonts. If you are running FSMGDOS, notice that
you have access 1o any size of font as well as arbitrary rotation, arbitrary
skew, mirroring, and many other features. Use the built in help function t©
assist you in using the program.

FSMGDOS should be compatible with whatever word processor and draw
programs that you have now. Try running some of these programs to see
how they work with FSMGDQOS. Note that the installation program will set
up your system so that you can use all of your new I'SM fonts immecdliately.
To change the set-up (e.g. you want to add more point sizes), read the next
section on how to use the FSM Font Manager accessory.



In addition to the Font Manager, two other accessories/CPX's have been
provided. The first one, the FSM Printer Init accessory, is used to change
your prnter driver configuration; you can change the page size, number of
colors, and etc. The other one, the GDOS manager, is used to manage the
oldler style bitmap fonts and change drivers. You should not need to use
these accessories very ofien, since the install program should set up your
system 1o be ready to use. For more information on these two accessories,
please refer to Appendix II. Both of these accessories are computible with
FONTGDOS. Since FONTGDOS is identical to vour old GDOS from a
user's point of view, most of the rest of this document will be devoted o
the discussion of FSMGDOS.

The I'SM Font Manager allows you to configure FSMGDOS to your
particular system. Using the accessory, you can tell FSMGDOS which fonts
you want to usc and what point sizes you want available for cach font.
After bringing up the FSM Font Manager, you will notice a list of installed
fonts. These are the fonts currently active, which means that you will be
able to use them in your applications. When you click on one of the font
names (and it becomes high-lighted), two buttons will appear that will let
you delete the font or change the available point sizes. You can also
double-click on a font name to change its point sizes. The point sizes that
you choose are the ones that you can use with applications. although newer
programs allow you to choose any point size without specifying them
through the accessory. In order to add different fonts, you can use the
"Options Menu" and choose the "Show Deactivated Fonts” option. Now,
you can choose trom the list of unused ftonts, and activate them. Select
some deactivated fonts and click on the "Activate Font(s)* button. ‘The fonts
will be activated, and your applications will be able to access them. You
can see the new fonts on the other list by going 1o the "Options Menu® and
choasing the "Show Active Fonts" option. At any time, you can click on the
save box to save your changes.

‘The FSM menu bar enables you to access other parts of the aceessory.
Clicking on the "FFSM cache Options" menu item brings up a dialog box
which allows you to manipulate the FSM cache. Remember that FSM must
build its characters before it displays them.  You may notice a slight delay
the first time that you type a character. Because FSM stores (caches) away
the generated character data, the next time you display those characters they
will be printed out much quicker.

Using the FSM cache options dialog box, you are able to load, save, or flush
your tsm character cache. At first glance, you can see how usetul these



4

functions can be. As an example, say you had a document that contained - '“35
only Lucida Roman in 10, 14, and 18 point characters. Since the characters '
are being displayed on the screen, you know that they've been cached by
FSM. Save the cache, using a name that vou can easily associate with your
document file. The next time you're ready to load this file, Hush the cache,
then read in the cache which was saved out with your file. After loading
the document notice how fast the screen is able to redraw. This is because
FSM does not need to generate any of the character data for the document.
An append function allows you to add character data to your cache instead
of replacing the already existing data. It should be noted here that your
cache is not lost when you exit your program. If you leave your program
then enter it again without a reboot, your cache will be preserved. It the
[F'SM accessory detects a file named default.fsm in your FSM directory when
your machine boots up, it will automatically be loaded in.

Click on the "Make Width Tables" menu option to save out a set of

widthtables. You don't really need to know what widthtables are, but they

can greatly improve the speed of an application. Call the software company

that produced the application you are using to see if they recommend using

widthtables. Otherwise, d test to see if using widthtables is worthwhile is to

build them and make sure the widthtable option is set to "Yes"; then try

running an application to scc it it comes up faster than when the widthtable

option is set to "No". Tfitis faster, then continue using widthtables. Just )
remember to build them whenever you change something in the accessory
and it warms you to build them. Noe that you may need to build
widthtables again if you change resolutions.

The dialog box which is brought up when you dick on the "Qutline Font
Setup" menu item allows you to set directory paths, cache sizes, widthtable
option, and symbol/hebrew files. The items in this dialog box will probably
not need to be changed that often. Refer 1o Appendix I to find out what
these settings represent. Notice a button on the lower left hand corner of
the dialog box named "Defaults". Clicking on this button will bring you into
a dialog box which will let you set default point sizes for the fonts that have
been, or will be installed.  This saves you the trouble of setting the point
size of every font if you want them to share the same point sizes. Use the
"Set All Fonts" button to set point sizes for fonts which have alreacly been
installed. Otherwise, only fonts which are installed later are aftected.

Conclusion

You now know enough about FSMGDOS to be able to use it to print
scalable fonts using both new and existing programs. At the end of this
document is a quick reference guide; the guide should assist you to use



IFSMGDOS and its accessories. It you want more details about how
I'SMGDOS works, please go on to the following appendices



Appendix I
A Detailed Look at FSMGDOS

The EXTEND.SYS file provides a mode of communication between you and
FSMGDOS. This works in very much the same manner as the way that
GDOS is given information through its ASSIGN.SYS file. Your fsm accessory
handles the details of what is contained in this file.

As mentioned betore, FSMGDOS will also handle the caching of bitmap
fonts. It is a good idea to make the bitmap cache larger than the biggest
bitmap font that you have in your ASSIGN.SYS file. If the cache is too small
for a font, the font will not be loaded into the system. if the cache is too
small to hold any bitmap fonts, fsm will ignore them altogether. If you
don't plan to use bitmap fonts, you can sct the cache size to be Q.

FSMGDOS maintains two other caches to keep track of I'SM font
information. One of the caches holds the actual character data. When a
character is requested, fsmgdas builds the bitmap using the instructions
which it gets from the font file. This takes a fair amount of time. Instead of
building the character each time it is requested, FSMGDOS saves the bitmap
of the character into the cache. The next time FSMGDQOS needs the
character, it simply retdeves it from the cache taking a fraction of the time
that it would have taken to build it. Obviously, the performance of your
machine will improve as you devote more memory to this cache. The
second cache used by FSMGDOS is used for internal butters and data
structures, The size needed for this cache varies depending on how many
tonts and point sizes are included in your EXTEND.SYS. The cache size
needed also depends on the size of the characters that must be generated.
With all of the vardables involved, it is hard to recommend an optimal
amount of memory to devote to this cache. To make matters worse, if
GDOS does happen to fill up this cache, system limitations prevent it from
sately grabbing another chunk of memory to handle the overtlow. The
result is a "Not enough I'SM Cache memory" message. When you see this
message, save your document das soon as possible and increase the amount
of cache. You must reboot your machine to incorporate the new cache
size. When you're adding fonts or moditying the cache size in the FSM
accessory, the accessory will wamn you it it determines that your temporary
ache is too smull. Again, experiment with these values to tune it for your
particular system. If you've got 4 megabytes on your system, you are able
to allocate a lot more cache. If you're working with 1 megabyte. you may
need to decrease these numbers. For normal usage (i.e. no 200 point
characters), 100000 bytes or so is probably the most that you will need for
the second cache.



To set the sizes for all available caches. go to the "Options Menu” of the
FSM Font Manager accessory and click on the "Outline Font Setup”. From
there, click on "Set Font Cache." The top cache, labelled "Character”, is the
cache where the individual outline font characters are stored. This should
be set 10 a minimum of 50000 bytes, although if your system has only a
megabyte of memory, 20000 bytes would be reasonable. The second
cache. "Miscellaneous", should be set to at least 50000 bytes. or 20000 bytes
if you are short of memory. Remember that if you do have a limited
amount of RAM, you should correspondingly limit the number and size of
fonts that you choose. You can use FSM fonts cffectively on small systems
with very small caches, as long as you aren't using too many fonts and you
usc normal point sizes (e.g. 10, 14, 24 pis.). Finally, the last cache is the
“bitmap" cache where bitmap fonts are stored. To set this cache, find out
which bitmap fonts you use and what their file sizes are. To set the very
minimal cache size, just set the cache 1o be as big as the biggest bitmap font
file.

Programs need to obtain the widths of characters to determine where on the
screen or page to place them. When the width of a character is requested,
FSMGDOS will either get the width from the widthtbles (if they're tumed
on), or. get the width from the font generator (it widthtables are turned off).
If wiclth tables are turned on, the user may notice long unexpected delays
while the application is booting up. This delay is caused by the time it
takes FSMGDOS to generate the tables. Obviously, the more fonts and
point sizes you have, the longer the delay will be. The FSM accessory may
be used to pre-build widthtables and store them into your FSM directory.
When the application is being loaded, FSMGDOS sees if the widthtables are
wrned on. and then checks this directory to see if the width tables are there,
If they are, FSM will load them in and use them. saving considerable time
booting up the program. The widthtable must have been built in the same
resolution that you're currently running the application in order for
FSMGDOS to recognize it. Also, widthtables are only used for the screen,
not for printers. Finally, it is important to note that certain programs (e.g.
Microsoft Write), for reasons too complicated to discuss here, need
widthtables turned on in order for them to run correctly.

FSMGDOS generates its characters by looking in QFM files. ‘The QFM files
are separated into three different categories. The first kind of file is the
main QI'M file: this file contains information to create the most commonly
used characters of a panticular font style. The second and third category are
the symbol and hebrew QI'Ms; these are the files that generate characters
common 1o all font styles (e.g. all fonts share the same trademark symbol,



pi, or greek characters). Therefore, in order to generate « full set of
characters, FSMGDOS must have access to all three QIM files. If however,
you only need part of the character set, you may exclude the symbol or
hebrew QFMs using your accessory. Note thart all QM files end with the
extender: ".qfm".

To install the symbol or hebrew tiles, go to the "Options Menu" and click on
the "Outline Font Set-Up*. For either symbol or hebrew, click on the
filename or the box next to the "SYMBOL" or "HEBREW" (if the filename
says "NONE"). You will sce a file selector and you can choose a QM file.
FSMGDOS comes with one symbol and one hebrew file: LUCSYM.QI'M (a
symboal file) and LHEBRW.QI'M (a4 hebrew file). You should never install a
non-hebrew or non-symboal file to the HEBREW or SYMBOL slot,
respectively.

An important difference between bitmap fonts and outline fonts is that a
font and its set of point sizes are made available to all devices,
automatically. With bitmap fonts, each device requires a ditferent set of font
files, whereas with outline fonts, FSMGDOS can scale fonts for any device.
At least one point size must exist in order for fsmgdos to recognize the font.
Fonts and point-sizes may be added/deleted/changed freely, but FSMGDOS
will only recognize changes when the next application is launched.

As a side note, the QFM files are not the only files that must be in the FSM
directory; OTL files must be present for FSM to work correctly.  Each QFM
file should have a corresponding OTL file (e.g. LUCB.QFM and LUCB.OTL).
Also. some fonts require more than one OT1L file (possibly with an unrelated
filename). Thus, it is advised that you keep all of your FSM-related tiles in
the FSM directory. Should an OTL file be missing, FSMGDOS will issue a
warning, and any on-going application should be abandoned

-~

i
Mo



Appendix 11
Using the Printer Selector and Printer Config Accessories

The main function of the Printer Selector is to allow you to choose which
printer driver to use as your main driver. This is particularly useful when
you physically want to change printers (c.g. You switch from a dot-matrix
printer for prooting to a laser printer for final output.). You can also select
final or draft mode from this accessory. Selecting draft moxle reduces the
quality of output while speeding up printing time (Note that some printers
do not support dratt mode.). In addition, the Printer Selector is an
accessory that manipulates the configuration file called the ASSIGN.SYS.
This file contains the information on where GDOS locates its drivers and
bitmap fonts and which of those GDOS should use. The installation
program should have set up your ASSIGN.SYS file so that you don't really
need to change anything. The accessory will be most usctul to you when
you need to change printer drivers or add new bitmap fonts. Novice users
should limit the changes made with this accessory although users familiar
with the ASSIGN.SYS format will find it easy to configure their systems.

