le—1d

L

le — Command

irectory’s contents in columnar format:

The command le prints the contents of the current directory. The contents are
printed in muiltiple columns to make them easy to read. Names of directories are
followed by a slash /'

See Also

commands, Is

. lcalloc — General function (libc)

Allocate dynamic memory.
_ char *lealloc(count, size)
! unsigned long count, size;
lcalloc is one of a set of routines that helps you to manage the computer's free
mory; or arena. Icalloc calls Imalloc to obtain a block large enough to contain

_free memory pool with the function free.

Unlike the related function ealloc, lealloc takes arguments that are unsigned

| longs: therefore, it can allocate memory blocks that are larger than 64 kilobytes.
See Also

arensa, calloc, free, Imalloc, Irealloc, malloc, notmem, realloc

Diagnostics
lcalloc returns NULL if insufficient memory is available,

— Command

_Link relocatable object files
M /op ion ...] ﬁI
compiler translates a file of source code into a relocatable object. This relocatable

‘called a linker, a'link editor, or a loader. '
Id scans its arguments in order and interprets each option as described below.
Each non-option argument is either a relocatable object file, produced by cc, as, or
Id, or a library archive produced by ar. It rejects all other arguments and prints a
diagnostic message.

_ count items of size bytes each; it then initializes the block to zeroes and returns s
pointer to it. Dynamic memory that is no longer needed can be returned to the

ot ecuted by itself; for calls to routines stored in libraries have not -
lved. 1d” combines, or links, relocatable object files with libraries
‘by the archiver ar to construct an executable file. For this reason; ld is~

e, on o eo— e oottt e 1 e

Id 436

Each relocatable file argument is bound into the output file if its machine type
matches the machine type of the first file 80 bound; if it does not, a diagnostic mes-
sage is generated. The symbol table of the file is merged into the output symbol
table and the list of defined and undefined symbols updated appropriately. If the
file redefines & symbol defined In an earlier bound module, the redefinition is
reported and the link continues. The last such redefinition determines the value
that the symbol will have in the output file, which may be acceptable but is
probably an error.

Each library archive argument is searched only to resolve undefined references, i.e.,
if there are no undefined symbols, the linker goes to the next argument im-
mediately. The library is searched from first module to last and any module that
resolves one or more undefined symbols is bound into the output exactly as an ex-
plicitly named relocatable file is bound. The library is searched repeatedly until an
entire scan adds nothing to the executable file.

The order of modules in a library is important in two respects: it will affect the
time required to search the library, and, if more than one module resolves an un-
defined symbol, it can alter the set of library modules bound into the output.,

A library will link faster if the undefined symbols in any given library module are
resolved by a library module that comes later in the library. Thus, the low-level
library modules, those with no undefined symbols, should come at the end of the
library, whereas the higher-level modules, thoss with many undefined symbols,
should come at the beginning. The library module ranlib.sym, which is main.
tained by the sr s modifier, provides Id with a compressed index to the symbols
defined in the library. But even with the index, the library will link much faster if
the modules occur in top-down rather than bottom-up order.

A library can be constructed to provide a type of “conditional” linking if alternate
resolutions of undefined symbols are archived in & carefully thought-out order. For
instance, libe.a contains the modules

finit.o
exit.o
finish.o

in precisely the order given, though some other modules may intervene. finit.o
contains most of the internals of the STDIO library, exit.o contains the exit()
function, and _flnish.o contains an empty version of _finish(), the function that
exit() calls to close STDIO streams before process termination. If a program uses
any STDIO routines, macros, or data, then finit.o will be bound into the output
with its version of finish(). If a program uses no STDIO, then the “dummy”
flInish.o will be bound into the output because it is the first module that defines
{finish() that the linker encounters after exit.o adds the undefined reference.
This saves approximately 3,000 bytes. To set the order of routines within a library,
use the archiver ar; this, of course, has its own entry in the Lexicon.

G
iees

!

436

The available options are as follows:

-d Define common regions even if relocation Information is retained. By
default, 1d leaves common areas undefined if there are undefined symbols
" or if the -r option is specified.
kfilename

Link with the object file filename. This option is used to link programs to
access code or data at fixed locations outside the program being linked,
such as a library burned into &« ROM or the fixed low memory locations
documented by Atari.

-1 name .
An abbreviation for the libraries named in the environmental variable
LIBPATH. 1d searches each directory named in LIBPATH for a file
named libname.a.

-0 file
Write output to file (default, L.prg.)

-R value

Relocation base option. By default, 1d links executeable files to run at the
user-base for the computer. In almost all cases, the user-base is zero. If the
-R option is used, 1d will link the executeabls to run at value instead of at
zero, value can be et to any C-style constant, or to a symbol name that 1d
can find in the object files and archives being linked; remember t.hat. a.C-m_:-
cessible symbol must end with an underscore character *_". Th{s option is
used primarily to produce output files that can be bumet.‘l lqtq .R(.)M.
These programs must make their own provisions for relocating initialized
data and other tasks.

-r Retain relocation information in the output, and issue no dmgnoshc mes-
sage for undefined symbols. By default Id discards relocation information
from the output if there are no undefined symbols.

-8 Strip the symbol table from the output. The same effect may be obtained
by using strip. The -s and -r options are mutually exclusive.

!
Add symbol to the symbol table as a global reference, usually to force the
linking of a particular library module.

-X Discard local compiler-generated symbols of the form ‘L...".
x Discard all local symbols. '
See Also

ar, as, cc, commands, n.out

Idexp — Lexicon 437

Notes

If you are linking a program by hand (that is, running 1d independently from the
cc command), be sure to include the appropriate run-time start-up routine with the
Id command line; otherwise, the program will not link correctly.

Because version 3.0 changes the object format, the edition of Id shipped with ver-
sion 3.0 does not work with objects compiled with Mark Williams C version 2.1.7 or
earlier. To convert such objects to a format that 1d recognizes, use the command
mwtomw.

ldexp — General function (libc)

Combine fraction and exponent
double Idexp(f, ¢) double f; int ¢;

value real that satisfies the equation real=m*2"¢.

See Also
atof, cell, fabs, floor, fraction, frexp, modf

ldexp combines the fraction / with the binary exponent e to return a ﬂoatihg-bdihg; -

Lexicon — Introduction

The Mark Williams Lexicon is & new approach to dccumentation of computer
software. The Lexicon is designed to improve documentation and eliminate some
limitations found in more conventional documentation.

How to use the Lexicon

The Lexicon consists of one large document that contains entries for every aspect of
Mark Williams C. You will not have to search through a number of different
manuals to find the entry you are looking for.

Every entry in the Lexicon has the same structure. The first line gives the name of
the topic being discussed, followed by its type (e.g., Mathematics function) and,
where appropriate, the file in which it is kept.

The next lines briefly describe the item, then give the item’s usage, where applic-
able. These are followed by a brief discussion of the item, and an example.

Cross-references follow. These can be to other entries or to other texts, notably to
The Art of Computer Programming and the first edition of The C Programming
Language. Diagnostics and notes, where applicable, conclude each entry.

Internally, the Lexicon has a tree structure. The “root” entry is the present entry,
for Lexicon. Below this entry comes the set of Overview entries. Each Overview
entry introduces a group of entries; for example, the Overview entry for string
introduces all of the string functions and macros, lists them, and gives a lengthy ex-
ample of how to use them.

Each entry cross-references other entries. These cross-references point up the
documentation tree, toward an overview article and, ultimately, to the entry for

488 Lexicon

Lexicon itself. They also point down the tree to subordinate entries, and across to
entries on related subjects. For example, the entry for getchar cross-references
S8TDIO, which is its Overview article, plus putchar and gete, which are related
entries of interest to the user. The Lexicon is designed so that you can trace from
any one entry to any other, simply by following the chain of cross-references up and
down the documentation tree,

Types of entries
There are several types of entries, as follows:
Command .
These describe commands or utilities that run directly under TOS.
Definitions
These entries define technical terms and provide background information
that is useful in C programming.
Library functions

These present functions or macros included with Mark Williams C. They
include ctype macroe (a macro that checks the type of data being
handled); debugging macros; general functions (non-specialized C
functions and macros); mathematics library functions; STDIO
functions; STDIO macros; string functions (or routines used to
manipulate character strings); and time functions (routines used to
manipulate the time setting rendered by TOS).

Overview
Each of these entries gives an overview of a group of routines.

Symbols and constants
Data elements that are used while compiling or running programs; these
include environmental variables and manifest constants.

TOS support
Entries that give information useful in programming for the Atari ST; these
include the following: TOS devices (logical devices used by TOS to
describe its peripheral devices); TOS functions; and TOS support
(routines designed to support the TOS operating system).

Technical information
These give detailed information on technical issues. The articles describe
calling conventions, data formats, and others.

UNIX routines .
A function, macro, or data item included to provide compatibility with
UNIX, COHERENT, and related operating systems.

The Overview entries review an entire topic, and give full cross-references to all of

the entries that belong to the category discussed. If you are unfamiliar with a par-
ticular variety of routine, be sure to check the Overview entry that discusses it.

libaes — libe 438

— Library

At the ‘)ack of this manual is a list of all entries in the Lexicon, sorted by category.
Check there for a complete list of the Overview entries, as well as for lists of all
functions sorted by type.

Use the Lexicon

If, while reading an entry, you encounter a technical term that you do not under-
stand, look it up in the Lexicon. You should find an entry for it. For example, if a
function is said to return a data type float and you do not know exactly what a
float is, look it up. You will find it described in full. In this way, you should in-
crease your understanding of Mark Williams C, and make your programming easier
and more productive.

We wish to hear your comments on the Lexicon; we especially wish to hear if you
discover something wrong or if an entry that you looked for is missing.

See Also
AES, aesbind.h, ar, crisg.o, gemdefs.h, library, nm, TOS

% " A 4?;.

I A AR

440 libm — libvdi #line— Line A 441

See Also

ar, library, nm

lerary
llbm is the archive file that holdl the mnthamma library.

~ See Also
ar, library, mathematics library, math.h, nm

AES, ar, crtsg.o, gemdefu.h, library, nm, TOS, vdibind.h

#line — Preprocessor instruction

’ It i is set th.h t.he -etenv command
See Also

cc, make, msh, setenv

filename. Finally, the form #llne mamfest conalant: contains manifest co
’Lhat have been set,by earher preprocessor mstrucnona, auch as #deﬂne w

+/ library — Overview
(A library is an archive file of commonly used functions that have been compiled,
. tested, and stored for inclugion in a program at link time.