When you run the accessory, it should come up displaying the current
printer driver. If you wish to use a different driver, just click on the driver
ame, and select from the list that pops down. Natice the two buttons
labelled *Quality:" which allow you to choose final or draft mode. To
change other drivers. as well as the bitmap fonts and the pathname used to
find them, click on the "Options" button to enter a box containing three
buttons. Clicking on "Set Fonv/Driver Path" will come up with the stanclard]
file selector and allow you to change where the fonts and drivers are found.
It you click on "Driver Installation", the top half should display what the
active devices are (i.e. the drivers that applications can use). Use the up
and down arrows to look at the different device numbers and their
correspondling drivers. Notice that you cannot delete the "screen.sys"
drivers found in devices 1 to 10 (They should always use “screen.sys"), but
you can change the others. Natice that device 21 corresponds to the
“Current Printer" of the previous menu. You can change the driver from
cither menu, although the current menu allows you to change more than
just the current printing device. The bottom half of this menu is used to
add more devices to the active list. Novice users should not worry about
this section. If you click on the "Font Installation" button, you can add or
delete fonts for dlifferent devices. As you walk through the difterent devices,
notice how each device has a set of fonts listed. These are the available
bitmap fonts if an application uses that device. Note that devices 1 through
10 represent the different screen resolutions, and that device 21 is the
printer device, the one that your applications are most likely to use. If you



wish to add tonts for a particular application, add them to the devices that
are listed in your application's manual. To actually add tonts, click on the
crop-down menu called "Active Fonts" and click on "Show Inactive Fonts".
Click on the fonts that you want (hold the shift key to select multiple fonts)
and click on "lranster".

‘The Printer Config accessory is used to change settings in the drivers for
items such as the page size or number of colors. Contiguring drivers should
be done before running an application. If you click on "Modity Drivers",
select the driver that you want to change. You should then see a display of
the driver specifications. Note that if a box is shadowed, you may change
this value by clicking on it: If the particular printer driver you have chosen
supports 4 partcular feature (e.g. different page sizes or color pallettes), use
the pop-up menu to look at the available selections. All you need to do is
click on the appropriate sclection. Note that some do not have any
configurable features, and that the CPX/accessory will modify the actual
driver on your floppy or hard disk when @ modification is made.

10

AN,

. 3



11

QUICK REFERENCE GUIDE

To Add FSM Font(s):
Run [SM Font Manager.
Use Options Menu 1o select "Show Inactive Fonu(s)",
Click on font names (shifi<click o grab more than one).
Double click on font or click on *Activate Font" buuon.
Click on "SAVE".
To Delete FSM Font(s):
Run FSM Font Manager.
Click on desired font names (shift-click (o grab> more than one).
Click on "Deactivate* button.
Click on "SAVE".
To Set Cache Sizes:
Run FSM Font Manager.
Use Options Menu 10 select *Outline Font SettUp* and select *Set FSM Cache.
I you notice frequent regeneration of the screen charicters or slow printer
output. increase "Character® cache.
I "Out of memory* error messages appear. increase "Miscellaneous® cache.
I bitap fonts that you've made active do not appear. increase the "Bitnap®
cache,
Save and REBOOT.
To Sct Point Sizes:
Run FSM Font Manager.
Doubleclick on a font or click on font and usc *Activate* buuon.
Usc buttons with numbers to select point sizes or click on "Add Point Size®.
Click on point sizes and use the "Delete Point Size® button 1o remove sizes.
To Sct Default Point Sizes:
Run I'SM Font Manager.
Use Options Menu o select *Outline Font Setup®.
Click on "Defauls” buton,
Add/delewe fonts.
To setall active tonts o the chosen point sizes. click on "Sct All Fonts®
To Install Symbol/Hcebrew Characters:
Run FSM Font Manager.
Use Options Menu 10 select "Oudine Font Sewp”.
Click on cither SYMBOL. or 1IEBREW.
Use file selector to choose an appropriate QFM file (Ask yvour lont supplicr).
To Change Printer Drivers:
Run Printer Selector.
Click on pop-up below"Current Printer®.
Sclect new driver and save.
To Change Bitmap Fonts:
Run Printer Selector.
Click on "Options® then on "Font Instillation®.
Select device number with up/down arrows (1-10 are the diflerent screen
resolutions, 21 is the printer).
To add fonts. click on "Active Fonts" menu, and choose the *Show Inactive Fonts"
option. Click on desired fonts and use *Transfer® buton to activate.






X Control - Extensible Control Panel
for STIMEGA/STe/TT Computers

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
XControl Version: 1.0
This document is Copyright (c) 1990, Atari Corporation

OVERVIEW

This document describes a new Control Panel ( XControl) for STIMEGA/STe/TT computers,
which features loadable Control Panel extensions (CPXs) that performs various sytem
configuration functions. XControl, with its loadable modules, gives the Control Panel the
advantages of any software with modular design: ease of maintenance and expandability.
Improvements to any part of XControl can be distributed individually, by distributing CPX
updates, without the need for updating all parts of XControl. This scheme is more flexible
for users, since XControl will only load the CPXs which a user needs. Software vendors can
create and distribute their own CPXs to extend the functionality of XControl beyond what
Atari provides, or to provide graphical front ends for their TSR utilities.

HOW XCONTROL WORKS

X Control is the combination of a master desk accessory, which loads the various CPXs and
manages user selection of CPXs, and the extensions themselves, which perform the various
system configuration tasks.

When XControl is loaded, at boot time, it looks for a a file called CONTROL.INF in the root
of the boot device. CONTROL.INF contains the default settings for XControl.

One of the settings is the CPX DIRECTORY PATH. This is the directory where XControl
looks for CPXs. If XControl finds the folder, it reads the header of each .CPX file that it
finds there. The header’s id number and version number are compared to those already
loaded. The end result is that only the latest version of a CPX will be retained.

If the header indicates that a .CPX needs to be run at boot time, XControl loads the CPX and
calls its initialization hook. If the CPX header also indicates that the user prefers it to be
memory resident, XControl keeps the CPX in memory.

After checking CPXs and initializing those that need it, XControl adds an additional set of
CPX slots. The number of slots available is based upon either the default minimum number
of slots set by the user, or 1-1/2 times the number of CPXs loaded, whichever is greater.
Additional CPXs may be loaded later during a RELOAD command. All CPXs are initialized
as if they were new, except that existing 'resident’ CPXs are retained. New CPXs marked
'resident’ are treated as non-resident CPXS after a reload. During a reload, a new CPX will
only be loaded if there is a vacant slot available.

After adding additional vacant slots, XControl waits like any other desk accessory for an
AC_OPEN message.



When selected from the Desk menu, XControl opens a window and displays a menu of active
CPXs. When a CPX is chosen from the menu, XControl attempts to invoke it via the
XControl <-> CPX software interface described below. Resident CPXs are invoked
immediately; non-resident CPXs are loaded from the CPX storage directory. If the CPX is
not found by name, XControl looks at all other CPXs in that directory, comparing id
numbers and version numbers. If an exact match is found, that CPX is invoked instead.
Otherwise, a file-not-found alert is displayed.

When invoked, the CPX assumes control of the work area of the XControl window, and can
present its own interface there. XControl dispatches user events through the CPX, but
handles most of the window related events itself. XControl also provides a number of utility
routines to CPXs, including an extended form_do call which CPXs can use to simply handle
dialog-style interfaces within the XControl window.

It’s expected that most CPXs will use this extended form_do() software interface so that the
user can move or close the XControl window at will. Each CPX should provide at least an
OK and Cancel button so that the user can return to the XControl master from the CPX. Each
CPX must also be able to respond to an Abort signal from XControl, so that the user can
dismiss XControl with the close box, and so that XControl can clean up if it is active while
the main application is terminated. When the user exits a non-resident CPX, it is unloaded,
and the memory that it took up is recovered by the system.

CONTROL PANEL EXTENSIONS

The concept of what constitutes a CPX is very important to the implementation of the
extensible Control Panel. A CPX is effectively a subroutine call. It is neither an application
nor a desk accessory, but only a means for setting system parameters. Examples of CPX
functions include:

- Color Selection

- Keyboard/Mouse configuration ( repeat rate, audible keyclick, etc. )
RS232 port configuration

- Printer configuration

Note the key word "configuration" in most of the above functions. A printer driver does not
belong in a CPX, but the ability to configure a TSR printer driver would be a good thing to
have in a CPX. The key concept to keep in mind here is that of the "Control Panel" - the one
place where a user goes to toggle switches, press buttons, or whatever, to "control" the
functions of the computer. Obviously, it is silly to have a CPX which controls the operation
of a desk accessory, Instead, CPXs should primarily be used as graphical front ends for TSR
ufilities.

XCONTROL <-> CPX SOFTWARE INTERFACE

When XControl first starts up, it loads the headers of all the CPXs that it can find. At boot
time, it initializes each CPX which has the bootinit flag set in its header by jsr'ing to the start
of the CPX'’s text segment. This in turn will jmp to the cpx_initQ) function. This function
returns a pointer to a structure containing information about the CPX, including pointers to
routines which XControl uses to invoke CPX functions.



"Set-only" CPXs may be implemented. They should set whatever is needed during the
cpx_init() call and return NULL. If a CPX is set for bootinit, XControl also checks the ’Set-
Only’ flag in the header to determine if the CPX is Set-only. XControl will only execute Set-
only CPXs at boot time and at reloads. They will not appear on the XControl main menu,
and thus will never again be called after the cpx_init() call.

XControl uses an event_multi() for its user interaction. When a CPX is chosen by the user,
XControl loads the CPX into memory and calls cpx_init() again, this time, with the "booting’
parameter set to FALSE. XControl then invokes the cpx_call() routine to begin CPX
mteraction. The cpx_call() routine should first initialize the CPX interface. It may then
handle the user interface via the extended form_do call and return FALSE to exit the CPX (
See Form CPXs ), or to return TRUE and allow XControl to manage the user interace by
()iispatching evnt_multi() events through the CPX event handling routines. ( See Event CPXs

FORM CPXs versus EVENT CPXs

FORM CPXs are those which use Xform_do() to handle user interaction with a standard AES
form. XControl handles window movements and redraws. To the CPX, it looks just like the
old familiar form_do() with a few extensions:
- Keys other than those which work in editable text fields can be handled by
the CPX.
- Special redraws may be done by the CPX.
- If the user closes the XCONTROL window,k or quits the parent application,
the CPX is informed so that it may clean up. AC_CLOSE should be treated
as "Cancel", and WM_CLOSE as "OK". .

To give you an idea of the flexibitlity FORM CPXs may have, all of the CPX's released with
XControl 1.0 are FORM CPXs.

EVENT CPXs are those which use XControl to dispatch AES events directly, for maximum
flexibility. These CPXs give XControl a list of event handlers in the CPXINFO struct
returned by cpx_init(). When an Event CPX is called, it tells XControl which events it cares
about via the set_event_mask() function, then it returns to XControl and waits for tis event
handlers to be called. Event CPXs exit by setting a flag passed to the event handlers.

Because of the flexibility offered by Xform_do(), and the more complex nature of the event
handlers, it’s generally much easier to write a Form CPX than an Event one. The main
reason you(r)night want an Event CPX is to handle timer events which are not supported by
XForm_do().



XCONTROL ROUTINES

At boot-time or invocation time, XControl jsr’s to the text segment of the CPX. XControl
passes on the stack a pointer to an XControl Parameter Block, with information of interest to
the CPX. The XCPB struct looks like:

typedef struct {

short
short
short

short

void
void

void

void

short

void

void

void

void

void

void

WORD

handle; From XControl’'s Graf_Handle() Call.
See the Notes on workstations below.

booting; Non-zero if this cpx_init() call is
part of XControl's initialization.
reserved;
SkipRsh Fix; The cpx must call the resource fixup routine
only once. Non-zero means skip the fixup.
*reservel;
*reserve2;

(*rsh_fix)( int num_objs, int num_frstr, int num_frimg,
int num_tree, OBJECT *rs_object,
TEDINFO *rs_tedinfo, BYTE *rs_stringsl],
ICONBLK *rs_iconblk, BITBLK *rs_bitblk,
long *rs_frstr, long *rs_frimg, long *rs_trindex,
struct foobar *rs_imdope );

(*rsh_obfix)( OBJECT *tree, int curob );

(*Popup)( char *items[], int num_items, int default_item,
int font_size, GRECT *button, GRECT *world );

(*S1_size)( OBJECT *tree, int base, int slider, int num_items,
int visible, int direction, int min_size );

( *S1_x) ( OBJECT *tree, int base, int slider, int value,
int num_min, int num_max, void (*foo)() );

(*S1_y)( OBJECT *tree, int base, int slider, int value,
int num_min, int num_max, void (*foo)() );

(*SI_arrow)( OBJECT *tree, int base, int slider, int obj,
int inc, int min, int max, int *numvar,
int direction, void (*fo0)() );

(*SI_dragx)( OBJECT *tree, int base, int slider,
int min, int max, int *numvar, void (*foo)() );

(*S1_dragy)( OBJECT *tree, int base, int slider,
int min, int max, int *numvar, void (*foo)() ):

(*Xform_do)( Object *tree, WORD start_field, WORD puntmsg{]);



GRECT *(*GetFirstRect)( GRECT *prect );

GRECT *(*GetNextRext) void );

void (*Set_Evnt_Mask)( int mask, MOBLK *m1, MOBLK *m2, long time );

BOOLEAN (*XGen_Alert)( int id );

BOOLEAN (*CPX_Save)( void *ptr, long num );

void *(*Get_Buffer)( void );

int (*getcookie)( long cookie, long *p_value );

int Country_Code; Contains the Country Code that the Control Panel was
compiled for. For a list of the Current Country Codes,
please see the Rainbow TOS Release Notes -
BIOS/XBIOS Supplemental Documentation, page 63.

void MFsave( BOOLEAN saveit, MFORM *mf );
} XCPB;



RESOURCE MANAGEMENT:
Resource Object Tree Fixup Function:

Rsh_fix() fixes up the CPX object tree based upon 8x16 pixel characters. This ensures that
the CPX will be the same size in all resolutions. The CPX object tree should be a 'Panel’, not
a 'Dialog’. It should be created in ST HIGH resolution. In comparison, the 'rsrc_load()’
function would fixup the tree based upon the current character width and height for that
resolution. This is why panels can appear stretched or scrunched in different resolutions
when using 'rsrc_load()’.

The CPX should only call rsh_fix() when the XControl Parameter Block 'SkipRshFix’ flag is
ZERO. The reason for this is because a resource should only be converted to pixels ONCE.

void (*rsh_fix)( int num_objs, int num_frstr, int num_frimg,
int num_tree, OBJECT *rs_object,
TEDINFO *rs_tedinfo, BYTE *rs_strings(],
ICONBLK *rs_iconblk, BITBLK *rs_bitblk,
long *rs_frstr, long *rs_frimg, long *rs_trindex,
struct foobar *rs_imdope );

IN: All of the input variables can be found in the CPX RSH file.
OUT: None

Resource Object Fixup Function:
Call this function ONLY when you want to convert a specific object to pixel format AND
when the object is still CHARACTER based. The only reason you would need to call this

function would be if you were doing your own resource fixup for a resource that was not
created by the Atari RCS.

void (*rsh_obfix)( OBJECT *tree, int curob );

IN: OBIJECT *tree The object tree of the CPX
int curob The resource object to convert

OUT: None



POP UP MANAGEMENT:

Call this function to have the CPX display a popup box:

short (*Popup)( char *itemsl], int num_items, int default_item,
int font_size, GRECT *button, GRECT *world );
IN: char *itemsl]; Pointer to an array of strings.
int num_items; Number of items ( 1 based )
int default_item; The default item ( zero based )
int font_size; 8x16 ( Large ) or 8x8 ( small ) Font
GRECT *button; GRECT of button pressed to invoke popup.
GRECT *world; GRECT of your tree.

OUT: short; Returns the item selected (zero based ) or -1

The string array passed to the popup routine must be properly padded by the calling cpx.
There must be at least 2 spaces in front of each string, and each string must be padded with
spaces up to the length of the largest string plus 1.

The number of items listed versus the number of strings available is not checked. If they do
not correspond, errors may occur. In addition, if there are more than 5 items, only 3 will be
displayed at any one time. The first position will display an up arrow, and the 5th position
will display a down arrow. Scrolling thru the popup will display the remaining menu items,
with a check mark indicating the default item.

Sometimes a default item is not necessary. Setting the default_item = -1 will prevent a check
mark from appearing.

There are 2 font sizes available for AES objects the large and the small font. Currently, the
large font is always used and the height is assumed to be 16 pixels.

The GRECT of the button that activated the popup menu is required so that the menu is at
least as wide as the button.

The GRECT of the world is required so that if the popup menu exceeds the right edge, it pops
left instead. If the popup menu exceeds the bottom, it pops upwards. In most cases, the
"world" is the dimensions of your CPX’s main form .

While the popup menu is displayed no other action other than popup menu manipulation is
allowed.



SLIDER MANIPULATION:
( Need Overall Description )
Slider Size Adjustment:

This function is used to adjust the slider size within its base, so that the size of the slider
represents the amount of data displayed, relative to the total amount of data. In certain cases,
it is best that the slider not be sized. An example of this is when the slider also contains a text
string. It is possible, that if sized, the slider can no longer display the text string properly by
either being too small or too large.

void (*S1_size)( OBIECT *tree, int base, int slider, int num_items,
int visible, int direction, int min_size );

IN: OBIJECT *tree; The object tree: ( OBJECT *)rs_trindex] TREENAME].
int base; The base is the object of the sliders limits.
int shider; The object that moves within the limits defined by base.

The slider must be the child of the base.
int num_items; The number of items (range)

int visible; The number of items visible
int direction; Horizontal or Vertical
int min_size: The minimum pixel size of the slider
OUT: none
Slider X/Y Functions:

SI_x() and SI_y() are used to update the position of the slider within its base.

void (*S1_x)( OBJECT *tree, int base, int slider, int value,
int num_min, int num_max, void (*foo)() );

void (*SI_y)( OBJECT *tree, int base, int slider, int value,
int num_min, int num_max, void (*f00)Q );

IN: OBIJECT *tree; ( OBJECT *)rs_trindex] TREENAME I;
int base; Base of the slider ( slider limits )
int shider; The object that will be moved around.
This must be the child of the base.
int value; The NEW value related to the slider range.
( Range: 0-1000)
int num_min;  The minimum number value can equal to.
int num_man;  The maximum number value can equal to.
(*fo0)(); Pointer to a CPX defined function to update its items.

Set to NULLFUNC if there is no routine.

OUT: none



Slider Arrow Functions:

Call this when the user selects the arrows of a slider. Direction is either Horizontal or
Vertical. Note that this is an ACTIVE slider where objects are updated immediately, unlike
the AES graf_slidebox where objects are updated only after the user lets go of button one.

void (*S1_arrow)( OBJECT *tree, int base, int slider, int obyj,
int inc, int min, int max, int *numvar,
int direction, void (*fo0)Q );

IN: OBIJECT *tree: The resource tree
int base: The base of the slider ( slider limits )
int slider: The object that can be moved around
int obj: The arrow button object clicked on
int inc: The increment amount ( +/- #)
int min: The minimum value possible
int max: The maximum value possible
int *numvar: The current value
int direction: Horizontal or Vertical

void (*foo)():  Pointer to a CPX defined function to update its items.
Set to NULLFUNC if there is no routine.

OUT: none

Slider Paging Functions:

Paging is implemented by calling sl_arrow() with an increment/decrement value representing
a "page" worth of data. Paging is done when the user clicks on the base. To implement
paging the CPX can do this:

MRETS mk;
int inc, ox, oy;

Graf_mkstate( &mk );
objc_offset( tree, slider, &ox, &oy );
inc =((mk.y<oy)?(-1):(1))
sl_arrow( fill in variables here );

This example is for vertical sliders and the increments were set to +/- 1. Paging usually
increments or decrements by the visible amount. To do horizontal pages, use the 'ox’ and
'mk.x’ variables instead and don’t forget to set the horizontal or vertical flag as necessary in
sl_arrow().



Slider Drag Functions:

Called when the user 'drags’ the slider around. Agam this is an ACTIVE slider and will call
S1_xQ) or SI_y() appropriately.

void (*Sl_dragx)( OBJECT *tree, int base, int slider, int min,
int max, int *numvar, void (*f00)() );

void (*S1_dragy)( OBJECT *tree, int base, int slider, int min,
int max, int *numvar, void (*foo)() );

IN: OBIJECT *tree: The resource tree
int base: The base of the slider ( slider limits )
int slider: The object that can be moved around
int min: The minimum value possible
it max: The maximum value possible
int *numvar: The current value

void (*foo)():  Pointer to a CPX defined function to update its items.
Set to NULLFUNC if there is no routine.

OUT: none

User Supplied Slider Update Function:

The User Supplied CPX function may be required so that the CPX can perform operations
specific to the active slider. In most cases, this will simply be updating the text string and
then performing a redraw. In a more complicated setting, this can be anything from changing
colors to performing a blit. If no function is required, pass NULLFUNC instead.

The value that you can use to update the text string is contained in the variable that you
passed by reference into the calling slider function. Whenever you call sl_arrow(), or
sl_draw(), XControl updates that variable just before calling sl_x() and sl_y(). These in turn
will call your foo() function.

The prototype for foo() is: void (*foo)( void );



XFORM_DO FUNCTION:

XControl makes a custom form handler available to CPXs so that they may use the standard
AES forms interface in a window, without worrying about handling window messages. The
object tree should fit within the standard control panel window ( 256x176 pixels work area ).
This restriction may be lifted in a future version. The name of the routine is Xform_do and it
functions like the built-in AES form_do routine with a few exceptions. One additional
parameter is used, and a return value of -1 has a special meaning.

Timer Events are not supported under XForm_do(). If timer events are necessary, the CPX
should be designed as an Event CPX.

If the CPX is looking for double clicks, the return value should be checked for -1 BEFORE
checking for a double click.

WORD  (*Xform_do)( Object *tree, WORD start_field, WORD puntmsg[] );

IN: OBIJECT *tree; Same as form_do;
WORD start_field; Same as form_do;
WORD puntmsg[]; Defined as WORD msg[8];

OUT: Same as form_do(): Returns the object number with the high bit set
if a touch-exit was double clicked on.

~-However-

if return is -1, this means that the CPX should look at the puntmsg(] array
and treat it like the message array from an event multi. The three messages
to look for are:

WM_REDRAW: Sometimes the CPX needs to redraw items that are not
part of the tree. This is the time to do so. XControl
makes available GetFirstRect() and GetNextRect() so that
the CPX can get the rectangle list and redraw accordingly.

AC_CLOSE:

WM_CLOSE: When these messages are received, the CPX should
immediately FREE any memory that it malloc’ed and
return to XCONTROL by exiting cpx_call(). Do NOT
leave any memory allocated, else fragmentation will
occur. We strongly recommend that CPXs Do Not
Malloc any memory.

CT_KEY: A key was pressed. puntmsg[3] contains the keycode of
the key pressed as returned from an 'evnt_keybd()'. Note
that we return non-printable keys only, such as F1-F10,
Help and Undo. However, the "Arrow’ keys are not



supported, because they are handled by Xform_do() for
editable text fields.
Note: CT_KEY == 53.

IMPORTANT: Always treat AC_CLOSEQ) as "Cancel" and treat
WM_CLOSEQ as an "OK".

GET FIRST/NEXT RECTANGLE LIST FUNCTIONS:

When redrawing the CPX due to a WM_REDRAW message, the CPX should use these
routines to go down the rectangle list. Since the Xform_do() routine will handle resource
object redraws, the CPX must handle non_resource objects.

GRECT *(*GetFirstRectX GRECT *prect );
GRECT *(*GetNextRext)( void );
IN: GRECT *prect: The GRECT of the dirtied area.

OUT: The intersecting GRECT that you should redraw or NULL if there are
no more rectangles.

SET EVENT MASK
( Use only with Event CPXs )

Used to set XControl's Evnt_multi() function. Messages will be dispatched to the CPX thru
procedure variables passed in.

void (*Set_Evnt_Mask)( int mask, MOBLK *m1, MOBLK *m2, long time );

IN: int mask: Events to receive ( ie: MU_MESAG | MU_KEYBD )
MOBLK *ml: Mouse rect and direction number one.
MOBLK *m2: Mouse rect and direction number two.

long time: Time to wait for a timer event ( 1000 = 1 sec )
Note that you must set the mask with MU_TIMER.

OUT: none

MOBLK is defined as: typedef struct {
int m_out; Direction for evnt_multi() to look for.
int m_x;  The x,y,w,h of the bounding rectangle.
int m_y;
int m_w;
int m_h;
} MOBLK;



XCONTROL ALERT BOX:

Use this function to display an XControl Alert Box. The dialog box will be centered within
the work area of the XControl window. The Alerts available are:

SAVE_DEFAULTS 0 Save Defaults?
MEM_ERR 1 Memory Allocation Error
FILE_ERR 2 File 1/O Error
FILE_NOT_FOUND 3 File Not Found Error

BOOLEAN (*XGen_Alert)( int id );
IN: int 1d: The alert 1d number

OUT: BOOLEAN: TRUE - OK
FALSE - Cancel
Alerts with only one button always return TRUE.

CPX SAVE DEFAULTS:

XControl allows a CPX to write configuration data directly into its file. XControl will write
the number of bytes specified from *ptr to the data segment of the CPX. If the CPX 1sn't
found by name, XControl will search the CPX directory for another file with the same id
number and version number. If found, that CPX will become the active cpx. If still not
found, a file not found alert will be generated. The standard GEMDOS error will also occur
if the disk is write-protected. The start of the DATA segment begins at the variable
SAVE_VARS which is declared in the CPXSTART.S file. The CPX designer must allocate
the appropriate amount of DATA segment storage by editing CPXSTART.S.