:“Normally, C uses two libraries: libc.a; which holds the standard C functions; and :
_a, which holds math matical functions. You can use the archiver ar to create

ited C code with the ongmal sou

' your own libraries of functions or edit existing libraries, or you can purchase such ' for example, the program genemtor yace will use #line mst.ructxoms to link the C
_libraries from elsewhere. The sizes of the files in an: existing library can be listed code it generates with the yacc code written by the programmer.
' ::W“lt.h the command size, and their symbol tables may be listed with the command See Also

,~ cpp
See t.he entries for mathematics library, string, STDIO, and UNIX routines The C Programming Language, page 208

for information about many of the routines within these libraries. Notes
See Also i The ‘#' of this inatruction must appear in the first, or lefunost, colump on a line,

ar, function, libaes, libe, libm, libvdi
Line A — Technicel information

442 Line A

Line A is the intérface to the Atari ST’s asqamblyJanguage-level graphics routines.

Line A

443

structions of the 68000 are sorted by their bit patterns, they may
0 18 “lines”, according to the value of the high nybbie of the in
‘1.2 and 3, for instance, give the move instructions. Lines
4 al e e (aeehan
ine F is used by the Ata
_used to call the low:level

If the machine in

'ROM to make GEM AES fit into the ROM.
_ graphics routines.

Each Line-A function consists of few lines of assembly language, which save

registers, load parameters, execute one of the unimplemented Line A instructions,
restore registors, and return. These perform simple graphics functions, such as
rawing lines, displaying characters. or drawing polygons. They underpin the GEM

_Most functions pass:their parameters through the structure la data la data i
_referenced through a pointer in in the structure la Init, which is initialized by
function linea0. The exceptions are linea?, which takes the structure la blit;
lineac, which takes a pointer; and linead, which takes two pointers. All functions
and structures are declared in the r file linea.h, which also

ber of macros used to access elements within the Line A structures.

The folldwin‘gﬂbrieﬂy summarizes the Line A functions:

 linea0 Initialize
lineal Put pixel
linea2 Get pixel
linea3 Draw a line
linea4 Draw a horizontal line
linea5 Draw a filled rectangle
lineat Draw a filled polygon
linea7 Bit blit
linea8 Text blit
lineag Show the mouse’s pointer
linean Hide the mouse’s pointer
lineab Transform the mouse’s pointer
lineac Erase a sprite
linead Draw a sprite
lineae Copy a raster form
lineaf Seedfill

Examples

The first example demonstrates linea3, linea5, and linea8. When compiled, it
takes four arguments, in decimal: an ASCII character; a column number (0 through
79); a row number (0 through 23); and a mode number (0 through 63). The mode
indicates how the character named in the first argument is displayed.

ntains a num-

#include <stdio.h>

#include <tines.h>

struct ia_font *fontp; /* font pointer for lines interface */
char {ine(100], *p;

char scr_wrk{1024); /* sres for graphics */

int u:r_?lt, scr_chi; /* length and disp for underline */

L]
* put s character on the screen.
*/
put_scr(c, x, y, mode)
int ¢; /* chesracter to put out */
int x, y; /* x & y coordinates on 80*25 screen */
int mode; /* see vst_effects for List of codes */
[4
unsigned int tmp;
stetic long petmek = -1;
tmp = ¢ - fontp->font_low_ade;
DELX = fontp->font_char_off (tmp1] -
(SRCX = fontp->font_char_of f (tmp));
DSTX = x << ¥;
DSTY » y << &;
WHOOE = O /7% replace mode */
STYLE = (mode & 7);
ff(mode & 8) (/* reverse */
X2 = (X1 @ DSTX) + scr_fot;
Y2 = (Y1 = DSTY) + scr_chi;
PATPTR = Lpatmek;
PATHSK = 1;
CLIP = O;
{ineaS(); /* filled rectangle */
s WMODE = 2; /* xor mode */
{f(mode & 16) (/* underiine */
X2 = (X1 = DSTX) + scr_fat;
Y2 = Y1 = DSTY + scr_chi;
Lines8();
LNMASK = -1;
WHODE = 2;
Linea3();
)
else
Lines8();

L T AT

P P
A A

444 Line A

/* initialize material for screen */
inft_scr() ¢

)

/7* initiatlize tinea */
/% hide mouse */
7% 8x16 system font */

Uinea0();

Liness();

fontp » la_intt.li_st{2);

FBASE = fontp->font_dete;

FWIDTH = fontp->font_width;
TEXTFG = ¥;

SRCY = O

DELY = fontp->font_height;
scr_fat = fontp->font_fatest;
scr_chi = fontp->font_height - 1;

coLBITO = 1;
COLBITY = O
coLsiT2
coLeIT3
LITENSK
SKEWMSK = Ox1111;
SCRTCHP = acr_wrk;
VEIGRY = 1;

LSTLIN = -Y;

/* text forground white */

0;
0x5555;

inlt_meo()

main()

)

The second example uses linea5 to draw a filled rectangle. Typing any key ends

printf("\033EProgrem to demonstrate some |ines capsbilities\n*);
printf("Each line should have four decimel nuwbers or rquit’\n*);
printf(*The ASCII value of the char ‘A’==b5, etc.\n");
printf(*The x and y coordinstes retative to a 25X80 screenm\n®);
printf("The mode 1is=thicken 2=grey 4sitalic\n®);

printf(™ 8=reverse 16=under!ine\n®);
printf(*Combinations work but some are weird\n\n®);

<

int e, x, vy, ™
inft_scr();
init_meg();

for(;;) ¢
printf(*\033A\033Kk> *);
fflush(stdout);
pets(line);
if(1stremp(line, "quit*))
return(0);
ascanf(line, *Xd Xd X X, &, &x, by, &m);
put_scr(c, x, vy, m);
>

the display.

linea.h — line feed 445

#include <lines.h>
#include <osbind.h>
box (i, J)

<

tong patmsk = -1; /* psttern oll ones */

WMODE = 2; /* xor mode */
PATPTR = Lpatmsk;
PATHSK = 1; /* sizeof pattern */
CLIP = 0; /* no clipping */
Xt =YY = {;
X2 = Y2 = };
tinesS(); /* draw box */

)

main()(
int {;
Linea0();

tinesa();
Ceonus("\D33E\0O33¢ Any key stops the display®);

for(;Cconin() == 0;)
for(§ = 50; | < 200; f++)
box({, 400-1);

Ceonin(); /* sat chesr */
Cconma("\033e\n");

)

See Also

linea.h, TOS, VDI

Notes

Line A is described in chapter 3.4 of Atari ST Internals, and in unpublished Atari
documentation. These functions are extremely complex, and documentation is not
readily available. Programmers who wish to use these routines are well advised to
use the above example as & model for testing the Line A functions and studying
how they manipulate the screen.

a.h — Header file
eclare Atari line

he Atari's Line A routines. It al

header file, Line A, TOS

line feed — Character constant
Mark Williams C recognizes the literal character \n

; > recognizes t al charac for the ASCII line feed chara
LF (octal 012). This character may be used as a character constant

446

Imalloc — localtime

See Also
ASCII, character constant

Notes
On many systems, \n both feads the line and tosses the carriage; however, on the

: fA;’;ui‘ST \n must be used with \r if the program does not work through STDIO.
. Note that to read a filo that includes line-feed characters, it must be opened in

‘lmall

binary mode. See the entry for fopen for more information.
oc — General function (libe)

. Allocate dynamic memory.

_char *Imalloc(size) unsigned long size;

Imalloc helps to manage an a program'’s arena. It uses a circular, first-fit algo-

' rithm to select an unused block of at least size bytes, marks the portion it uses, and

_returns a pointer to it. The function free can be used to return allocated memory
to the free memory pool. ' ‘

{ nlike the related function malloc, Imalloe takes an unsigned long as its size ar-
gument, which allows allocation of memory blocks larger than 84 kilobytes.

Example
For an example of a related function, see malloc.

See Also

arena, calloc, free, lcalloc, Irealioe, malloe, notmem, realloc, setbuf
Diagnostics

Imalloc returns NULL if.insufficient memory is available. It prints a ge and

s abort if it discovers that the arena has been corrupted, which most often oc-
curs by storing past the bounds of an allocated block..

“localtime — Time function (iibc)

ert system time to calendar structure
#include <timeh>

tm *localtime(timep) time_t *timep;
. localtime converts the TOS internal time into the form described in the structure
: tm.

‘timep points to the system time. It is declared to be of type time t, which i
" defined in the header file time.h as being equivalent to a long. The system time,

/in turn, is returned by the function time. Mark Williams C defines the system

; time to be the number of seconds since January 1, 1970 0h00m00s GMT.

j,:,]‘ocaltlm‘eummms a pointer to the structure, tm, which is also defined in time.h,

as follows:

_whether daylight saving. time is_now in effect, not whether it is in effect during
some part of the year. Note, too, that the time zone is set by localtime every time

1 N I '
localtime 447

struct tm (
’ fnt tm_sec; /* current time, second */

int ta_ming /* current time, minute */

int tm_hour; /* current time, hour %/

int tm_mday; /* day of the wonth */

int tm_mon; /* month (0-11) */

int tm_yeear; /* yesr */

int tm_wdsy; /* day of the week */

int tm_yday; /* day of the year */

int tm_isdst; /* daylight ssvings fleg */
bH

The function asctime turns tm into an ASCII string.

Unlike its cousin gmtime, localtime returns the local time, including conversion
to daylight saving time, if applicable. The daylight saving time flag indicates

the value returned by

getenv(“TIMEZONE")

changes. See the Lexicon entry for TIMEZONE for more information on how.
Mark Williams C handles time zone settings.

Example

The following example recreates the function asctime. It builds a string somewhat
different from that returned by asctime to demonstrate how to manipulate the tm
structure.

#include <time.h>

char *month{} = (
“january®, "February®, “March®, “April®,
"ay™, "June®, “July", "August", "September®,
“Octobar®, ‘*November™, “Decewber"

¥

char *weekday(]) = (
Sunday®, “Honday®, “Tuesday”, “Wednesday®,
“Thursday®, "Friday”, "Saturday*

 H

mein()

L4
char buf[20];
time t trum;
tm *ts;
int hour = Q;

time(Ltrum); /* get time from systems v/

/* convert time to tm struct */
ta=localtime(Rtrum);

448 log
ff(te->tm_hour==0)
sprintf(buf,”12:X02d:X02d A.N.%,
ts->tm_min, te->tm_sec);
else
if(ts->tm_hour>=12) (
hour=ts->tm_hour-12;
1f (hour==0)
hour=12;
aprintf(buf,*X02d:X02d:X02d P.N.*,
hour, ta->tm_min, ts->tm_sec);
) elsge
sprintf(buf,"X02d:X02d:X02d A.H.*, ts->tm_hour,
ts->tm_min, ts->tm_sec};
printf(*\nXs Xd Xs 19%d Xs\n™,
weekdey [ts->tm_wday), ts->tm mday,
wmonth[ts->tm_mon), ts->tm_yesr, buf);
printf(*Today is the Xd day of 19Xd\n*,
ta->tm_yday, ts->tm_year);
if(ta->tm_fsdst)
printf(»0aylight Saving Time is in effect\n");
else
printf(“0sylight Saving Time s not in effect\n™);
)
See Also
gmtime, time (overview), TIMEZONE
Notes

localthme returns & pointer to a statically allocated data area that is overwritten
. by successive calls.”