During boot_time initialization, the CPX should read the defaults from the data segment and
act accordingly.

Lastly, the CPX should treat a "SAVE" action as an "OK’, but do not exit the CPX.
BOOLEAN (*CPX_SaveX void *ptr, long num );

IN: void *ptr Pointer to the data that needs to be stored.
long num Number of bytes to write to data segment of CPX.

OUT: BOOLEAN: TRUE - OK
FALSE - Error occurred



XCONTROL GET_BUFFER FUNCTION:

This call returns a pointer to the 64 byte buffer in each header which can be used by the CPX.
The buffer should be used by CPXs that rely upon write-only registers. For example, the
baud rate and flow control data cannot be read from the Rsconf() call. ( In TOS 1.4 and
greater, the baud rate CAN be inquired. ) Since a CPX cannot be guaranteed to be in
memory, a non-volatile storage location must be set aside to accomplish this. The CPX can
set the register, store the value in the buffer and when cpx_init() is called again, the CPX can
restore the data into its internal variables.

void *(*Get_Buffer)( void );
IN: none

OUT: (void *) Returns a pointer to the CPX. The CPX should cast
the pointer it’s required format.

CPX GET COOKIE FUNCTION:

Use this routine to look for a cookie. Please see the Cookie Jar specifications for more
details. The parameters are exactly the same.

int (*get_cookie)X long cookie, long *p_value );

IN: long cookie: Cookie that we are looking for.
long *p_value: Value of cookie goes here if the cookie is valid.

OUT: Zero if the cookie is not found
Non-Zero if the cookie’ is found and places its value in the longword
pointed to by p_value. If p_value is NULL, it doesn’t put the value
anywhere, but still returns the error code.

A cookie can be a convenient marker for a TSR to indicate where a CPX can find the
configuration data used by the TSR. That’s one of the reasons the cookie jar exists! Use it!



CPX SAVEI/RESTORE MOUSE FORM

Use this routine to savelrestore a mouse image to/from an MFORM structure. This is useful
when one needs to use a FLAT_HAND for example, and then must restore the mouse to its
original shape. This is required so that a CPX doesn’t wipe out a custom mouse form being
used by an application when the CPX is invoked.

void MFsave( BOOLEAN saveit, MFORM *mf );

IN: BOOLEAN saveit MFSAYVE - Save Mouse Form
MFRESTORE - Restore Mouse Form
MFORM *mf Mouse Form to store image in

OUT: none



CPX INFORMATION ROUTINES

INITIALIZATION:

This routine is called at boot time and also whenever the CPX is executed and should be used
by the CPX to initialize global variables, etc.. XControl passses on the stack a pointer to the
XControl Parameter Block, which was defined earlier. Cpx_init() should return a POINTER
to the following structure, or NULL if it is a "set_only" CPX:

CPXINFO *cpx_init( XCPB *xcpb );

typedef struct {
BOOLEAN (*cpx_calD( GRECT *work );
void (*cpx_draw)( GRECT *clip );
void (*cpx_wmove)( GRECT *work );
void (*cpx_timer)( int *event );
void (*cpx_key)( int kstate, int key, int *event );
void (*cpx_button)( MRETS *mrets, int nclicks, int *event );
void (*cpx_m1)X MRETS *mrets, int *event );
void (*cpx_m2)X MRETS *mrets, int *event );

BOOLEAN (*cpx_hook)( int event, int *msg, MRETS *mrets,
int *key, int *nclicks);

void (*cpx_close). BOOLEAN flag );
}CPXINFO;

Most of these calls are not used when the CPX is an Xform_do type. Those routines not used
should be set to NULL in cpx_init();

INVOCATION:

Called when a CPX is invoked AFTER the cpx_init() call has been completed. The function
is passed a rectangle describing the current work area of the XControl window. This allows a
CPX to set up for user interaction and optionally call the custom xform_do() routine to
handle its user interface.

BOOLEAN (*cpx_callX GRECT *work );

IN: GRECT *work: GRECT of XControl work window.
OUT: FALSE Return FALSE if the CPX is done.
TRUE Return TRUE to tell XControl to continue to

dispatch events via the XControl CPXINFO
routines.



EVENT HANDLING FUNCTIONS:

While an Event CPX is active, these are called in response to the appropriate events. The
events returned by XControl are defined by the Set_Evnt_Mask() call in the XCPB. The
event mask may be changed at any time while a CPX is active, and the new mask will be used
for the next evnt multi. Note that the routines are listed in the same order they will be called
for multiple event returns from evnt_multi(). These routines should set the word pointed to
by 'event’ to TRUE( 1) to return control to XCONTROL and its main menu, or leave that
word alone to continue with CPX interaction. The *event variable is the event mask and
should be 1gnored otherwise.

Message events are handled by XControl, unless intercepted by cpx_evhook() as described
below.

WINDOW MANAGEMENT:

CPXINFO Redraw Event:

Called when a CPX is active and the XControl window needs to be redrawn. This call is
required by a CPX that uses XControl to dispatch events ( an Event CPX ). The CPX should

pass the dirty area to GetFirstRect() and GetNextRect() in order to redraw using the rectangle
list.

void (*cpx_draw)( GRECT *clip );
IN: GRECT *clip: GRECT of the dirtied area.
OUT: none

CPXINFO Window Move Event:
Called when the user moves the XControl window, so that the CPX may fix up its object tree
as necessary. GRECT contains the work window’s new coordinates. This call is required by
a CPX that uses XControl to dispatch events ( ie: an Event CPX ).

void (*cpx_wmove)( GRECT *work );

IN: GRECT *work: GRECT of the new window coordinates

OUT: none



TIMER EVENTS:

Called when a timer event occurs. This call is required by a CPX that uses XControl to
dispatch events( ie: an Event CPX ). The "*event’ variable is used to tell XControl that this
event has terminated the CPX. Set to "1’ to terminate the CPX, else IGNORE it. Note that
timer events for Form CPXs are not supported.

void (*cpx_timer)( int *event );

IN: int *event: Set to "1’ if this event terminates the CPX.
else ignore this variable.

OUT: none

KEYBOARD EVENTS:

Called when a keyboard event occurs. This call is required by a CPX that uses XControl to
dispatch events. The "*event’ variable should be set to "1’ if this event has terminated the
CPX, otherwise, ignore it.

void (*cpx_key)( int kstate, int key, int *event );
IN: int kstate: The state of the Control, Alt and Shift Keys.
int key: The high byte contains the scan code of the key
pressed, and the low byte contains the ASCII code,
if any.
int *event: Set to '1’ if this event terminates the CPX.

Ignore this variable otherwise.

OUT: none

MOUSE BUTTON EVENTS:

Called when a mouse button event occurs. This call is required by a CPX that uses XControl
to dispatch events. Set the "*event’ variable to '1’ if this event terminates the CPX,
otherwise, ignore it.

void (*cpx_button)( MRETS *mrets, int nclicks, int *event );

IN: MRETS *mrets: The mouse parameters returned by the event.
int nclicks: The number of button clicks for this event
int *event: Set to "1” if this event terminates the CPX.

Otherwise, ignore it.

OUT: none



MRETS is defined as:

typedef struct {
WORD X;
WORD  y;
WORD buttons;
WORD kstate;
IMRETS;

MOUSE RECTANGLE EVENTS:

Called when a mouse event occurs. This call is required by a CPX that uses XControl to
dispatch events (ie: an Event CPX ). Set the "*event’ variable to '1 if this event terminates
the CPX, otherwise ignore it.

void (*cpx_m1)(MRETS *mrets, int *event );
void (*cpx_m2)( MRETS *mrets, int *event );
IN: MRETS *mrets: Mouse parameters returned by this event.
int *event: Set to "1 if this event terminates the CPX.
Otherwise, ignore it.
OUT: none
MRETS is defined as:
typedef struct {
WORD X;
WORD y;

WORD buttons;
WORD kstate:
IMRETS:;



CPX EVENT PREEMPTION HOOK:

Cpx_hook() is called immediately after evnt_multi returns BEFORE the event is handled by
XControl. This routine should not normally be required by a CPX, but is included for
flexibility.

BOOLEAN (*c¢px_hook)( int event, int *msg, MRETS *mrets,
int *key, int *nclicks );

IN: int event: The event mask.
int *msg: The AES event message buffer.
MRETS *mrets: mouse parameters for this event.
int *key: Key returned.
int *nclicks: Number of button clicks for this event.
OUT: TRUE Return ( non-zero ) to override default event
handling.
FALSE Return ( zero ) to continue with event handling.

CPX TERMINATION FUNCTION:

This routine is called whenever an ACC_CLOSE or WM_CLOSE message is generated. The
CPX should immediately free up any allocated memory and return to XControl. This routine
is required for all CPXs that use XControl to generate events. Failure to free allocated
memory will result in a fragmented system. Note that this is for an Event CPX only and is
not necessary for Form CPXs. IMPORTANT: Always treat ACC_CLOSE messages as
"Cancel’ and WM_CLOSE messages as 'OK’. In addition, CPXs should not malloc memory
if at all possible.

void (*cpx_close)X BOOLEAN flag );

IN: TRUE - WM_CLOSE Message
FALSE - ACC_CLOSE Message

OUT: none



CPX FILE FORMAT:

A CPX file header looks like: ( 512 bytes - 0x200 hex )

typedef struct _cpxhead {
unsigned short magic;
struct {

unsigned reserved :
unsigned resident
unsigned bootinit
unsigned setonly
} flags;
long cpx_id;
unsigned short cpx_version;
char i_text[14];

unsigned short sm_icon[48];
unsigned short i_color;

char title_txt[18];

Magic Number == 100

3;  Reserved for Expansion
; RAM Resident Flag
Boot Initialization Flag
Set Only CPX Flag

h ok ek
- e

CPX ID value

CPX Version number

Icon Text

Icon bitmap - 32x24 pixels
Icon Color

Title for CPX entry.
Note: Only use 16 Characters! The remaining 2
positions are Nulls.

unsigned short t_color; Tedinfo field for color
char buffer[64];  Buffer for RAM storage
char reserved[306]; Reserved for Expansion
} CPXHEAD;

The first file in the link must be CPXSTART.S which jmp’s to cpx_init(). In addition, it also
contains the default variable storage in the DATA segment.

The user will be able to set the Resident Flag, Title Text, Title Color, Icon Text and Icon

Color with a CPX.

The rest of the CPX file has the same format as a GEMDOS executable file. PREFIX.PRG
should be used to design and prepend the header to the CPX executable. The executable part
does not need to be completely relocatable, as XControl will perform whatever relocation is
necessary when it loads the CPX. The resource for the CPX must be built into the file and
should be fixed up in place using the rsh_fix() facility of XControl.

FILE: Header

512 bytes

GEMDOS Header 28 bytes

Text Segment
Data Segment



TERMINOLOGY:

*CPX: A standard CPX file with header ready for use.

* CP: A standard CPX file without a header.

* RCPX:  Aresident CPX

* S.CPX: A Set-only CPX

SLOT: A slot is where a CPX is stored in memory. There are both active and

non-active slots. The number of slots available is decided at boot-
time. XControl will create the minimum number of slots specified by
the DEFAULT or 1-1/2 times the number of active slots, whichever i1s
greater. This is the ONLY time slots are allocated.

* HDR: A CPX header created by PREFIX.PRG

Event CPX A CPX that handles the event messages explicitly.

Form CPX A CPX that uses XForm_do to handle event messages.

*.CPZ An Inactive CPX
DO'’s:

1) DO remember to deallocate memory whenever appropriate.

2) DO use the XControl functions whenever possible.
That’s why we put them there.

3) DO take the time to design an appealing user interface.

4) DO use graphics whenever possible instead of menu commands.

5) DO have OK and Cancel buttons available for each CPX.
Please note that it 1s "Cancel’ and NOT 'CANCEL’.

6) DO SHADOW Popup boxes. We want the user to know that 'shadowed’ boxes
are Popup boxes.

7)  Treat AC_CLOSE as 'Cancel’

8) Treat WM_CLOSE as 'OK’

9) Treat a "SAVE" action as an 'OK’ by updating the 'Cancel’ variables.

DON'T’s:

1)  DON'T have the CPX object tree exceed the work area ( 256x176 pixels).

2) DON'T have CPXs stealing interrupt vectors.

3) DON’'T mix XForm_do() calls with Call-CPX type functions.

4) DON'T forget to deallocate memory whenever appropriate. Not doing so will
fragment the system memory.

5)  DON'T use existing ID¥s for existing CPXs that were not written by you.

6) DON'T forget to close a file if your CPX opens one.

7)  DON'T forget to open and close a VDI workstation when needed. DO NOT open

a VDI workstation and leave it open.