‘ ilog — Mathematics function (libm)

Compute natural Jogarithm
- #include <math.h>
double log(z) double z3

log returns the natural (base e) logarithm of its argument 2.

Example
For an example of this function, see the entry for exp.

See Also
log10, mathematics library

Diagnostics

A domain error in log (z is less than or equal to 0) sets errno to EDOM and’: '

returna 0.

log10 — Logbase 449

log10 - Mathematics function (libm)

Compute common logarithm
#include <math.h>
double log10(z) double z;

ioglﬂ returns the common (base 10) logarithm of its argument z.

Example
For an example of this function, see the entry for exp.

See Also
log, mathematics library

Diagnostics

[

A domain error in logl0 (z is less than or equal to 0) sets errno to EDOM and

“returns 0.

Logbase — xbios function 3 (osbind.h)

Read the logical screen’s display base
#include <osbind.h>
#include <xbioa.h>

char *Logbase())
Logbase reads the screen's logical display base, and returns a pointer to it.

The logical base is where the screen-drawing primitives do their work. This is in
contrast to the physical base, which is returned by Physbase; the latter is where
the display hardware gets the image that is displayed on the monitor. This dif-
ferentiation allows you to draw one pattern while displaying another.

Example
This example gets the logical and physical acreen base addresses. If they are the

same, it fills the top of the screen with the pattern 10101010; otherwise, it prints
out each address. In the case of this program, they will generally be equal.

450

.I,

long — longjmp

#include <osbind.h>

main() ¢
tong *ibase;
long *pbese;
int x;

tbase = (long *) Logbase();
pbase = (long *) Physbese();

{f(pbese == {(base) {
for{x=0; x<0x1000; x++)
*pbase+s = OXAAAAAAAAL;

7* Get logical screen */
/* Gat physicsl screen */

) else (
printf("The logical screen is st Xix\n*, lbase);
printf("The physicsl screen fs st Xix\n®, pbase);

)
exit();
)
See Also
Physbase, Setscreen, TOS, xbios

Mlong — C keyword

:Data type

' A long is a numeric data type. By definition, a long is the largest integer data
_type; it cannot be smaller than an int, although on some machines an int and a
_long will be the same size. On most machines, sizeof long will equal two

_ machine words, or four chars (31 data bits plus a sign bit),

longj

See Also
C keywords, C language, data formats, declarations, int

mp — General function (libc)
Return from a non-local goto
#Include <setjmp.h>
int longimp(env, rval) jmp_buf env; int rval

~‘;'I“hé function call is the only mechanism that C provides to transfer control between

functions. This mechanism is inadequate for some purposes, such as handling un-
expected errors or interrupts at lower levels of a program. To answer this need,
longjmp provides a non-local goto.

'ioﬁgjmp restores an environment that had been saved by a previous setjmp call.

It returns the value rval to the caller of setjmp, just as if the setjmp call had just
_returned. Note that longjmp must not restore the environment of a routine that

_bas already returned. The type declaration for jmp.buf is in the header file
__setjmp.h. The environment saved includes the program counter, stack pointer,

_and stack frame. These routines do not restore register variables in the environ-

* ment returned.

i
t

Irealloc —1s 451

See Also
setjmp, setjmp.h

Notes
Programmers should note that many user-level routines cannot be interrupted and

. reontered safely. For that reason, improper use of longjmp and setjmp will result

in the creation of mysterious and irreproducible bugs. Do not attempt to uss

longjmp within an exception handler.

Irealloc — General function (libc)

Reallocate dynamic memory,

char *lrealloc(ptr, size)

char *ptr; unsigned long size;

1realloc helps to manage a program’s arena. It ‘returns a block of size bytes
‘holds the contents of the old block, up to the smaller of the old and new
Irealloc tries to return the same block, truncated or extended; if size is
than the size of the old block, Irealloc will return the same ptr.

Unlike the ‘relatéd function realloc, Irealloc takes an unsigned long as its size ar- -
gument, and therefore can reallocate a memory blocks that is larger than 64
kilobytes. '
See Also

arena, calloc, free, Icalloc, Imalloc, malloc, notmem, realloc, setbuf

Diagnostics

Irealloc returns NULL if insufficient memory is available. It prints a message and
calls abort if it discovers that the arena has been corrupted, which most often oc-
curs by storing past the bounds of an allocated block: - Irealloc will behave capri-
ciously if handed a fallacious ptr.

‘18 — Command

~ List directory’s contents .

Is Cadfirtwlfile]
sbout_each file. Normally, s sorts |
. If a directory name is given as an argu
N ading ‘" and ... If no file is named, 1s
of the current directory.

The following options control how Is sorts and displays its output.

-a Print all directory entries, including *’, «.", any hidden files, and volume
V ID's.

452

Iseek

;«d_ Treat directories as if they were files.

Iseek

Flag all directories with a trailing backslash \".

Print information in long format. The fields give mode bits, size in bytes,
date of last update, and file name,

Ry Reverse the sense of the sort.
st Sort by time, newest first.

w . Print output in columns; write a backslash ‘\’ after the name of every direc-

tory.

The mode field in the long list format consists of four characters. The first charac-
ter will be one of the following:

- regular file

d directory

] system file

v .. volume identifier

The next two characters are r or. - if the file is read-only, and w if the file can be
written to. The fourth character is h if the file is hidden.
See Also

le, commands, msh

— UNIX system call (libc)
Set read/write position
long Iseek(fd, where, how)
int fd, how; long where;
Iseek changes the seck position, or the point within a file where the next read or
write operation is performed. fd is the file's file descriptor, which is returned by
open.
where and how describe the new seek positxon where gives the number of bytes
that you wish to move the seek position; it is measured from the beginning of the
file if how is zero, from the current seek position if how is one, or from the end of
the file if how is two. A successful call to lseek returns the new seek position. For
example,

position = [seek(filename, 100, 0);
moves the seek position 100 bytes past the beginning of the file; whereas

position = (seek(filename, 0O, 1);
:lxlerely returns the current seek position, and does not change the seck position at

iseek differs from its cousin feeek in that lseek is an TOS call and uses a file

Itom — Ivalue 453

‘An ldenuﬁer ‘has both an lvalue (its ddreaa) and an rualue (ita contents). Some C
_ operators require Ivalue operands, 1
_ statement must be an lvalue.
isa pomter expneamon, e is an valua that desxgnam the object to _which e points.

'Note that a vanable can be used as an lva]ue, whereas a constant mnnot. For ex-

descriptor, whereas faeek is a C function and uses a FILE pointer.

See Also
STDIO, UNIX routines

Diagnostics
Iseek returns -1L on an error, such as seeking to a negative position. If no error
occurs, it returns zero.

Notes
Note that if Iseek goes beyond the end of the file, it will not return an error mes-
sage until the corresponding read or write is performed.

Note that some operating systems, such as MS-DOS, set the displacement from the
file descriptor in bytes; others, such as the VAX VMS, set the displacement in sec-
tors. If you want your programs to be fully portable, you should avoid hnndmg an
absolute value to Iseek.

:1tom — Command

Redraw the screen from low to medium resolution
Itom
ltom redraws the screen, moving from low to medium resolution.

See Also
commands, htom, mtoh, mtol, TOS

* lvalue — Definition
' An lvalue is an expresmon that demgmhee a region of storage. The name comes

in which the left operand must be an

me operators give Ivalue results; for example, if e

ample, you cannot say
6 = (footber);

;A pomter is a variable, and can be mampulated within limits. An array name,,"

however, is a constant and cannot be altered legully Thus, the code

int foo(10);
int *ber;
foo = bar;

454 lvalue

wﬂl generate an error message when you attempt to complle lt,whoreu the code

int fool10);
int *ber;
- _ber = foo;

willnot.
The following example shows the use of both an lvalue and a rvalue:
int §, *ip;

ip « &i; /* ip is an lvalue, | and &1 are rvalues */
i=3; /% 1 is an lvalue, 3 s an rvatue */
ip » &; / *1p {s an Lvalue, & ia an rvalus %/

macro — make 4656

A mac

_ getc(stdin).
 Note that because macros may employ an argument n times, any arguments that

' A C program consists
ls

_the

dary programs terminated successfully.

M

macro — Definition

is a body of text that is given a nam When the name is used in a
it is replaced with the text to which it refers; this is called macro epan:
example, getchar is a macro that consists of the function call

sion. For

Jave side effects will have the side effect repeated n times as well, which may be
undesirable. - ‘
See Also

function

main — Technical information

Introduce program’s main function

m consists of a set of functions, one of which must be called maln. This
function is called from the runtime startup routine after the runtime environment
has been initialized.

“Pt‘fogmms‘ca‘n terminate in one of two ways. The easiest is simply to have the

maln routine return. Control returns to the runtime startup; it closes all open file

streams and otherwise cleans up, and then returns control to the operating gystem, :

passing it the value returned by main as exit status.
In e‘ox‘x:)‘e‘si:tugﬁqna (errors, for example), it may be necessary to stop a program, and

you may not want to return to main. Here, you can use exit; it cleans up the

_debris left by thé broken program and returns control directly to the operating sys-

tem.

#A second exit routine, called _exit, quickly returns control to the operating system

without performing any cleanup. This routine should be used with care, because

_ bypassing the cleanup Mll{leav‘e‘ﬁlés~ope'n and buffers of data in memory.

Programs compiled by Mark Williams C return to the program that called them; if
ey return from main with a value or call exit with a value, that value is

returned to their caller. Programs that invoke other programs through the sys-

the returned value to see if these secon-

m, execve, or Pexec functions ch

See Also
argc, argv, envp, exit, _exit, runtime startup

make — Command

_Program building discipline

456 make

make [(option ’...] {argument ...] [target ...}
“ma‘@'k‘e ‘belps you build programs that consist of more than one file of source code.

Complex programs often consist of several object modules, each of which is the
product of compiling a source file. A source file may refer to one or more Include
files, which can also be changed. Recompiling and relinking complicated programs
can be difficult and tedious.

msake regenerates programs automatically. It follows a specification of the struc-
ture of the program that you write into a file called makeflle. make also checks
the date and time that TOS has recorded for each source file and its corresponding
object module; to avoid unnecessary recompilation, make will recompile & source
file only if it has been altered since its object module was last compiled.

The makefile
A makeflle consists of three types of instructions: macro definitions, dependency
definitions, and commands.
A macro definition simply defines a macro for use throughout the makeflle; for
example, the macro definition

FILES=filel.o file2.0 file3.0
Note the use of the equal sign ‘=".
A dependency definition names the object modules used to build the target
program, and source files used to build each object module . It consists of the tar-
get name, or name of the program to be created, followed by a colon ' and the
names of the object modules that build it. For example, the statement

example: S(FILES)
uses the macro FILES to name the object modules used to build the program
example. Likewige, the dependency definition

filel.o: filel.c macros.h
defines the object module filel.o as consisting of the source file fllel.c and the
header file macros.h.

Finally, a command line details an action that make must perform to build the tar-
get program. Each command line must begin with a space or tab character. For
example, the command line

cc -0 example $(FILES)
gives the ce command needed to build the program example. Note that the ce
command lists the object modules to be used, not the source files.

Finally, you can embed comments within a makefile. make recognizes any line
that begins with a pound sign ‘#’ as being a comment, and ignores it.

make searches for makeflle first in directories named in the environmental vari-

make 457

able PATH, and then in the current directory.

Dependencies

The makeflle specifies which files depend upon other files, and how to recreate
the dependent files. For example, if the target file test depends upon the object
module test.o, the dependency is as follows:

test: test.o
cC -0 test test.o

make knows about common dependencies, e.g., that .o files depend upon .c files
with the same base name. The target .SUFFIXES contains the suffixes that
make recognizes.

make also has a set of rules to regenerate dependent files. For example, for a
source file with suffix .c and a dependent file with the suffix .0, the target .c.o
gives the regeneration rule:

.c.o
cc -c $<

The -¢ option to the c¢ commands tells cc not to link or erase the compiled object
module. $< is a macro that make defines; it stands for the name of the file that
causes the current action, The default suffixes and rules are kept in the files
mmacros and mactions. The dependencies can be changed by editing these files.
Both of these should be kept in one of the directories named in the LIBPATH en-
vironmental variable.

Macros
To simplify the writing of complex dependencies, make provides a macro facility.
To define a macro, write
NAME = string
The string is terminated by the end-of-line character, 8o it can contain blanks. To

refer to the value of the macro, use a dollar sign ‘S’ followed by the macro name
enclosed in parentheses:

$(INAME)

If the macro name is one character, parentheses are not necessary. make uses
macros in the definition of default rules:

.€c.0:
$(CC) $(CFLAGS) -c $<

where the macros are defined as

CC=cc
CFLAGS=-V

The other built-in macros are:

458

make

8 target name, minus suffix

$@ full target name
$< list of referred files
7 referred files newer than target

Each command line argument should be a macro definition of the form

OBJECT=a.0 b.o

Arguments that include spaces must be surrounded by quotation marks, because
blanks are significant to the micro-shell msh.

Note that you can override any built-in macro by resetting its value in the environ-

ment.

Options

The following lists the options that can be passed to make on its command line.

-d (Debug} Give verbose printout of all decisions and information going into
decisions.

-f file file contains the make specification. If this option does not appear, make
uses the file makefile, which is sought first in the directories named in
the PATH environmental variable, and then in the current directory.

-1 Ignore all errors from commands, and continue processing. Normally,
make exits if a command returns an error.

-n Test only; suppresses actual execution of commands. Note that if make
will not run due to memory limitations, you can use this option to generate
a script whose commands can then be executed under msh; for example:

make -n > mscript; set verbose; . mscript; unset verbose

msh, however, will not pay attention to error status in the same way as

make.

-p Print all macro definitions and target descriptions.

-q Return a zero exit status if the targets are up to date. Do not execute any
commands.

-r Do not use the built-in rules that describe dependencies.

-8 Do not print command lines when executing them. Commands preceded
by ‘@’ are not printed, except under the -n option.

-t (Touch option) Force the dates of targets to be the ({urrent time, and

bypass actual regeneration.

malloc 459

__one byte, you will get four, and the unsigned that precedes the newly allocated
- area will’be set to four.

When an area is freed, its low order bit is turned on; consolidation occurs when
‘malloc passes over an area as it searches for space. The end of each arena con-
tains a block with a length of zero, followed by a pointer to the next arena. Arenas’
__pointinacircle.)
‘The most common problem with malloc occurs when a program modifies more
space than it allocates with malloc. This can cause later mallocs

Invoking make
make can be used either from the micro-shell msh, or from the TOS desktop.

To use make from the TOS desktop, its suffix must be changed to TOS or TTP.
Once this is done, you can invoke make simply by pointing to the appropriate icon
with your mouse and clicking it. When the Open Application box appears, enter
the options and target you want. make reads whatever makeflle is in the current
directory, and executes its instructions. It cannot accept options from the desktop,
however.

If you wish to use make from msh, simply invoke msh from TOS, then enter the
make command as you normally would, including options and a path name for the
makefile, should it be in a directory other than one that you have previously
defined in the environmental parameter PATH.

See Also

as, cc, commands, msh

Diagnostics

make reports its exit status if it is interrupted or if an executed command returns
error status. It replies “Target name not defined” or “Don’t know how to make
target name™ if it cannot find appropriate rules.

Notes

The order of items in mmacros\.SUFFIXES is significant. The consequent of a
default rule (e, .0) must precede the antecedent (e.g, .c) in the entry
.SUFFIXES. Otherwise, make will not work properly.

malloc — General function (libc)

Allocate dynamic memory.
char *malloc(size) unsigned size;

. malloc helps to manage s program’s free-space arenas. It uses a circular, first-it .
_algorithm to select an unused block of at least size bytes, marks the portion it uses,

and returns a pointer to it. The function free returns allocated memory to the free. -
memory pool.

Each area allocated by malloc is rounded up to the nearest even xnumber,s.nd
preceded by an unsigned int that contains the true length. Thus, if you ask fo

go into a loop.

460

malloc

Example o
exam i i h of which is

i 1 ds from the standard input up to NI TEE{S items, eac
’\E:)ll:o Mﬁmong. sorts them, and writes the sorted list onto the standard out-

i stremp. You
nstrates the functions gsort, malloc, free, exit, and
f::y \:rta:: 20\1” as input what the example for Random has output. For an ex-
ample of how to use malloc in a TOS application, see the entry for Fgetdta.

#include <stdio.h>
#define NITEMS 512
Mctef ine MAXLEN 256
char *data{NITENMS];
char string (MAXLEN];

main() (
register chsr **cpp;
register int count;
extern int compare();
extern cher *malloc();
extern char *gets();

for (cpp = kdatal0); cpp < Ldata{NITENS); cpp*+) (
{f (gets(string) == NULL)
bresk;
§f ((*cpp = malloc(strien(string) + 1)) == WLL)
exit(1);
strepy(*cpp, string);
zmnt = cpp - Ldatal0]);
qsort(date, count, sizeof(char %), compare);
for (cpp = Ldatal0); cpp < Ldatalcount); cppr+) {
printf(*Xe\n¥, *cpp);
freel*cpp);

>
exit(0);
b
compare(pl, p2)
register char **pl, **p2;
<
extern int stremp();
return(stremp(*pl, *p2));

)
See Also
arena, calloc, free, lcalloc, Imalloc, Irealloc, notmem, resalloc, setbuf

Diagnostics _
saalloc returns NULL if insufficient mémory is available.

The related function Imalloc takes an unsigned long as it.s' size argument, and
_ therefore can allocate memory blocks that are larger than 64 kilobytes.

Malloc 481

Notes

' The commonest error associated with malloc is failing to declare it properly. You

should always declare malloc as returning a pointer to char.

Malloc — gemdos function 72 (osbind.h)

Allocate dynamic memory
#include <osbind.h>
long Malloc(n) long n;

Malloc allocates dynamic memory. n contains either the number of bytes to be
allocated, or the number -1L (0xFFFFFFFF), which returns all available memory.
If n contains the number of bytes to be allocated, Malloc returns a pointer to the
starting address of the memory allocated; if n contains -1L, then Malloc returns
the size of the largest contiguous block of memory. In either case, Malloc returns
0 upon failure.

Examples
This example displays the output of Malloc when given -1 as its argument.

#include <osbind.h>
#define MGRAIN 327681

mein() (
register long f1, f2, 3, f4;
register cher *pl, *p2;

1 = (long)Malloc(-1L);
Pl = Malloc(MGRAIN);
12 = (long)Malloc(-1L);
p2 = Malloc(MGRAIN);
13 = (tong)Mstloc(-1L);

Miree(pl);
f& » (long)Matlloc(-1L);
Miree(p2);
printf("Xix X{x Xix Xtx Xtx\n*,6 €1, f2, 3, f4, Malloc(-1L));
exit(0);
)
See Also
gemdos, Mfree, Mshrink, TOS
Notes

As of this writing, Malloc appears to have some peculiarities. You should always
use Malloc to allocate even-sized blocks of memory. Always Mfree memory in the
reverse order of allocation. Finally, try to Malloc a few pieces of memory; there ap-
pears to be an vndocumented limit on the number of times Malloc can be called
by a given program. Though large, this number is finite; when it is exceeded,
Malloc will return NULL even though considerable amounts of memory are still
available.

462 manifest constant — mathematics library

maxmem — me 463

“ma‘nifest constant — Definition

'~ deﬁned

enaure that code is portable by

be changed only once
See Also
#define, EOF, header file, NULL, portability

~mantissa — Definition

“In mathematms, a mantissa is the fractional part of a l“'

C, “mantissa’ often is used to deseribe the fmcuonal porbon of a floating point

number; according to Knuth, however, the proper term is fraction.
4 See Also
data formats, double, float, frexp

See Also
library, libm, mathematics library

‘mathematics hbrary Overview

The following mathematics routines are available with Mark Williams C:

acos calculate inverse cosine
asin calculate inverse gine

_atan calculate inverse tangent i
atan2 calculate inverse tangent of quotient
cabs calculate complex absolute value

. cos calculate cosine

_ cosh calculate hyperbolic cosine

_ A manifest conatant is a numerjc. constant that is glven a name 80 it can be:

_isolating the deﬁnmbn of thege elementa in a single header file, where they need to J

‘When programs that contain mathematics routines are complled the m
libraries must be called speaﬁcally on the cc command line. Fo

exp calculate exponent
fabs calculate absolute value function
floor calculate floor function
bypot calculate hypotenuse
jo calculate Bessel function, order 0
5 calculate Bessel function, order 1
jo calculate Bessgel function, order n
log calculate natural logarithm
log10 calculate common logarithm
pow calculate power
sin calculate sine
sinh calculate hyperbolic sine
sqrt calculate square root
tan calculate tangent
taoh calculate hyperbolic tangent
See Also
libm.a, Lexicon, math.h
Notes

pile the example presented under the entry for acos, use the following cc co
mand line:

cc -f -0 acos.prg acos.c -lm

The f option links in the floating point routines for printf, while ‘the
lmks in the mathematics libraries. Note that the -lm option must come last on the
cc command line, or the library will not be searched properly.

See Also

me is the command for MicroEMACS, the screen editor for Mark Williams C.
With MicroEMACS, you can insert text, delete text, move text, search for a string

464

me

create an appropriately named buffer and file descriptor for it.

and replace it, and perform many other editing tasks. MicroEMACS reads text
from files and writes edited text to files; it can edit several files simultaneously,
while displaying the contents of each file in its own screen window.

Screen layout

If the command me js_used without arguments, MicroEMACS opens an empty
buffer. If used wi
jcroEMACS will assume that you are creating it fo

. Ifafi

The last line of the screen is used to print messages and inquiries.. The rest of the
screen is portioned into one or more windows in which text is displayed. The last
line of each window shows whether the text has been changed, the name of the
buffer, and the name of the file associated with the window.