WORKSTATION NOTES and BRIEFS

When a CPX wishes to perform VDI functions, the CPX must open the workstation, perform
its duties and then close the workstation immediately. The CPX must not leave any
workstations open when it returns to accept more events. The handle passed to the CPX is
the Physical Handle of the Control Panel returned by a graf_handle() call. The proper
procedure of opening a workstation is:

work_in[0] = Getrez()+2;

for(i=1;1 < 10; work_in[i++]=1);
work_in[10] = 2;

vhandle = xcpb->handle;

v_opnvwk( work_in, &vhandle, work_out );

MEMORY ALLOCATION NOTES and BRIEFS

CPXs should not allocate any memory unnecessarily. If the CPX must allocate memory, the
CPX should perform its operation and deallocate the memory immediately. An example of
this is when calculating the amount of free memory. The reason CPXs should not allocate
memory is because the allocated memory may be invalidated at any time by the OS. This can
occur during a resolution change or when a process exits and returns to the desktop. On the
TT, ALL memory is freed up during a resolution change, so memory fragmentation isn't a
problem there.



INTERNAL USE ONLY

The following routines are for INTERNAL USE ONLY.

CPX GET HEADER NODE FUNCTION:

The call returns a pointer to the parent node of the CPX linked list structure.
Declared: void *reserved]

Actual: CPXNODE *Get_Head_Node( void );

CPXNODE is defined as:
typedef struct cpxnode
char fname[14];  CPX filename
int vacant; 1 = not vacant
int SkipRshFix; Non-Zero, skip rsh_fix()
long *baseptr; Pointer to cpx load area
struct cpxnode  *next; Pointer to next cpxnode
CPXHEAD cpxhead; CPX head structure
Prghead prghead; program header of CPX
}CPXNODE;
Prghead is defined as:

typedef struct _Prghead

int  magic;

long tsize,
dsize,
bsize,
ssize;
int  filllS];
} Prghead;

CPX SAVE HEADER FUNCTION:
The current header found in the node is written out to the node’s file. If the file isn’t found,
XControl will search the remaining CPXs for a matching id number and version number. If
found, that file will be the active CPX. If not found, a file not found alert error will be
generated. Please see the CPXHEAD.H file for a description of the CPX HEADER.
Declared: void *reserved2
Actual: BOOLEAN Save_Header( CPXNODE *ptr );
IN: CPXNODE *ptr: Pointer to the cpx node

OUT: BOOLEAN: TRUE - AOK
FALSE - an Error has occurred.



STBook/STylus Expansion Bus

Electrical Specification
August 6, 1991
Power Available

External devices must not draw more than 400mA total from VCC on the connector.
If the device is to operate on batteries alone, it should not draw more than 100

mA. It is good design practice to use CMOS wherever possible and to shut down
power to any circuitry not in use.

Loading

External devices must not present more than a total of 1 (one) LS-TTL load per

line onto the signals. This expansion bus is completely unbuffered, therefore,
loading in excess of the recommended amount may cause the system to fail. Open-
collector drivers should be prepared to sink 20mA, on those lines which require

it, such as /EXPANSION_WAKE.

Signal Descriptions

The Atari STBook and STylus can be expanded externally using a 120-pin expansion
bus, which is new to these machines. It essentially allows direct access to the
68HCO000 address and data buses, and bus contro!l signals to allow appropriate
response. There are also the signals to allow for conversion to the previous ROM
Cartridge format without the need for active electronics (i.e. a 120-pin

expansion to 40-pin ROM cartridge convertor would consist of two connectors and a
PCB).

The following signals are all direct from the 68HC000, and need no special
description:

o Rl1-n23 Address Lines

o DO-D15 Data Lines

o /AS Address Strobe

o /LDs,/UDS Lower/Upper Data Strobes
o R/W Read/Write Control

o FCO-FcC2 Function Code 0-2

o /VPA Valid Peripheral Address
o /VMA

o E E clock

o /RESET Reset signal

o /HALT Halt signal

Two signals are also direct from the 68HC000, but require a bit more operational
detail:

o /DTACK Data Transfer Acknowledge
o /BERR Bus Error



The Combo chip uses /DTACK to acknowledge memory spaces it controls; it Bus
Errors on other spaces (or illegal access to valid spaces) by not generating )
/DTACK. Other circuitry in the Combo chip times the length of the /AS signal; if
it is longer than 16u$, than a /BERR is generated. What this means is that a
device on the 120-pin expansion bus can be logically located in address spaces
that the Combo chip considers illegal; all that is neccesary is to generate a
/DTACK early enough such that /AS does not extend to 16uS.

o /ROM3
o /ROM4

These two signals are simply the outputs generated by the Combo chip for
particular memory spaces, specifically those for the ROM cartridge space. Because
the Combo assumes these are ROMs, only reads of this space are acknowledged or
selected by the Combo chip. A third signal, /DEV, simply indicates when a
peripheral address has been selected in supervisor mode; /DTACK is not
neccesarily asserted.

o /DEV
o /DMA

There is also /DMA, which indicates that a Floppy or ACSI DMA cycle is occuring.
it is included because the Combo chip, while asserting /AS and /L/UDS, leaves the
address bus in a high-impedance state. Because of the high value pull-up

resistors used in the STBook and STylus, the address lines may rise quite slowly
when the lines are left in high-impedance. Noise could couple in, and false
addresses could be asserted. It is therefore recommended that any address
decoding added to the STBook or STylus use /DMA as an additional (active HIGH)
qualifier.

o /BR Bus Request

o /BGACK Bus Grant Acknowledge

o /MCUBG Bus Grant, out from the Combo chip.

o /CPUBG Bus Grant, from the CPU to Combo chip

(this is for reference only)

Use of the Bus Grant system is possible, with some limitations. While the Bus
Request and Bus Grant Acknowledge are direct connections to the 68HC000, the Bus
Grant signal is an output from the Combo chip. This means that the Combo chip
(which includes the Blitter and DMA control) has priority for the gaining control

of the Bus: Bus Grant is passed through only if no request is pending internal to

the Combo.

/EINT3

/MFPIEI

/MFPIEO

/MFPINT

/IPLO, /IPL1l, /IPLZ2
/IACK

000000



Some interrupt control is also possible, at two seperate priority levels. One is

a level 3 interrupt, for which an input into the Combo chip priority encoder is
provided. For this level, it is the responsibility of the external circuit to

respond to the interrupt acknowledge cycle, and to provide a method to clear the
interrupt request. Both Auto-Vector and Vectored interrupts are possible.

The external circuitry can also share the Level 6 interrupt with the 68HC901 MFP
internal to the STylus and STBook. The external interrupt source can have either
higher or (preferably) lower priority than the internal MFP. All of this is
accomplished with three signals: /MFPINT, /MFPIE], /MFPIEO. The first is a
open-collector driven, wire-OR signal, indicating a level 6 interrupt. The next
two establish the relative priority of the two interrupt sources. /MFPIEI (MFP
Interrupt Enable In) signals the MFP that no higher priority device is requesting
the interrupt service (active LOW, internal pull-down). /MFPIEO signals that the
MFP has no pending interrupts, and that /MFPIE] is active; i.e. no higher

priority interrupt is pending. Thus, a multilevel structure can be obtained.
Because many internal functions depend on the level 6 interrupts of the MFP, we
recommend that external devices install themselves at a lower level, but do not
require it.

To help in synchronization of external circuits (particularly when the Refresh
Machine described above is running), a small number of clock signals are
provided. They are:

o CLK16 main 16MHz clock
o CLKS8 8MHz CPU clock
o KHZ500 500 KHz Baud Rate Clock

Some power and power control signals are provided to allow external devices to
draw some power from the VCC supply of the STylus or STBook. To help distribute
the power evenly, and to help maintain clean logic levels, there are 10 VCC

signals, and 30 GROUND signals. 10 of the GROUND signals are located at the ends
of the connector, opposite the VCC signals; the other 20 are distributed as every
Sth pair of signals accross the connector. This should aid in both maintaining a
clean ground, and reducing EMI.

Power Control is possible to some degree using the signal /EXPANSION_WAKE. This
signal expects to be driven by an open-collector driver; when pulled to ground,
this powers on the STylus/STBook. It is equivalent to pressing the Power button
on either machine.

Finally, there is a pin which allows a peripheral plugged into the STBook or
STylus to determine which it is connected to. Pin 94 is defined to be a no-
connect on an STBook, and grounded on a STylus. The peripheral could,
conceivably, determine the type of host without the host being powered; this is
the responsibility of the peripheral, if it needs to know it.



e Expaasion connector has the folloning pla assignments!

—— Expansion Port Pln Assigneents ——————

STBook aicro-0 1265
1 |=—vee 6ND —| 61
2 |—vce 6ND —{ 62
3 |—vce 6ND —{ 63
4 |— uce 6ND —-| 64
S {— ycC 6ND —| 65
€ |— pe 01 —{ 66
7 1= 02 03 —| 67
8 {— 04 05 —| 68
9 |- D6 07 —| €9
18 |~ GND ———————— 6ND —{ 78
11 |— 08 09— 11
12 |- D18 D11 —| 72
13 |=- 012 013 —{ 73
14 |{— D14 015 —| 74
15 {—~ N0 ———— G6N0 —| 75
16 — NC Al —| 76
17 |— a2 a3 —| 77
18 |— A4 as —| 78
19 {— A6 a7 —| 79
20 |— 6N0 ——————————— GND —-| 88
21 |— A8 A9 —-| 81
22 |— a8 a1l —| 82
23 |-- AL2 a3 —| 83
24 |— Al4 A15 —-| B4
25 |-- GO ————-—=—— GND ~-| 8S
26 |— AL6 a1? —| 86
27 |-- AL8 a19 —| 87
28 |— A28 A21 —-| 88
29 {— A22 a23 —|i 89
38 (— 6Np ——=-——= 6ND —| 98
31 {-- /HALT /STylus —| 91
32 |-- /wA /CPUBG --| 92
33 {-- /BR /MCUBG --| 93
34 |-- /BGACK NC —{ 94
35 |— GHD - GND --| 95
36 |-~ FC8 FC1 --| 96
37 |— FC2 /a5 —| 97
38 |— RM /LDS --| 98
19 |-- /UDS /0TACK —| 99
48 |— 6D -- GND --| 188
41 |— /RESET /UPA —| 181
42 |— /1PLE /IPLY —| 182
43 |— /1PL2 /IACK —| 163
44 |— /EXPANSION_MAKE /BERR —! 184
4S |— GND GND —1 18S
46 |— /MFPINT /MFPIEI —| 166
47 |— /EINTS MFPIED —| 167
48 |— /0MA /O0EV —| 188
43 |— /ROM3 /ROM4 —| 109
S8 |— GKD 6ND —| 110
S |— NC NC —{ 111
52 |— NC NC —| 112
53 |— CLK16 CLK8 —| 113
54 |-- KHZS88 E —| 114
S5 {— GND ——————— BND —| 115
S6 |— UCC 6HD —| 116
57 |— vCC 6ND —| 117
58 |— vCC GHD —| 118
59 |— yCC © GND —1 119




*9@ 12714 17309 X 214 713 90640 RTARI/DALLAS 02

Confidential/Draft 8 June 1990 Atari STe Plus Spec 33

KK Kk
KKKk%X
KAk K
KKRKRKK
Xk KK KX
KK k% KK
KK KK XK

Atari Corporation
Personal Workstation Group
Atari Texas
Carrollton, Texas

WORKING DRAFT

Atari Mega STe Plus Product Specification

8 June 1990

—7% © T®TIFN RECU #72Z

——d e s AAC A4 OOy a 4 =7 MO e 72 [



—!‘f

'ag 1z/14 17:@0¢9 X 214 713 90640 ATRRI-DALLAS 03

Introduction

1. INTRODUCTION

The MegaSTe is the newest enhancement in the geries of
Atari ST (tm) compatible 68000-based computers. It is
upward compatible with the Atari STe, and includes a number
of enhanced features, including 16K bytes of cache memory
and the capability of running at 16MHz .

The hardware specifications of the MegaSTe computer are
as follows:

- Motorola MC68000 at 8MHz or 16MHz, software selectable

- 16K Bytes (BK Words) of 16-bit cache, enabled under
software control

- Motorola MC68881/68882 Floating Point Coprocessor
(optional/socketed)

- RAM: 2 or 4 Mbyte of dual-purpose (video/system) RAM

-  ROM: 2 socketed ROMs, providing 64K, 128K, or 256K of
ROM space (strappable).

= internal video modes that are compatible with those in
the Atari ST series—- Color: 320x200, 640%200. Mono-
Chrome: 640x400.

- an industry standard analog RGB/monachrome color moni-
tor interface.

- parallel I/O port, im lemented using the one of the
i parallel ports on the General Instruments AY-3-8910 /
v Yamaha YM-2149 sound chip

- 1 low-speed async serial I/0 port (implemented using a
68901 MEP)

= 2 high-speed SDLC serial I/0 ports (from a Zilog 8530
scc), one port of which can be strapped to be a
medium-speed LAN interface.

- $T/MEGA compatible intelligent keyboard, with mouse and
joystick ports

- Atari ACSI DMA channel (for Atari Hard Disk, Laser
Printer CD-ROM, etc)

- floppy disk controller and interface sharing the ACSI
DMA channel

= Musical Instrument Digital Interface (MIDI)

Confidential/Draft 8 June 19920 Atari STe Plus Spec 1



rap {2714 17:69 x 214 713 9040 ATARI/DALLAS

Introduction
Atari ST compatible cartridge port (128 Kbyte storage)

VMEbus for expansion: 1 single Eurocard A24/D16
slave-only interface

confidential/Draft 8 June 1990 Atari STe Plus Spec 2

64



sg@g 12714 17316 % 214 713 9@49 ATARI/DALLAS

Main System

2. MAIN SYSTEM

The MegaSTe is intended to be a compatible, high-
erformance extension of the Ataril sT architecture. By
including the VMEbus the system can be expanded for future
needs.

2.1. Processor

) The Mega$Te uses a Motorola 16-MHz 68000[{1] 16/32-bit
microprocessor.

support circuitry built around the 68000 provides
16KBytes (8K words) of 16-bit wide cache memory. It also
allows switching the processor clock between 16.02 MHz and

8.01 MHz. Both cache control and processor c¢lock control
are provided by control bits in a System Control Unit regis-
ter (1/0 address 8E21 Hex). The cache memory is onl

enabled when the processor is being clocked at the hig
clocg speed, since it provides no saving at the lower clock
speed.

- 2.2. Floating Point Coprocessor

The Megasre design has a_ socket for an optional
Motorola Mcé8881 or the newer, higher-performance, MC68882.
These two parts are hardware compatible. There is a slight
software difference in the size of the exception stack

frames, but it is possible to write software that will run
transparently with either part.

The floating point operations are performed in accor-
dance with IEEE Standard 754, with both 32-bit (single) and
6a-bit (double) precision external access.

The floating point coprocessor is clocked at 16 MHz,
regardless of the clock speed of the main processor. §ince
the MC68000 does not support the integrated co-processor
interface, it is necessary to access the floating point pro-
cessor as an I/0 device, and read and write its internal
registers by memory transfer instructions.

2.3. ROM

The system includes on-board sockets for a set of two
iMbit ROMs, providing a total of 256KB ROM. Since system
bus access is 16-bits wide, both ROMs must be present.

(1] MC68000, MC68881, and MC68882 are trademarks of
Motorela, Inc.

confidential/Draft 8 June 1990 Atari STe Plus Spec 3

as



—

'96 12714 17:18 Z 214 713 90640 RTARI/DALLAS a6

Main System

Jumpers are provided to allow the use of 27256, 27512,
27010/27C¢1001, and 571001/27C1000 EPROMs, in addition to
531000 ROMs. The default jumper position allows the use of
27512 EPROMs (for a total of 256 Kb of ROM) as well as
§71001/27C1000 EPROMs or 531000 RoMs (for a total of 512 Kb
of ROM). 32 pin sockets are provided, although 27256,
27512 . and 531000 only use the bottom 28 pins.

3 jumpers (w201, W202, and W203) are provided adjacent
to the ROM sockets to allow selection of different types of
ROM/EPROMs. The following table shows the appropriate con-
nections to be made:

Part Type w201 w202 w203
27256 Don‘t Care 1 and 2 N/C
27512 2 and 3 2 and 3 N/C

2 and 3 2 and 3 2 and 3
571001/
27¢1000/
531000

1 and 2 2 and 3 1 and 2
27010/
571000/
27¢c1001

An image of the first 8 bytes of ROM resides in the
first 8 bytes of the RAM memory. These first 8 bytes
(0x00000000-0%000007) are accessible only in supervisor

..° mode. Attempts to read from this area in user mode or any
write results in a bus error. The full ROM resides at the
memory location 0x00E00000 - O0xX00EFFFFF.

Among the tasks this ROM perform are system initializa-
tion and boot code that can boot from a floppy, ACSI device,
or network. The ROM is expected to contain a multi-lingual
implementation of TOS. =~ Moreover, if sufficient space is
available, ROM-based service diagnostics will be provided.

2'4. RAM

The basic system includes 2 or 4 Mbytes of dual-purpose
RAM which is used for both video and system memory. These
are implemented using 8-bit wide SIMMs (single Inline Memory
Modules), which must be used in pairs.

The bus architecture ig similar to the ST in that
memory access cycles are interleaved between the MPU and the
video controller in 250 nS RAM time slices, thus allowing
video display memory to reside efficiently as part of main
memory. During active display cycles the processor 1S
prevented from accessing the memory but is allocated the

confidential/Draft 8 June 1990 Atari STe Plus Spec 4



r9@ 12714 17:11 T 214 713 9064¢ ATARI/DALLAS 07

Main System

next 250 n$ time slice.

Additional memory can be installed in the system by
plugging in VME memory cards. Up to 4 MBytes (actually, 4
Mbytes minus 64K) of A24/D16 memory can be addressed on the
UME bus beginning at address A00000 hex. The VME RAM cards
will run slightly slower than the system RAM as all VME
accesses incur an extra wait state per bus cycle.

The MC68000 accesses to on-board RAM typically require
4 clock cycles.

There is no provision for parity or ECC protection on
the system RAM. The reliability of current DRAM technology
makes this unnecessary. However, such features could be
included in add-on VME cards.

The first O0x800 bytes (2K) of RAM (0x00000008-
0x000007FF) are accessible only in supervisor mode.
attemgts to read or write to this area in user mode results
in a us error.

RAM memory cycles are cached using 8K words of 16-bit
wide, 45 nS cache memory. This permits cache-hit memory
cycles to run with no wait states, and without taking a
igcle on the system bus, when the processor is running at

-MHzZ.

2.5. System Control Unit

Tthe System Control Unit (scu) provides an additional
level of interrupt control for the system. It also contains
registers that allow the software generation of interrupts,
and control of the processor clock speed and cache memory
operation. All of the SCU registers are reset at power-on
and by the reset pushbutton.

2.5.1. Interrupt Mask and Current Status

The SCU contains two mask registers that permit
independent control over which interrupt levels will be seen
by the processor. One register masks interrupts generated
on the system board and the other masks VMEbus sources.
These registers are cleared at power-up or reset, disabling
all interrupts.

There are also interrupt request registers that show
the current state of the seven interrupt request levels from
each of the sources. This register shows the physical
status of the interrupt lines before they are ANDed with the
SCU’s mask register.

Ccﬁfidential/Draft 8 June 1990 Atari STe Plus Spec 5



b
[ -

'o@ 12-14 17:12 & 214 713 90406 RTARIZDALLAS o8

Main System

2.5.2. system Control Registers

The SCU also contains two regd/write'registers that can
be used for system configuration information.

2.5.3. Interrupt Generator

The system can write to an I/0 address to generate a
low priority (level 1) interrupt to the 68000, This I/O
address contains a read/write status/control port, only the
least significant bit of the least significant byte is
defined. When set to 1, it generates an autovectored level
1 interrupt. When cleared, the interrupt request is taken
away.

The SCU is hardwired so that:

- only interrupts 5 and 6 have external IACK pins and are
capable of generating vectored interrupts on the moth-
erboard.

- SCU generated IRQl and IRQ3 are hardwired to the
corresponding priorities and are always autovectored.

- VMEbus ACFAIL generates a system (motherboard) IRQ7 to
thed MPU. The only other source of an IRQ7 is a VMEbus
card.

2.5.4. Bus Timer

The SCU also implements a system bus timer. If nothing
concludes a bus cycle within 16 microseconds, the scU will
signal a bus error.

2.5.5. Processor/Cache Control

The process/cache control register implements the low
order two bits to control processor clock speed and enabling
of the cache memory. Bit 0 enables the cache when it is set
to a one. Bit 1 enables the high speed (16.02 MHz) proces-
sor clock when it is set to a one. Both bits are set to
zero on power-on, or when the reset button is pushed. The
cache tag registers are cleared when the cache is disabled,
resulting in no cache-hits until there have been valid

memory reads with the cache enabled.
2.6. Floppy/ACSI Interface

The ST compatible Floppy/ACSI subsystem interfaces
between RAM and ACSI compatible peripherals, such as the
SIM804 laser printer, SHxxx/Megafile hard disk drives, and

Atari CD-ROM. This DMA channel is shared with the internal
floppy disk controller.

Confidential/Draft 8 June 1990 Atari STe Plus Spec 6



98 12714 17212 X 214 713 964¢@ ATARI/DALLAS ao

Main System

2.7. Real Time Clock

The MegaSTe system includes a Ricch RP5C15 Real Time
Clock chip. This provides time of day (down to _one second
resolution) and date. The RTC is provided with a 32.768 kHz
oscillator that is independent of all other system clocks.

The chip is accessed through 32 4-bit registers
accessed in two banks. Bank 0 allows reading and setting
each digit of the date and time, and also allows access to
test and control registers. Bank 1 allows setting the
digits of an alarm function, and controlling the mode of
operation of the clock chip.

2.8. Configuration Switch Register

The MegaSTe implements an 8-bit configuration switch
register to indicate the presence or absence of options.
Depending on printed circuit board layout, the register may
be implemented using an 8-bit DIP switch, solder pads, or
double “row of stakes" jumpers. A bit will read as a "1° if
the circuit 4is open As of this writing, the following bits

have been assigned meanings:

configuration Bits

Bit Meaning
7
0 => No DMA sound
. hardware is in-
stalled.

1 = DMA sound
hardware is avail-
able.

0 => High speed (16
MHz) 1772  Floppy
Disk controller 1is
installed.
1 => Only low speed
(8 MHz) 1772 Floppy
Disk controller 1is
installed.

5-0 Undefined, reserved.



rag 12714 17:13 X 214 713 20840 ATARI/DALLAS 10

confidential/Draft 8 June 1990 Atari STe Plus Spec 7

Device Subsystems

3. Device Subsystems

The MegaSTe architecture supports the following device
subsystems:

- ST compatible ACSI
- floppy disk interface sharing the ST "ACSI" DMA channel

- high-speed serial ports and a low speed network port
through the SCC chip

- one additional serial port and an external interrupt
port connected to MFP controller

- a Centronics parallel printer port driven by the Yamaha
YM-2149 sound chip

- a ST/MEGA compatible intelligent keyboard, mouse, and
joystick interface

- a port supporting application and diagnostic cartridges

3.1. ACSI

»
o

.2. Floppy Disk

The MegaSTe series floppy disk subsystem is designed
around the WD1772 Floppy Disk Controller supporting up to
two daisy-chained floppy disk drives (drive 0 or 1l). A
higher speed version of the 1772 is planned to allow 1.44Mb
(formatted) capacity drives. The MegaSTe is designed for
one internal floppy disk drive and one external drive (such

as the SF314).

The subsystem interfaces to the RAM through the ACSI
DMA controller. Commands and arquments are sent to the FDC
bﬁ first writing to the DMA Mode Control Register to select
the desired FDC register and then writing the data bytes.

The standard floppy for the MegaSTe series is the 3.5
inch floppy disk with the capacity of 720 Kbyte (formatted).
The 1.44Mb drives will be available as an option.

The internal drive cabling supports the DiskChangeLine
signal from the floppy drive(s) to a bit on MFP-2.
DiskChangeLine can be read when the drive is selected, and
is asserted when (1) power is applied or (2) a diskette is

removed from the drive. The signal is cleared by issuing a
step command to the drive.

>



‘
11 ' &

'g@ 12714 17314 X 214 713 9040 ATARI/DALLAS

confidential/Draft 8 June 1990 Atari $Te Plus Spec B

Device Subsystems

3.3. High Speed Serial Ports

The zilog 85C30 sCC, & dual channel, multi-protocol
data communications peripheral, is included in the MegaSTe
design to provide two serial ports (ports A and B).

Port A can be used as either a network port or a stan-
dard low speed RS232C port. when bit 7 of the GI Sound Chip
port A is a 0, 1.AN mode is selected. The input/output of
Pport A is routed to the appropriate connector: (1) if
RS232C mode is selected, the port is connected to a 10-pin
header (that can be connected via ribbon cable to a DB-9P)
or (2) if the network port is selected, it is connected to
an 8-pin mini-DIN connector. The output pins on the

unselected port remain inactive.