MicroEMACS notes its current position.
rent position is always to the left of the

an at one letter or another. For example,
rase ‘Mark Williams”, then the curre

Commarids and text

The printable ASCII characters, from ‘' to ‘~’, can be inserted at the current posi-

tion. Control characters and escape sequences are recognized as commands,
A control character can be inserted into the text by prefixing it

that is, hold down the <control> key and type the letter ‘Q").

There are two types of commands to remove text. ' Delete commands remove text
and throw it away, whereas kill commands remove text but save it in the kill buff-
er. Successive kill commands append text to the previous kill buffer. Moving the
cursor before you kill a line will empty the kill buffer, and write the line just killed
into it.

Search commands prompt for a search string terminated by <return> and then
gearch for it. Case sensitivity for searching can be toggled with the command
yping <return> instead of a search string tells MicroEMACS to use
s gearch string.

Some commands manipulate words rather than characters. MicroEMACS defines a
word as consisting of all alphabetic characters, plus ‘.’ and ‘$". Usually, a character
command is a control character and the corresponding word command ig an escap
sequence. For example, € moves forward one character and
moves forward one word. No at the MicroEMACS commands are no
sitive; for example, <ctrl-F> and <ctrl-f> are identical.

Text can also be handled in blocks. MicroEMACS defines a block of text as all the
text that ljes mark and the current position of the cursor. For ex-
ample, typing killg all text from the mark to the current position of the

me 4606

MicroEMACS will. open:
oW, e cannot be
the first time, and

cursor; this is useful when moving text from one file to another. When you invoke
MicroEMACS, the mark is set at the beginning of the file; you can reset the mark
to the cursor’s current position by typing <¢tr}-@2.

Using MicroEMACS with the compiler

mand cc to help
i ses

MicroEMACS can be invoked automatically by the compile
you_repair,all _errors that occur during compilation
MicmEMACS‘ be invok h

d e source code in the other,
£ is at the line on which the firgt error rred. When the text is alte
from MicroEMACS automatically recompiles the file.

i _the.file compiles without error, or until you .

The MicroEMACS help facility

‘MicroEMACS has a built-in help fadllity. With it, you can ask for information
“either for a word that you type in, or for a word over \yhich the cursor is
positioned. The MicroEMACS help ﬁle\,eonmins, the bindings for all yhbmxfyk
functions and macros included with Mark Williams C. -

For example, consider that you are preparing a C program and want more informa-
tion about the function fopen. Type <ctrl-X>7. At the bottom of the screen will
appear the prompt - .

Topic:
Type fopen. MicroEMACS will search its help file, find its entry for fopen, then
open a window and print the following:

Open a streem for standard 1/0

#include <stdio.h>

FILE *fopen (name, type) char “name, *type;
If you wish, you can kill the information in the help wmdow and copy it into your
program, to ensure that you prepare the function call correctly.’
Consider, however, that you are checking a program written earlier, and you wish
to check the call for a call to fopen. Simply move _cursor until it on
_over one of the letters in fopen, then type

MicroEMACS will open'its
help window, and show the same information it'did above.

To erase the help window, type <esc>2.

Options

The following list gives the MicroEMACS commands. They are grouped by func-
tion, e.g, Moving the cursor. Some commands can take an argument, w}uch
specifies how mmand is to be executed. The default argument is 1.
The command ntroduces an argument. By default, it sets the argument

466 me

to four. Typing <ctrl-U> followed by a number sets the argument to that num-
ber. Typing <ctrl-U> followed by one or more <ctrl-U>s multiplies the argu-
ment by four.

Moving the cursor

ctrlA> Move to start of line.
& < ctrl-B> (Back) Move backward by characters.
£ <esc>B . Move backward by words.
s <¢£rl~E>: (End) Move to end of line.
- <ctrl-F> (Forward) Move forward by characters.
-~ <e{;c>F (Forward) Move forward by words.
<e§c>G Go to an absolute line number in a file. Same as <ctrl-X>G.
\L <c’trl-N> (Next) Move to next line.
A ?c{:ﬂ-P> (Previous) Move to previous line.
- <c£rLV> Move forward by pages.
~ <esc>V. Move backward by pages.
- <ctrl»X> = Print the current position.

<ctxfl;X~ ["",Go to an absolute line number in a file. Can be used with an argu-

ment; otherwige, it will prompt for a line number. Same as <esc>G.

Move the current line to the line within the window given by argu-
ment; the position is in lines from the top if positive, in lines from the
bottom if negative, and the center of the window if zero.

Move to the beginning of the current buffer.
Move to the end of the current buffer.

<ct > - (Delete) Delete next character.

-~ <esc>D _ Kill the next word.

s <c£rl;H> If no argument, delete previous character. Otherwise, kill argument
. previous characters.

(Kill) With no argument, kill from current position to end of line; if at

the end, kill the newline. With argument set to one, kill from begin-

ning of line to current position. Otherwise, kill argument lines forward
~ (if positive) or backward (if negative).

me 467

ctrl-W> Kill text from current position to mark.

<ctrl-X> <ctrl-0>
Kill blank lines at current position.

<otrl-Y> (Yank back) Copy the kill buffer into text at the current position; set
current position to the end of the new text.

<esc><ctrl-H>
Kill the previous word.

<esc>
Kill the previous word.

SDEL> If no argument, delete the previous character. Otherwise, kill argu-
“ ment previous characters.

Windows
- <etrl:X>1 Display only the current window.

. <ctrl-X>2 Split the current window into two windows. This command is usually
“followed by <ctrl-X>B or <ctrl-X> <ctrl-V>.

- <ectrl-X>N f(Next) Move to next window.
. <¢tri-X>P'ﬁ(Previous) Move to previous window.
<etrl-X>Z Enlarge the current window by argument lines.

<ctrl-X> <ctrl-N> .
o : Move text in current window down by argument lines.

<ctrl-X> <ctrl-P>)
- Move text in current window up by argument lines.

<ctrl-X> <ctrl-Z> .
Shrink current window by argument lines.

Buffers

¢ otxl-X>B (Buffer) Prompt for a buffer name, and display the buffer in the cur-
rent window.

< otrl-X> K (Kill) Prompt for a buffer name and delete it.

‘<etrl-X> <ctrl:B> . \
setrl cDrisplay a window showing the change flag, size, buffer name, and file

pame of each buﬂ'g_l;, :

trl-X> <ctrl-F>
o (File name) Prompt for a file name for current buffer.

468 me

me 469

<etrl-X> <ctrl-R> .
(Read) Prompt for a file name, delete current buffer, and read the file.

<etrl-X> <etrl-V>
(Visit) Prompt for a file name and display the file in the current win-
dow.

Saving text and exiting

<ctrl-X> <ctrl-C>
Exit without saving text.

<etrl-X> <ctrl-S>
(Save) Save current buffer to the associated file.

<ctrl-X> <ctrl-W>
(Write) Prompt for a file name and write the current buffer to it.

<ectrl-Z> Save current buffer to associated file and exit.
Compilation error handling

<ctrl-X> >;Move to next error.
‘<etrl:X> < Move to previous error.
Search and replace

<etrl-R> (Reverse) Incremental search backward; a pattern is sought as each
character is typed.

<esc>R (Reverse) Search toward the beginning of the file. Waits for entire
pattern before search begins.

<etrl-9> (Search) Incremental search forward; a pattern is sought as each
character is typed.

<esc>S (Search) Search toward the end of the file. Waits for entire pattern
before search begins.

<esc>% Search and replace. Prompt for two strings; then search for the first
string and replace it with the second.

<esc>/ Search for next occurrence of a string entered with the <esc>8 or
<esc>R commands; this remembers whether the previous search had
been forward or backward.

<ese>@ Toggle case sensitivity for searches. By default,isearchea are case in-
sensitive.

Keyboard macros

i iti i hing typed until
.X>(Begin a macro definition. MicroEMACS collects everyth
<otrlX>(:hg; next <ctrl-X>) for subsequent repeated execution. <ctrl-G>

breaks the definition.
<ctrl-X>) End a macro definition.
<ctrl-X>E (Execute) Execute the keyboard macro.
Change case of text
<ese>C (Capitalize) Capitalize the next word.

X > <ctrl-L> - ;
<etrtX (Lower) Convert all text from current position to mark into lower case.

<esc>L (Lower) Convert the next word to lower case.

X><ctrl-U> - §
<etrlX> c({JPPer) Convert all text from current position to mark into upper

case.
<ege>U (Upper) Convert the next word to upper case.

White space

<ctrl-I> Insert a tab.

<ctrlJ> Insert a new line and indent to current level. Tl}is is often used in C
programs to preserve the current level of indentation.

<ctrl-M> (Return) If the following line is not empty, insert a new line; if empty,
move to next line.

<ctrl-O> Open a blank line; that is, insert newline after the current position.

i haracters. An argu-

<tab> With argument, set tab fields at every argument ¢ :

e ment O;gz‘;m restores the default of eight characters. Note that setting
the tab to any character other than eight causes space characters to be
set in your file instead of tab characters.

Send commands to operating system

. . . it
.C> Suspend MicroEMACS and invoke a new copy of msh. _'[.‘ypmg e
<ol € retfx}:'ns you to MicroEMACS and allows you to resume editing.

<ctrl-X>! Prompt for an msh command and execute it.
Setting the mark

<ctrl-@> Set mark at current position.

470 me

<esc>, Set mark at current position.

<etrl> <space>
Set mark at current position.

Help window

<ctrl-X>? Prompt for word for which information is needed.
<esc>? Search for word over which cursor is positioned.
<esc>2 Erase help window.

Miscellaneous

<ctrl-G> Abort a command.
<etrl-L> Redraw the screen.

<ctrl-Q> (Quote) Insert the next character into s i
$Quote) I text; used to insert control

<esc>Q (Quote) Insert the next control character i
il r into the text. Same as

<ctrl-T> Transpose the characters before and after the current position.
<ctrl-U> Specify a numeric argument, as described above.

<etrl-U> <ctrl-X> <ctrl-C>

Abort editing and re-compilation. Use this comm iti
. and to abort editin
:l:;l ;etum to TOS when you are using the -A option to the ce camg
nda.

<ctrl-X>F Set word wrap to argument column. If i
. argument is one,
to cursor’s current position. i et word wrep

<ctrl-X> <etrl-X>

Mark the current position, then jump to the previous setting of the
;x:lm;l;; This is useful when moving text from one place in a file to
other,

Diagnostics

MicroEMACS prints error messa i

S ges on the bottom line of the screen. It pri -
formational messages‘(enclosed in square brackets ‘' and ‘I’ to di:éingu‘i):ll)nam
from error messages) in the same place. o

MicroEMACS manipulates text in memo

! ry rather than in a file. The fil isk i
not changed until you save the edited text. MicroEMAGCS 'prints z wix?nr;ndls:r:s
prompts you whenever a command would cause it to lose changed text. 8

me.a — Mediach 471

See Also

commands

Notes

Because MicroEMACS keeps text in memory, it does not work for extremely large
files. It prints an error message if a file is too large to edit. If this happens when
you first invoke a file, you should exit from the editor immediately. Otherwise,
your file on disk will be truncated. If this happens in the middle of an editing ses-
sion, however, delets text until the message disappears, then save your file and
exit. Due to the way MicroEMACS works, saving a file after this error message has
appeared will take more time than usual.