The channel A Wait/Req line is connected to the DTACK
circuitry in such a way that, when programmed for operation
as a WAIT line, it will allow high speed block reads or
writes using a tight software loop. €.g

loop: move.b SCCDATA, (al)+; Read data, store in buffer,
; advance pointer
dbra dl, loop : repeat for byte count

) The WAIT line holds off the DTACK and prevents the read

2 cycle from completing until the data is available. CAUTION:

1f the cycle does not complete within 16 microseconds (the

length of the bus timeout), a Bus Error will occur. This

means that this technique can only be used at speeds in
excess of approximately 500K baud.

The s¢C handles both asynchronous formats and synchro-
nous byte-oriented protocols such as HDLC and IBM's SDLC.

port B is configured to be a low speed RS5232C serial
port that can be used for connecting to a modem or a local
mainframe. It is pinned out on a DB-9P connector in a way
that is compatible with the Atari PC4. Modem control sig-
nals are derived directly from the g5c30 port B control
lines. This port can operate with split transmit and
receive baud rates.

The PCLK input to the SCC is 8 MHz. The RTXCA and
RTXCB input is provided with a 3.672 MHz clock. The input
to TRXCA comes from the low speed LAN connector. TRXCB 18

run at 2.4576 MHZ.
3.3,1. SCC R§232 port Finout

The SCC RS$232 serial ports are pinned out in DB-9P con-
nectors in a way that is compatible with the Atari pcd. On
the Mega$Te, the SCC port A RS232 connections are routed to
a ‘header on the motherboard. That header can be connected



St . B

Confidential/Draft 8 June 1990 Atari $Te Plus Spec 9

Device Subsystems

with a ribbon cable to a nine Pin D connector located on the
VME slot cover.

. SCC RS232 Pinouts
Pin Port A Port B
(RS232 Mode)

1 Carrier Detect (I) Carrier Detect (I)

2 Receive Data (1) Receive Data (I)

3 Transmit Data (0O) Transmit Data (0)

4 DPata Terminal Ready (0) Data Terminal Ready (0)
3] Ground Ground

6 .Data Set Ready (I) Data Set Ready (I)

7 Request to Send (0) Request to Send (0)

g Clear to Send (I) Clear to Send (I)

3.3.2. LAN Connector Pinout

., The moderate speed LAN connector is an 8 pin female
mini-DIN,

. SCC LAN Pinout (Port Aa)
in function

Output Handshake (DTR, R5423)
Input Handshake/External Clock
Transmit Data =-

Ground

Receive Data -

Transmit Data +

<reserved>

Receive Data +

T

RN

3.4. MFP

One 68901 Multi-Function Peripheral (MFP) controllers
are used to provide system timers, a low speed RS232C serial
ports, and an interrupt controller. The MFP is used 1in a
way that is compatible with the ST. It provides both a
serial port and interrupt control.

The baud rate clock for the MFP serial transmitter and
receiver 1is derived from the timer D output of the MFP.
Given the MFPs’ 2.4576 MHz clock, baud rates up to 19.2
Kbaud can be supported on the serial port.

3.4.1. MFP Serial Port Pinouts

.~ The MFP serial port is pinned out in a DB-9P connector
in a way that is compatible with the Atari PC4. The MFP



e ——

'98 12714 17:15 & 214 713 9040 ATARI/DALLAS 13

confidential/Draft 8 June 1990 Atari STe Plus Spec 10

Device Subsystems

serial ports has a complete complement of modem control

lines compatible with the ST, but pinned out in a 9 pin D
connector.

MFP Serial Port Pinout
pin  MFP-ST

Carrier Detect (I)
Receive Data (I)
Transmit Data (0)

Data Terminal Ready (0)
Ground

Request to Send (O)
Clear to Send (I)

Ring Indicator (I)

WwoJakhwi -

Note: The Ring Indicator (RI) signal is connected to bit 6
of the MFP General Purpose I1/0 Fort (GPIP).

3.5. Parallel Printer Port

The MegaSTe architecture includes a bi-directional 8-
bit parallel printer port that implements a subset of the
Centronics standard. This interface is through the General
Instruments AY-3-8910 / Yamaha YM-2149 Programmable Sound
Generator (PSG) chip. It is pinned out in a DB25 in a way
that is a subset of the Atari PC4. The Centronics STROBE
signal is generated from a pPsG bit. The Centronics BUSY
signal from the printer connects to one of the parallel
input lines of the MFP to permit interrupt driven printing.
Eight bits of read/write data are handled through I/O port B
on the PSG at a typical data transfer rate exceeding 4000
bytes/second.

3.6. Keyboard Interface

The MegaSTe keyboard interface is completely compatible
with the ST/MEGA computers. The keyboard is equipped with a
combination mouse/joystick port and a joystick only port.
The keyboard transmits encoded make/break key scan codes
(with two key rollover), mouse/trackball data, joystick
data, and time-of-day. The keyboard receives commands and
sends data via bidirectional communication implemented with
a MC6850 Asynchronous Communications Interface Adapter
(ACIA). The data transfer rate is 7812.5 bits/second. All
keyboard functions, such as key scanning, mouse tracking,
command parsing, etc. are performed by a HD6301V1 B8-bit
microcomputer unit. (see the Atari, Intelligent Keyboard
(ikbd) Protocol, February 26, 1985.)

\OTC ADDEl F ot ZTZA14AMNRALTINGQ 10onN—-12-17% nN:14 R3-77? < PTFN RECU #173=



'
3 L

*90 12714 17:16 X 214 713 90640 ATARI/DALLAS 14

Confidential/Draft 8 June 1990 Atari STe Plus Spec 11

Device Subsystems

3.6.1., Mouse and Joystick Interface

The Atari two-button mouse is a mechanical, opto-
mechanical, or optical mouse with the following minimal per-
formance characteristics: a resolution of 100 counts/inch, a
maximum velocity of 10 inches/second, and maximum pulse
phase error of 50%. The Jjoystick is a four direction
switch-type joystick with one fire button.

3.7. ROM Cartridge

The Mega$Te’s cartridge port is fully com atible with
ST cartridges. The cartridge is physicalgy connected
through a 40 pin card edge connector ROM cartridge slot.
Cartridge ROMs are mapped to a 128K memory region starting
at Ox00FA0000, extending to OxO0OFBFFEF.

——— s PO 1Q00MN—17-1732 NnN: 1% RZ-72 S EIEN RECU #14



ra@ 12714 17:16 & 214 713 9040 ATARI/ZDALLRS 1S

Confidential/Draft 8 June 1990 Atari STe Plus Spec 12

Video Subsystem

4. Video Subsystem

The MegaSTe video subsystem is identical to that of the
STe. The resolution modes are identical with that of the ST
and Mega ST series, but the functionality is enhanced by
Eermxttin? video display memory to start on any even word
oundary (instead of only on 256 byte boundariesx, and by
adding the capability of scrolling horizontally on a one-
pixel basis. The MegaSTe also contains four bits of infor-
mation for each color, instead of three.

4.1. video Configuration

The various modes available on the MegaSTe are:

ST mode
mode : palette colors
bits resolution planes (CLUT entries) DACs
00 320x200 4 16 4096/4-bits
01 640x200 2 4 4096/4-bits
10 640x400 1 = Monochronme
o As the table indicates, the modes are set through

either the Shift Mode Register. 16 word-wide registers
comprise the ST Color Palette (also known as the Color
LookUp Table - CLUT). Contained in each entry are 12 bits
of color: 4-bits each for red, green, and blue. Therefore,
a total of 4096 possible color combinations (16 x 16 x 16)
are selectable for each entrﬁ. However, in order to main-
tain compatibility with the ST (which had 3 bits for each
color, right aligned within nybbles), the high-order bit of
each color is actually the least significant bit of color
information. The following diagram compares the  CLUT
entries for the $T/Mega ST and the STe/MegaSTe:

1111 11
5432 1098 7654 3210

sT : xIxIxix | xiz2lzto | xl2f1lo | xizl1lol

Red Green Blue
gTe: xIxIxix 1 ol3l2t1 | ol3lzlz | of3l2l1l
Red Green Blue

Mode 00 (320x200x4) can index all sixteen palette
colors. while mode 01 (640x200x2) can index just the first
four. (Reg0 - Reg3) palette colors. The monochrome mode (10
- 640x400x1) bypasses the color palette and is instead pro-
vided with an inverter for inverse video contreolled by bit 0
of palette entry 0.



*9p 12/14 17:17 X 214 713 9040 ATARI/DALLAS 16

Confidential/Draft 8 June 1990 Atari STe Plus Spec 13

Video Subsystem

4.2, video RAM/Controller/Display Interface

Video display memory is configured as logical planes
(1, 2, 4, or 8) of interwoven 16-bit words of contiguous
memory to form one 32,000 byte physical plane starting at
any 8 byte boundary. The starting address of display memory
ig loaded into the Video Base High, Video Base Mid, and
Video Base Low Registers. This register is loaded into the
Video Address Counter (High/Mid/Low) at the beginning- of
each frame. The address counter is incremented as the Bit-
Map planes are read.

BitMap planes are transferred to the video chip
(shifter) buffer 16-bits at a time. The shifter then loads
the video shift register where one bit from each plane is
shifted out and collectively used as the index (plane 0
appears first in RAM and provides the least significant bit
of each pixel) to a specific ST Palette Register (depending
on the shift Mode).

4.2.1. Horizontal 5crélling
Two additional registers serve to implement a horizon-

tal smooth scroll capability. The horizontal pixel scroll
register specifies a pixel offset of 0 to 15 at which to

be%in display. Increasing this value by one will have the
o effect of scrolling the entire display one pixel to the
left. The other register is the extra line width register.

This register contains a number of words that is added  to
the ending address of each display line to get the beginning
address of the next display line. It has tge effect of put-
ting an undisplayed area to the right of the video screen.
By varying the horizontal pixel scroll register and the
video base registers, the display video screen can be used
as a horizontally scrollable "window" into that area.

4.3. Monitor Connector

The video output is provided on a 13-pin DIN connector
compatible with the ST, STe, and Mega ST serles computers.
Either Color or Monochrome monitors can be used.

Pin Function

Audio Out

Composite Video

General Purpose Output (?7)
Monochrome Monitor Detect
Audio Input

Green

Red

Peritel Power (?7)

DI whE

SEE EEEEE B -EE Y a Yo R I T [ala R IP4 n"Iz=_7° c© BYEN RECH #14



: . *90 12/14 17117

Confidential/Draft

o

'OSTE APFELE:-
=

10
11
12
13

——
X 214 713 9040

8 June 1990

Horizontal Sync
Blue

Monochrome oOut
Vertical Sync
Ground

33140843099 1?2%90-12-13

ATARI/DALLAS

Atari STe Plus Spec 14

00:16

Video Subsystem

G3-72

S

BIEN RECU

#17




190 12/14 17:18 ® 214 713 9040 RTARI/DALLAS Y ye

Confidential/Draft 8 June 1990 Atari STe Plus Spec 15

Music Subsystem

5. Music Subsystem

The MegaSTe architecture extends the music subsystem
presently available on the ST/MEGA computers. The MegaSTe
mixes the output of the existing ST P3G sound system with a
new DMA-driven dual-channel D-to-A subsystem. The MegaSTe
combines these two sources for simple beeps and sends the
resulting audio through the audio out line of the monitor
interface. In addition, the output can be connected to an
external stereo amplifier for high-fidelity sound. '

The MegaSTe is also equipped with a Musical Instrument
Digital Interface (MIDI) which provides high speed serial
communication of musical data to and from more sophisticated
synthesizer devices.

5.1. Programmable Sound Generator

The ST sound system using the General Instruments AY-
3-8910 / Yamaha Y¥YM-2149 Programmable Sound Generator is
present in the MegaSTe. The YM-2149 Programmable Sound Gen-
erator produces music synthesis, sound effects, and audio
feedback. With an applied clock input of 2 MHz, the PSG is
capable of - providing a fre?uency response range between 30
Hz (audible) and 124 KHz (post-audible). The generator
places minimal amount of processing burden on the main sys-

ae tem (which acts as the sequencer) and has the ability to
perform using three independent voice channels. The three
sound channel outputs are mixed together and sent to the
volume and tone control chip.

(Reference Engineering Hardware Specification of the
Atari ST Computer System, page 10.)

5.2. DMA Sound

The MegaSTe also includes a new DMA-driven sound sub-
system that allows the pla{back or synthesis of complex
waveforms at a variety of sampling rates.

5.2.1. Overview

sound in the form of digitized samples is stored in
system memory. These samples are fetched from dual-purpose
memory during horizontal blanking (transparent to the pro-
cessor) and provided to a digital-to-analog converter (DAC)
at a constant sample frequency specified by the wuser. The
output of DAC is then low pass filtered to a frequency equal
to forty percent of the sample frequencg by a four pole
switched capacitor low pass filter. The signal is further
filtered by a two pole fixed frequency (15 kHz) low pass
filter and provided to a National LMC1992 Volume / Tone Con-
troller. Finally, the output of this device 1s available

2ASTC Acoct o - 22140843099 1990-12-13 00:17 G3-72 S BIEN RECU #18



,
v9@ 12,14 17:19 ® 214 713 9040 ATARI/DALLAS " e R

confidential/Draft 8 June 1990 Atari S$Te Plus Spec 16

Music Subsystem

at a pair of RCA jacks and the audio out line of the video
connector.

Two channels are provided. They are intended to be
used as the left and right channels of a stereo system when
using the raw audio outputs from the machine. of course,
they are mixed together when fed to the video monitor
speaker. A mono mode is provided which will feed the same
data to both channels simultaneously. The only restriction
placed on mono mode is that there must be an even number of
sanples (see data format section for details).

$.2.2. Dbata Format

Bach sample is stored as an eight bit quantity, the
most significant bit is the sign and the other seven bits
are magnitude. In the stereo scheme there is one word per
sample, the upper byte contains the left channel sample and
the lower byte contains the right channel sample. In the
mono scheme bytes are accesse sequentially. However, they
are still fetched a word at a time. Therefore, there must
be an even number of samples.

A group of samples is called a frame. A frame may be
played once or can automatically be repeated forever.
Frames occupy & contiguous block of memory and are specified

 r by their starting and ending addresses. The ending address
it the address of the last sample + 2. An external clock is
provided to timer A of the ST MFP at the end of each frame.
This can be used as an interrupt. This pulse is also
exclusive OR‘ed with the monochrome monitor detect bit,
whose transistion can generate an interrupt on bit 7 of the
MFP-ST General Purpose I/0 Port. Frames may be linked
together by defining a new frame while the current frame is
being played. The new frame will begin at the end of the

current frame.

As an example, suppose you have three frames (A, B,
and C) and we want to play frame A once, then play frame B 5
times, and finally play frame C twice. To accomplish this
you can do the following:

1. setup frame A,

2. write 3 to the sound DMA control register to start
playing with repeat.

3. Setup timer A to use an external clock, initialize its
count to 5, and have it interrupt when count = 0.

4. setup frame B.

R

} )STE APPELE: . 2714084309 1990-12-12%2 00:18 G3-72 § BIEN RECU #1¢



=" '90 12/14 17:19 & 214 713 9@4p ATARI/DALLAS ' i 20

Confidential/braft 8 June 1990 Atari STe Plus Spec 17

Music Subsystem

Go do something else until interrupted.
Setup frame C,.
Setup timer A count to 2,

Go do something else until interrupted.

W ® I ¢

Write 1 to the sound DMA control register to cause
Playing to stop at the end of the frame.

In this example no mention is made of setting the sam-
ple rate, wvolume or tone controls. It's assumed that all
of these have been set up ahead of time. It should be obvi-
ous how this example can be extended to allow volume or tone
to be modified at specific points during playback.

Note If we had loaded the sound DMA control register
with a 1 in step 2, frame A would have been played once and

sound would have been disabled. a zero can written to
the sound DMA control register at any time to stop playback
immediately.

$.2.3. MICROWIRE Interface

The MICROWIRE interface provided to talk to the

.. National 1LMC1992 Computer Controlled Volume / Tone Control

" is a general purpose MICROWIRE interface to allow the future

addition of other MICROWIRE devices. For this reason, the

following description of its use will make no assumptions
about the device being addressed.

The MICROWIRE bus is a three wire serial connection and
protocol designed to allow multiple devices to be individu-
ally addressed by the controller. The length of the serial
data stream depends on the destination device. In general,
the stream consists of N bits of address, followed by zero
or more don‘t care bits, followed by M bits of data. The
hardware interface which has been provided consists of two
16 bit read/write registers. One data register which con-
tains the actual bit stream to be shifted out and one mask
register which indicates which bits are valid.

Let’s consider a mythical device which requires two
address bits and one data bit. For this device the total
bit stream is three bits (minimum). Any contiguous three
bits of the register pair may be used. However, since
the most significant bit is shifted first, the command
will be received by the device soonest if the three most
significant bits are used. Let’s assume: 01 is the device’s
address, D is the data to be written, and X's are don't
cares. Then all of the following register combinations will
provide the same information to the device.

STE APPELE: - 33140843099 1990-12-12 00:19 G3-72 S RIEN RECU %20




— :

rgp 12714 17:20 T 214 713 9840 ATARI/DALLAS 21

Confidential/Draft 8 June 1990 Atari STe Plus Spec 18

Music Subsystem

1110 0000 0000 0000 Mask
01DX XXXX XXXX XXXX Data

0000 0000 0000 0111 Mask
XXXX XXXX XXXX X01D Data

0000 0001 1100 0000 Mask
XXXX XXX0 1DXX XXXX Data

0000 1111 1111 0000 Mask
XXXX 01XX XXXD 0000 Data

1111 1111 1111 1111 Mask
01XX XXXX XXXX XXXD Data

The mask register needs to be written before the data
register. Sending commences when the data register is writ-
ten and takes approximately l6éuS. Subsequent writes to the
data and mask registers are blocked until sending is com-
plete. Reading the registers while sending is in progress
will return a snapshot of the shift register shifting the
data and mask out. This means that you know it is safe to
gsend the next command when these registers (or either one)
return to their original state. Note that the mask regis-
ter does not need to be rewritten if it is already correct.
That is, when sending a series of commands the mask register
only needs to be written once.

5.2.4., vVolume and Tone Control

The LMC1992 is used to provide volume, tone, and mixing
control. This part is talked to using the MICROWIRE inter-
face. The device has a two bit address field, address =
%10, and a nine bit data field. There is no way of reading
the current settings.

The input selector is used to enable and disable mixing
the output of the GI PSG-with the DMA sound. After reset,
the input is grounded, and should be switched to either
states 1 or 2 during initialization to avoid level
mismatches during later switching.

Pata Field

011 ??? ??? Set Master Volune
000 000 -80 dB
010 100 -40 dB
101 XXX 0 dB

101 X?? ??? Set Left Channel Volume



v9@ 1214 17821 x 214 713 9049 ATARI/DALLAS ' ¢ 22

Confidential/Draft 8 June 1990 Atari STe Plus Spec 19

Music Subsystem

00 000 -40 dB
01 010 -20 dB
10 1XX 0 dB

100 X?? ??? set Right Channel vVolume
00 000 -40 dB
01 010 -20 dB
10 1xXX 0 dB

010 XX? ??? Set Treble
0 000 -12 4B
0 110 0 dB (Flat)
1 100 +12 dB

001 XX? ??? Set Bass
0 000 =12 dB
0 110 0 dB (Flat)
1 100 +12 dB

000 000 0?? GI PSG Sound Enable
00 disabled, unbiased
(reset state)
01 enabled
10 disabled, biased

Note: The volume controls attenuate in 2 dB steps. The
tone controls attenuate in 2 dB steps at 50 Hz and 15 kHz.

5.3. Musical Instrument Digital Interface (MIDI)

The MIDI allows the integration of the MegasSTe series
with music synthesizers, sequencers, drum boxes, and other
devices possessing MIDI interfaces. High speed (31.25
Kbaud) serial communication of keyboard and program informa-
tion is provided by two ports, MIDI OUT and MIDI IN (the
MIDI OUT also includes MIDI THRU data).

The MIDI communicates through the MC6850 Asynchronous Com-
munications Interface Adapter (ACIA) to the system bus. The
data transfer rate is a constant 31.25 Kbaud of 8-bit asyn-

chronous data.

(Reference Engineering Hardware specification of the 'Atari
ST Computer System, pages 1l and 17 for more information on
the MIDI and ACIA.)

****** = TT1ANRLTINGSS 1990-12-1% 00:20 G3-72 S BIEN RECU #2727



ATARI/DALLAS 25 :

*90 12714 17:21 X 214 713 9040

confidential/Draft 8 June 1990 Atari $Te Plus Spec 20

VMEbus

6. VMEbus

The MegaSTe provide for I/O expansion by implementing
the industry standard VMEbus, revision C.1. The MegaSTe has
one single-high VMEboard backplane. The interface is lim-
ited to RA24/D16 slave-only cards

6.1. system Controller

The main system board serves as the VMEbus system _con-
troller (a slot 1 “card") and implements the following func-
tions:

= IACK* daisy-chain driver
- global SYSCLK (16 MHz, independent of processor speed)
- global VMEbus time-out that drives BERRX

The IACK* daisy-chain driver is designed to meet the
VMEbus specification requirements.

The interface is compatible with the VME specification,
but the following constraints should noted:

: - No bus arbitration is supported. BRO*, BR1*, BR2*, and

e BR3* are connected together and pulled up by a 1K
resistor to Veec. BGOIN*, BGLIN*, BG2IN*, and BG3IN*
are connected together and pulled up by a 1K resistor
to Vee. BBSY* and BCLR* are each pulled up by a 1K
resistor to Vcc but are not otherwise driven. BGOOUT*,
BG1lOUT*, BG20UT*, and BG3QUT* are not connected.

- The interrupt lines IRQ1* through ITRQ7* can each be
used, and are each pulled up by a 1K resistor to Vec.
TRO3%, IRQS*, and IRQ6* can also be driven low by the
system. The SYSFAIL* signal is also pulled up by a 1K
resistor and can generate a level 7 system interrupt
when asserted by a card. IACK* and IACKIN* are driven
by the system. A card should not drive these signals.
TACKOUT* is not connected. The status word supplied by
the card during the interrupt acknowledge cycle is used
as the 68030 interrupt vector. For compatibility with
Atari products, the vector supplied must not be OXFF.
a1l VME bus and system interrupts are independently

maskable in the SCU.

- SYSCLK is driven with a 16.021226 MHz clock, indepen-
dent of which CPU clock speed is selected. SERCLK and
SERDAT* are not connected. The ACFAIL* signal 1s
driven low by the system when the power supply 1s not

_ stable. BACFAIL* will be asserted 1 mS before the power

*”  supply leaves the regulated range. It 1S pulled up by

. - - - =S —_—— e - e P o —



'98 12714 17:22 X 214 713 9040 ATARI/DALLAS 24

Confidential/Draft 8 June 1990 Atari STe Plus Spec 21

VMEbus

a 1K resistor.

= AMO, AM1, AM2, and AM4 are driven by the system. AM3
and AM5 are connected together and pulled up by a 1K
resigtor to Vcc. This implementation allows standard
Supervisor and Non-Privileged Program and Data
accesses, and Short Supervisory and Non-Privileged
accesses. Block transfers are not supported. LWORD*
is pulled up by a 1K resistor but not otherwise driven.

- The BERR* and SYSRES* signals are connected directly to
the system bus error and reset signals. The bus error
timer implemented on the system board will time out and
generate a bus error if the card does not assert DTACK*
within 255 cycles of the 16MHz clock after the VME AS*
falls. The SYSRES* generated when the processor exe-
cutes a RESET instruction may be as short as 16 us
long. Both signals are pulled up by 1.2K resistors and
can be driven ?ow by the system as well as by the card.
The +5VSTDBY signal is connected to +5V. DTACK* is
pulled up by a 1K resistor.

. All other signals on the connectors comply with VME
functionality, but with electrical limitations on
current drive and termination. There is no termination
in the system other than the pullugs specifically men-
tioned above. All outputs have at least 1 LSTTL drive
fapability and no input presents more than 2 LSTTL

cads.

6.2. Address Partitioning

The Mega$Te’s A24/D16 VMEbus interface is fixed at
0x00A00000-0x00DEFFFF . Al6é cards are addressed from
0x00DFO0Q00 - OxXO00DFFFFF.

6.3. Read-Modify-Write Cycles

The bus can not be arbitrated away from the 68000 if it
is in the midst of a read-modify-write cycle.

6.4, VME Interrupter

The system can write to an I/0 address to generate a
level 3 1nterrupt on the VMEbus. It can monitor a status
register that indicates when that interrupt has been, ack-
nowledged and serviced. An I/0 address contains a
read/write status/contrel port, only the least significant
bit of the least significant byte is defined. When set to
1, it generates a VMEbus level 3 interrupt. when cleared,

the interrupt request is taken away.

. -

. P Al L —~— e DTCN DOt #7



rag 12714 17:23 X 214 713 904e ATARIZDALLAS

Cconfidential/Draft 8 June 1990 Atari STe Plus Spec 22

VMEbus

Note that the level 3 interrupt must be masked off
(either by setting the processor’s IPL or by masking the
interrupt 1n the system controller) or the 68000 will be
immediately interrupted.

The system board responds to a VMEbus interrupt ack-
nowledge cycle with the status ID of OXFF.

-