This version of MicroEMACS does not include many facilities available in the
original EMACS display editor, which was written by Richard Stallman at M.LT.
In particular, it does not include user-defined commands or pattern search com-
mands.

Note that the current version of MicroEMACS, including source code, is proprietary
to Mark Williams Company. The code may be altered or otherwise changed for
your personal use, but it may not be used for commercial purposes, and it may not
be distributed without prior written consent by Mark Williams Company.

MicroEMACS is based upon the public domain editor by David G. Conroy.

me.a — Archive

me.a is an archive that holds the source files for the Mark Williams proprietary
version of the MicroEMACS screen editor. If you wish to recompile MicroEMACS,
you must first extract the source files from the archive. Use the command cd to
move to the directory where you have stored this archive, then give msh the
following command:

ar Xv me.a

See Also

ar, me

Mediach — bios function 9 (osbind.h)

Check whether disk has been changed
#include <osbind.h>

#include <bios.h>

long Mediach(drive) int drive;

Mediach checks whether a new disk has been inserted into a floppy-disk drive.
drive is a number from zero to 15, and indicates which drive to check: zero in-
dicates drive A, one indicates drive B, etc. Mediach returns zero if the medium
has not been changed, one if it may have been changed, and two if it was changed.

472

memchr — memcmp

memcpy — memory allocation 473

Example
This example discovers whether the floppy disks have been changed.
#include <osbind.h>

main()
<
int d, ds;
char *status(3) = { "not”, “possibly®, "definitely”);
for (d = 0; d <2; de+» 1) (
ds = Mediach(d);
printf("drive Xc has ", d+'e’);
1f (ds <0]| ds > 2)
printf("bsd status: Xd\n*, ds);
else !
, printf("Xs chenged\n", stetusids));
)
See Also
bios, TOS

. memchr — String function (libc)

¢ Unlike the string-search function strchr, memchr searches a region of memory.

mem

Search a region of memory for a character
' chq!j *memchr(region, character, n)
char *region;
unsigned int character, n;

" memchr gearches the first n characters in region f
 memchr searche on for character. i
‘to c_haracter if it is found, or NULL if it is nog! ezl romnnn 8 pointer

_ Therefore, it does not stop when it encounters a null character.

See Also
strchr, string

cmp — String function (libc)
Compare twao regions

int mememp(regionl, region2, count).
char *regionl, *region2;

unsigned int count;

.mememp com ; ; :
tors p compares regionl with region2 character by character for count charac-

number less than zero.
For example, consider the following code:

char regioni(131, reglon2{13];

strepy(regiont, *Hello, world");

strepy(region2, "Hello, vorld");

memcmp(regiont, region2, 12);
mememp scans through the two regions of memory, comparing region1{0] with
region2{0], and so on, until it finds two corresponding “glots” in the arrays whose
contents differ. In the above example, this will occur when it compares region1[7]
(which contains ‘w’) with region2{7] (which contains ‘W"). It then compares the
two letters to see which stands first in the character table used in this implementa-

tion, and returns the appropriate value.

See Also

strcmp, string, strncmp, strstr

Notes

memcmp compares regions of memory rather than strings; therefore, it does not
stop when it encounters a null character.

memcpy — String function (libc)

Copy one region of memory into another
char *memcpy(regionl, region2, n)

“char *regionl, *region2;

unsigned int n;

memcpy copies n characters from region2 into regionl. Unlike the routines strcp
and strmcpy, memcpy copies from one region to another; therefore, it will not h

“automatically when it encounters a null character.

memcpy returns regionl.

See Also

memmove, strcpy, string, strmepy

Notes

If regionl and region2 overlap, the behavior of memcpy is undefined. regionl
should point to enough reserved memory to hold n bytes of data; otherwise, code or
data will be overwritten.

‘memory allocation — Technical information

The following diagram shows how Mark Williams C allocates memory.

474 memory allocation

memory allocation 475

A VIDEO RAM highest address
i ARENA
AND
FREE
MEMORY
§ 57
STACK
uninitialized
UNINITIALIZED DATA instructions
o & data
7 H private data,
_ INITIALIZED DATA shared data,
strings
] TEXT CODE {nstructions
i ‘ RUNTIME STARTUP
i
l BASE PAGE low address

s from the highest address in its _space toward the static data
area; new arguments are placed on the stack in its lowest address. Everything
_from the top of the stack space to the end of the data segment is free to accept

- dynamimny allocated data.

The size of the stack cannot be alter
stackiss the global variable _s efault, th
 stack size to two kilobytes (2,048 bytes) Note, however, that a highly recursive

function may cause the stack to grow larger than two kilobytes so that it overwrites

other data areas. This will cause your program to work incorrectly.

Should your program need more than two kilobytes of stack, include in it the

 cannot ed while a program is running. The amount of
by the global variable _stksize. By default, the runtime startup sets the

following global statement:

‘

Fob tong _stksize = nL; |
where n is an even constant that specifies the number of bytes to allocate.

Example ' e
The example in the entry for Physbase displays system memory grap y.

i i “ " EM-DOS process. It
The following example displays the “‘memory map of a G

de:xo:stmtesgarge, r:lrgv, envp, environ, end, etext, edata, and _stksize, as
well as how to use the header file basepage.h.

#include <basepage.h>
dodisplay(value, name)
long value; char *name;

printf(*0xX081x Xs\n", value, neme);
)

#define display(x) dodisplay({long)(x), #x)

main(arge, srgv, envp)
int argc; char *argvil, *envpl);
(
i extern tong _stksize;
extern char **environ;
extern char etext(], edatall, end();

display(BP->p_env);
display(envpi01);
display(environ{0]);
display(argvi0l);

1f Cargv(i] i= 0)
display(argv(il);

if Cargc > 2)
display(ergviergc-11);

displsy(BP);
display(BP->p_lowtpa);
display(BP»p_ardl!m‘l);
display(_start};
display(BP->p_tbase);

display(etext);

disptay(8p->p_tbase+BP->p_t len);
display(edats);

di sp&ay(aP->p_d>asab?->p_dlm);
displey(end);

display(BP- >p_bbase+BP->p_blen);
displey(envp);

display(environ);

display(argv);
display(argv+argc);

display(_stksize);
disptey(8arge);
display(&argv);
display(&envp);
display(8P->p_hitpa);

476 memset — menu

See Also
C language, calling conventions, data format

memset — String function (libc)
Fill an area with a character
char *memset(buffer, character, n);
char *buffers int character; unsigned int n;

memset fills the first n bytes of the area pointed to by bufTer with copies of charac-
ter 1t casts character to an unsigned char before filling buffer with copies of it.

memset returns the pointer buffer.

See Also

memchr, memcmp, memcpy, memmove, string

menu — Technical information

‘A menu is a graphics form that is used extensively by GEM. is a speciali
form of an AES object, which used extensively by GEM. It is a specialized

D is defined by the structure OBJECT described in the

obhdefs.h. For more information on this structure, see the entry for ob-

Ea nu’s object m 'g special way. The root object it
- G_IBOX that is sized to dimensions of the screen. In high‘:rétibliiﬁ"n;,yth“eijséree‘h is
640 rasters wide by 400 high; in medium resolution, it is 640 rasters wide by 200

high; and in low resolution, it is 320 rasters wide by 200 high. The root has two
children: the bar object and the screen object. ‘
T r objeci

. opject 1
mal chai

 rasters bigh; in
resolution the |
ten rasters high.

_ The bar object has one child: an active object, whose type is G_IBOX. The active
box s sized to hold all of the titles that appear in the bar along the top of the

screen.

The actl\?e box, in turn, has one or more children: the title strings, which are the ‘

plus two rasters fo n high resolution, ra !
medium and low resolutions, it is eight rasters high. Thus, in hig
- i

object is 18 rasters high; in medium and low resolutions, it is

titles of the menus, These strings are of the type G_TITLE. This type of object is 4

used only with menus. By design, the first (leftmost) title C?ntrols the drop-down

_menu that names the available GEM desk accessories.

menu 477

: objec o root object’s other child. 1t is of type G1BOX, and it is
sized to cover the portion of the screen th sed by the drop-down meny
“Thus, it should be as wide as the screen and as high as the longest drop-dow

menu.

e or more children; each child is
he one box for each drop-down I
of titles. Each box is D . ;
of the text that will be

nto it is ten characters
n high resolution) or
ed on the left with its co
ous bo rom oV

_The scre

o portion, of the screen that is overwritten by 8
it o restored when the menu is erased. This buffer
‘of the screen, or 64,000 bits. No box should exceed this

on the screen when the menu is erased.

m
ych name must be increa e ,
a box hs e 1 _the Y coordinate of the fi Ul

» second should be 18 (in high resolution, eight in medium or
L that of the third should be 32. This will keep the names fro
_ overlapping, which could possibl , have disastrous results. As always, the X and Y

tes of an object are relative to those of its parent.

; first (1 ftmost) box is special in t.ha‘tk,t.khekAES;can,manipulgte its name ob.
jects. By design, the first box must have. ht name children. The first name
can be defined by the user. The second name consists of a row of hyphens; its
_state is set to DISABLED, which causes it to be written in gray, rather than solid,
_letters. The next s

; ix names should point to empty strings. These will be filled in ’
by the AES with the ‘names of the available desk accessories. The AES will alter

 the size of the leftmost box if fewer than six have been loaded.

' Genealogical tabl
_ The following “genealogical table” shows the object tree for a menu that has two
drop-down menus, the latter with three entries. The numbemtkindlgat,e_ea_cb, '
“ ¢lement’s place in the object tree, and are used to. set the parent-child-sibling.

/ pointers. These are set by the order in which the elements are loaded into the ob-

ject's array:

478 menu

Root Object
[1. ROOT |
/ \
2. BAR 6. SCREEN
| / \
3. ACTIVE Remmaed 116. BOXI
/ \ / \

\

/
[o.] - [5. 1] [s wi...[1s. 8] (17 ni| ... [19. N3]

You must invoke the menu with the function menu_ bar, the AES will handle the
rest. Note that, as shown in the above example, menu_ba
the order in which the elements of a menu are loaded into the object array. The
‘order should be as follows:

root

bar

active
title(s)
screen

first menu box
first items

last menu box
last items

When the mouse is used to select a menu entry, the AES generates a message that
contains that object's index number within the menu tree; use evnt mesag to
receive the message and initiate the proper response. The AES will automatically
handle all invocation of desk elements; you do not need to write code for them.
Example

This example clears the screen and displays a menu that lists all of the GEM desk
accessories.

Note that the objects in this example are sized by hand to fit with a screen that is
640 rasters across by 400 rasters high. If your screen does not match these dimen-

sions, this example may not work. It will, however, show you how the elements of
the menu object fit together. i

#inctude <aesbind.h> |
#include <gemdefs.h>
#include <obdefs.h>

menu

479

menu_bar regards as significant

OBJECT mask(= € -1,-1,-1,6_BOX,LASTOB, RORMAL, ox1iciL, 0, O,
640, 400 3;

#define MOESKT
#define MCOM 16

Rdef ine WHORSE 17
#def ine MHOUSE 18
#define HWPIG 19

#define MPARROT 20

#define MOUIT 22

0BJECT menull = (
¢ -1, 1, 5, G_IBOX, NONE, NORMAL, O, 0, O, 80, 25 7,

¢S, 2, 2, G_BOX, NONE, HORMAL , (BLACK<<12)|(BLACK<<8), 0, 0, 80, 14(2<<8) 3,

C 1.3 &, G_IBOX, NOWE, NORMAL, 0, 2, O, 12, 15(3<<B)),

<
(2

0, 6, 15, G_IBOX, NOME, NORWAL, 0, O, 14(3<<8), 80,
«

2,0, 22 8,

s, 0, 11,77,
C 17,7 -1,7-1, G_STRING, NOWE, NORMAL, (long)® Cow®, 0, 0, 11;
C 18, -1, -1, G_STRING, WOHE, NORMAL, (lor@)” Horse®, 0, 1,

-1, -1, G_STRING, NOWE, NORMAL, (long)" Mouse®, 0, 2, 1
é ;g: :: 11" G_STRING, NONE, NORMAL, Clong)* Pig®, O, 3, 21,
¢ 21, -1, -1, G_STRING, NONE, NORMAL, (long)" Parrot”, 0:. 6
¢ 520 1% -1 CCSTRING, NONE, DISABLED, (long)®------ ek 0,
€557 117 11! GlsTRING, LASTOB, WORMAL, (lone)" ouit®, 0, 6.

b H
Hdefine NMENU (sizeof merus / sizeof meru(0])
stertf(n, p) int n; char *p;

static char buffer{512];

sprintf(buffer, *Xr", ipy;

return form_alert(n, buffer);
)

main()

int b(8), n, x, ¥, % h

8, -1, -1, G_STRING, NOHE, NORMAL, (long)™ About merw®, 0, 0, 22, 1

1),
1, 1),

1, 1),
1, 13,

s, 11,
", 19,

" 0, 0, 6, 1+(3¢<8)),
1, S1,7G_TITLE, NOKE, MORMAL, (long)" Desk ¥, 0, 0, 6,
‘: 1) -1, GTITLE, NOWE, KORMAL, (long)™ Menu “ 6,0, 6, 14(3<<B8)),

19,
15, 7, 4, G_BOX, WONE NORMAL ((~1LEOXFF)<<16)] (BLACK<<12) | (BLACK<<8),
, ’ 1 g ’ * .

Y,
Y,

E 9. -1, -1, G_STRING, WONE, DISABLED, (Long)e----=-=="" %, 0,1, 22,1
pesk 1%, 0, 2, 22, 1,
10, -1, -1, G_STRING, NOKE, NORMAL, (long)™ , 0,

2 11, -1, -1, G_STRING, NONE, NORMAL, (long)* Desk 2%, 0, 3, g; : g
[4 12: -1, -1, G_STRING, NOWE, NORMAL, (long)® Desk 3:, 0, ;, 2,1)
¢ 13, -1, -1, G STRING, MONE, NORMAL, (long)” Desk 4.', 0, 6, 22, J),
(16, -1, -1, G_STRING, NONE, HORMAL, (long)*® Desk S*, 0, 6, 22, 12,

" 7,22, 1)

- -1, G STRING, NONE HORMAL, (long) pesk &, 0, 7, .)

tg' 16, 22 TBOX, MONE, NORMAL, - 1LEOXFF)<<16) | (BLACK<<12) | (BLACK<<8),
. 16, 22, G_BOX, .

480 menu

/* open spplicstion; set pointer to arrow */
appl_init();
graf_mouse(ARROM, E&n);

for (n = O; n < KMENU; n 4= 1)
rarc_obfix(meru, n);

/* build window, draw object, open menu */
wind_get(0, WF_FULLXYWH, &x, By, &w, &h);
objc_draw(mask, ROOT, MAX_DEPTH, x, vy, W, h);
menu_bar(menu, 1);

7* wait for s messsge from the user */

for (;2) C
evnt_mesag(b);
/* bl0] holds the type of message */
sultch (b{0}) (

/* if menu {8 clicked ... */
cese MN_SELECTED:
7* ... bi4l holds entry clicked */
switch(b{4)) (
case MDESK:
alertf(l, “[0) [Menu [menu 1[0k}*);
break;

case MCOMW:
slertf(1, (0] [MOO!]iOkI");
break;

case MHORSE:
slertf(1, *[0) (NEIGHI J[Ok1*);
break;

case MMOUSE:
alertf(l, *{0] [SQUEAK! 1(0KI");
break;

case MPIG:
alertf(1, “{0] [OINK! Y IOkI™);
bresk;

case MPARROT:
alertf(1, "[0) [SOQUAWKI]I(Ok]I");
break;

case MQUIT:
meru_bar(merw, 0);
asppl_exit();
exit(0);

default:
alertf(1, (0] (item Xd? J{Ok]", bI4));
break; E
)

merw_tnormal(menu, b(3], 1);
break;

QUi Lt i

R

menu_bar — menu_ienable 481

default:
alertf(l, "{0] (message Xd7 j1ok)", b(01);
break;
>
)
b
See Also
AES, object, TOS, window

menu_bar — AES function (libaes)
Show or erase the menu bar
#include <aesbind.h>
#include <obdefs.h>
int menu_bar{tree, eraseshow) OBJECT *tree; Int eraseshow;

men_bar is an AES routine that shows or erases the menu bar; the menu bar is
the bar that appears at the top of the screen and names the menus that are avail-
able to the user. tree is the name of the object tree being used. eraseshow in-

dicates whether you want to show or erase the menu bar: zero indicates erase,

one indicates show. menu. bar returns zero if an error occurred, and a number

greater than zero if one did not.
Example

For an example of how to use this routine, see the entry for menu.

See Also
AES, menu, object, TOS

menu_icheck — AES function (libaes)
Whrite or erase a check mark next to a menu item
#Include <aesbind.h>

#include <obdefs.h>
int memuicheck(tree, item, eraseshow) OBJECT *tree; int item, eraseshow;

menu_icheck is an AES routine that draws or erases a check mark next to a
gelected menu entry. tree points to the object tree that holds the meny, and object
is the object within the tree that is being handled. eraseshow indicates whether
you want to show the check mark or erase it: zero indicates erase, and one in-
dicates show. menu_icheck returns zero if an error occurred, and a number

greater than zero if one did not.

See Also
AES, menu, object, TOS

menu_ienable — AES function (libaes)
Enable or disable a menu item’
#include <aesbind.h>

482 menu_register — menu_text

;thclude <obdefs.h>
nt menu_ienable(tree, object, disabl
OBJECT *tree; int object, disable; i

menu.i i i

monu. t,:r::mil;l?ﬁ ;s Ian e(li&}_}S m'utme that enables or disables a menu item. A di

ints bt the ot eg:t ayt-ree 1& faint legt.era and cannot be clicked by the us.er trl:‘

ettty omject tree. Zt e.ont.mns the menu, and object is the number ;)f thc

Opject with indicabes'di ;:gl ele ;x:’t;xcg::s }vl{;gthteel; the item should be enabled or di:
: 3 indicates enable.

zero if an error occurred, and a number greater than ze:o ifn;;: :;;el::)t;ble returns

See Also
AES, menu, object, TOS

menu_register — AES function (libaes)

Add a name to the desk
accH i

#include <aesbind.h> essory men fist

;ﬁnclude <obdefs.h>

nt

menu_register(accessory, textstring) int accessory; char *textstring;

menu_. i i :

penu ccr;gias’;e; ‘tsh ax;D AES routine that adds a name to the desk accesso
e ID of the desk accessory. textstring points to the stringo?:er;‘:

inserted into the des acc 194
d k €880 m
e’nu. FOr more lnf()rmﬂu()ﬂ about the desk acces

menlLl‘egister returns the des ace Ty h five.
k {1}
801y 8 1dentlﬁel, from zero thloug
For a exa peof hlsﬁl ry
v
n mpl t nction, see the ent for desk accessory.
AES, des"(accessory, menu, ObjeCtv IOS
IVOteS

Because only B1X desk accessories can be used at any one time, Oll‘v gix items can
]

menu_text — AES function (libaes)

Replace text of a menu item
#include <aesbind.h>
;ﬁnclude <obdefs.h>
¢ .
nt menu._text(tree, object, text) OBJECT *tree; char *text; int object;

menu_text i AES i

tem objectlir?a: o throutme that chapges. the text for a menu item. tree poi

o ihe Oblect tree e menu, and object is the number of the ob'eét i the

Pagad e the mt:t particular menu entry. fext points to the beit t“'nthlt‘:)tge
nu. menu_text i nd :

Ber mraater than moco if ooeont n:L returns zero if an error occurred, and a num-

rmal — metafile 483

menu_tno

menu_tnormal — AES

; m‘etaﬁl‘e -~ Technical information

See Also

AES, menu, object, TOS

function (libaes)

Display menu title in normal or reverse video

#include <aesbind.h>

#include <obdefs.h>

int menu_tnormal(tree, object, video) OBJECT *tree; int object, videos

menu_tnormal is an AES routine that displays the menu title in normal or

reverse video. free points to the object tree that encodes the menu, and object is

the number of menu title within the tree, video indicates whether you want the
and one indicates

title to be in pormal or reverse video: zero indicates reverse video,
normal. menu_tnormal returns zero if an error occurred, and a number greater

than zero if one did not.

See Also
AES, menu, object, TOS

A metafile ig a file of VDI instructions that can be stored on disk and‘inm;poxj@ed -
_into other programs. This allows you to create “hoiler-plate” images that are trans.

ferred easily.

prograin
, f an image are described logically rather
lement to be mar ipulated easily, and the imageasa
This lets you create i‘,tmigeéuindepend‘ent of the type ot
hich they are ‘dig‘;ﬁhyed‘. -
the example of the bouncing colored bell used in the Atari
m has ¢ snapshota” of the

allows

euvered

. At present, that program has a set of “'snap!
positions; to animate the ball, the program simply cycles through
program were stored in a VDL ‘metafile, however, a program
“each plane on the surface of the ball is logically conn
tting parameters, then, the entire ball in. all of its aspects
e ox oved sbout the screen. This, in turn, would sllow the
ymer to create a user interface, in which the user could “zoom in” toward
_the l ',;“,;zdom“out",‘moire'the‘ ball around the screen, change its rate or direction.
of rotation, etc. ‘) ‘

Metafile structure

For a full desc on of the VDI metafile structure, see Appendix C to volume 1 of

the GEM Programmer’s ‘Guide. The following briefly summarizes the metafile for-

mat. :

484 metafile

1
2

47

8168

[,__Tba;lkpeadkepis, followed by a series of VDI entries:
_ in the following order;

0

n+d-m The values for each integer parameter.
described corresponds to the value in 2.

Each metafile begins with a 16-integer header, structured as follows:

Always set to 0xFFFF.

VDI version number: 100 times the major version number, plus the
minor version number.

Type of coordinates: zero indicates normalized

device coordinates (NDC);
two indicates raster coordinates (RC). One is

reserved by TOS.

Respectively, minimum width and height, and maximum width and

height required to display image in the file. These are set with the func-
tion v_extent_meta; otherwise, they are set to zero.

Reserved; always set to zeroes.

_each consists of an array of ints,

The VDI fuhction's opcode. See the list below for the appropriate opcode
for each legal VDI routine.

(;I‘he number of vertices (i.e.,, endpoints or corners) in the figure being
rawn.

The number of integer parameters passed to the VDI routine.
The VDI routine's sub-opcode;
propriate sub-opcode.

The settings for each vertex.
responds to the value in 1.

see the table below for each routine's ap-
The number of vertices described cor-

The number of parameters

Finally, gach mﬁeﬁt&ﬁle closes with an integer set to 0xFFFF. ‘

SOV OT

‘Customized rou

stomized routines can be inserted into a metafile with the functich
v_meta write. ’
etafile routines
The following
column gives the routine’s opcode, the seco
its name, and the fourth gives a brief descti

/DI library routines can be incorporated into metafiles: The first
nd gives its sub-opcode, the third gives
pﬁbn.,*

clear a virtual device

0 velrwk

0 vupdwk update workstation (flush buffers)
2 v_exit cur exit from alphabetic mode
3 v_enter._cur

enter alphabetic mode .

20 v_form_adv advance page on hard-copy device

metafile 485

106
107
108
112
113
114
129

See Also

BN
B b

»
_OODOOW
OOOOCOOGOOOOCOOOOOOOOOO&DO&QQO’!AOJN
o

v_bit image
v_p ine)
v_pmarker
v.gtext
v_fillarea
v_bar
v.Arc
v_pleslice
v.circle
v_ellipse
v_ellarc
v_ellpie
v_rbox
v_rfbox
vst_height
vst_rotation
va_color

vsl type

vsl width
vsl_color
vsm_type
vsm_height
vsm _color
vst_font
vst_color
vs[_ixjteﬂot
vsf style
vsf_color
vswr_mode
vst_alignment

vsf_perimeter

vst_effects
yst_point
vsl_ends
vsf udpat
vsl udsty
vr_recfl
vaclip

v_output window
v_clear disp_list

rint portion of a virtual.device
Ic)lear f printer's display list
print a bit-image file
draw a polyline
draw a polymarké;t
utput hics
?log:l engcxiaoged area with fill pattern
draw an outlined, filled rectangle
draw a circular arc
draw a circular pie segment
draw a circle
draw an ellipse
draw an elliptical arc
draw an elliptical pie segment
draw rounded rectangle
draw rounded rectangular fill area
set graphics text height, in pixela
set angle of graphics text
set mix for a color
set polyline’s pattern
set polyline width
set polyline color
set polymarker type
set polymarker height
get polymarker color
set graphics text font
set graphics text color
set fill type
set fill style
set fill color
get writing mode
set graphics text alignment
set drawing of perimeter
set graphics text spgcxal gffecu}
set graphics text height, in points
set polyline end types
set user-defined fill pattern
set user-defined polyline style
draw a rectangular fill area
dlip an area of the virtual device

TOS, v_meta_extents, v_write_meta, VDI, vm_filename

Notes

_GDOS is not present in your edition of VDI

Metafiles need the VDI's GDOS in the‘i‘rop,e tion. They should not be used if the

mf — Command

“'Measure space leftin RAM .
e !

mfis a command that measures the amount of free space left in RAM for program :

See Also

commands, df, msh

Mfpint — xbios function 13 (osbind.h)

Initialize the MFP interrupt
#include <osbind.h>
#include <xblos.h>

void Mfpint(interrupt, vector) int interrupt; char *vector;

Mfpint initializes the multi-function peripheral (MFP) interrupt, and returns
nothing. This routine allows a programmer to trap a hardware interrupt in her
program. interrupt is the number of the interrupt to be set, 0 through 15, as
follows, going from lowest to highest priority:)

MFP_BITO 0 1/0 port bit 0

MFP_BIT1 1 undefined

MFP_BIT2 2 undefined

MFP_BIT3 3 undefined

MFP_TIMD 4 timer D, RS-232 baud rate generator
MFP_TIMC 5 timer C, system 200-hz clock
MFP_BIT4 6 I/0 port bit 4

MFP_BITS 7 undefined

MFP_TIMB 8 timer B

MFP_XERR 9 RS-232 transmit error

MFP_EMPT 10 RS-232 transmit buffer empty
MFP_RERR 11 RS-232 receive error
MFP_FULL 12 RS-232 receive buffer full
MFP_TIMA 13 timer A, user programmable
MFP_BIT6 14 1/0 port bit 6

MFP_BIT7 16 1/0 port bit 7

vector points to the interrupt routine to be set. :

i
See Also
Jdisint, Jenabit, TOS, xbios

Mfree 487

Mfree — gemdos function 73 (osbind.h)
Free allocated memory
#include <osbind.h>
long Mfree(memory) long memorys;

Mfree frees memory al
dress of the memory to
zero if it could not.

Example .
The following example prints
allocated.

#include <osbind.h>

mein®? L(nsigned tong memieft;

unsigned long merhere;
char *almem;

~ This first 'printf’ is needed to

i i he ad-
function Malloc. memory points to t
]g;de‘}{-e?ietums 0 if memory could be freed, and non-

the number of bytes currently free and the number

make the mumbers

* {ook right, because printf malloc’s memory for the

* FILE buffer
*/

printf("Test of Malloc(), Mfree() and Mshrink(n\n");

printf("X8{x bytes free, X8lx bytes atlocated\n®,

(memleft = Malloc(-1L)), OL);

memhere = memteft>>1;
slmem = (cher *) Malloc(memhere);

ed (X8LX\NY,
wxBlx bytes free, X8lx bytes atloceat !
pﬂm((ﬂul\oc?:'ﬂ.), menleft-Halloc(-11), memhere);

Mshrink(atmem,0x1000L);

ed (XBLO\N",
£("XBlx bytes free, X8ix bytes atiocat !
print (muoczu), weml eft-Halloc(-1L), 0x1000L);

Nfree(almem);

printf(*X8lx bytes free, %Bix bytes al located (XBLXO\N™,
Matloc(-1L), memleft-Halloc(-1L), OL);

)
See Also
gemdos, Malloc, Mshrink, TOS

Notes
Do not attempt to Mfree blocks of

memory not directly allocated by Malloc.

Memory freed by Mfree is not inserted into the arena used by malloc, but is

returned to the system.

e

488 Midiws

Midiws — xbios function 12 (osbind.h)
Write a string to the MIDI port
#include <osbind.h>
#include <xblos.h>
void Midiws(count, pointer) int count; char *pointer;

Midiws writes a string to the musical instrument device interface (MIDI) port, and
returns nothing. count gives the number of characters that will be sent, minus
one; and buffer points to where the characters are stored. Note that this routine
will transmit count characters; NUL characters will be used like any other charac-
ter.

Example

This example plays some notes on a MIDI instrument connected to the ST through
the MIDI-OUT plug.

#include <osbind.h>

/* MIDI status byte velues */

#define NOTE_OFF (0x80)
#define NOTE_ON (Ox90)

/* Xey off command */
/* Xey on command */

/* Some useful things to know... */
#define MIDDLE_C (60)

#define C_OFFSET (0)
#define D_OFFSET (2)
#define E_OFFSET (4)
#define F_OFFSET (5)
#define G_OFFSET (7)
#define A_OFFSET (9)
#define B_OFFSET (11)
#define FLAT (-1)
#define SHARP (1)
#define OCTAVE_STEP (12)

unsigned char notes(128]: /* Note counters... */

key_down(note_of fset)
int note_offset; { /* Note relative... */
/* ...to middle C */
int midi_note;

char midi_buf(4);

if ((midi_note=MIDDLE_C+note offset) < 0 || midi_note »127)

return; /* Return if out of range */
notes [midi_notel++; /* Mark as key-down... f/
midi_buf [0T=HOTE_ON; /* Note on... */ !
midi_buf [1]=midi_note; /* This one... */
midi_buf[2)=0x40; /* this fest... */
Midiuws(2, midi_buf); /* Send message out */

Midiws 489

key_up{note_offset) .
tz{‘mte_offset: [4 /% wote */
int midi_note;
char midi_buf(41;

1f ((midi_note=MIDDLE_C+note_offset) < 0 |} midi_note > 127)

return; 0
{di_note] -~ <
" (Mt:;t(:n[n di_note] = 0; /% Decrement down count */

midi_buf [0)=NOTE_OFF; /* Wote off... */

midi_buf (11=midi_note; /* This ooe... */

i * this fast... */
midi buf (21=0x40; / .
Midius(2, midi_buf); /* send message out */

)

clesn_up() € : * butfer for commends */
c:ar l:idl._buftzsal. /{' ot o potnter. */
e (.'S’- /* A counter. */
‘I:E c-o'- /* Another counter */
wp = midi_buf;
*pp++ = WOTE_OFF;
while (1 < 128) (
while(notes[il 1= 0) (
notes[{l--;
- + » {s
*ppre w OxAO;
L2 H
)

fos;

3
if(c > 0)
e Nidiws(ccel, midi_buf);

)
/* pelay for a little whil

delay(n)
int n; €
int §;
while(n-- » 0) (
tor(in35 ; 1>0 ; §--)
vayne();

e -- Use the vertical sync for timing.*/

/* Return 1f out of renge */

490 mkdir — modf

mein() (
int §;
int n;

key_down(C_OFFSET);
delay(2);
key_down(E_OFFSET);
delay(2);
key_down(G_OFFSET);
delay(2);
key_down(C_OFFSET+OCTAVE_STEP);
delay(5); -
key_up(E_OFFSET);
key_up(G_OFFSET);
key_down(F_OFFSET);
key_down(A_OFESET);

delay(20);
clean_up();
>
See Also

mkdir creates directory. Files or directories with the same name as di

. y ctory must
not already exist. directory will be empty except for th ntrios 7, the irectory”
link to itself, and *..’, its link to its parenf tglrectogy or the entries ™, the & e
See Also

commands, msh, rm, rmdir

‘ mktemp — General function (libc)

Generate a temporary. file name
char *mktemp(pattern) char *pattern;

mktemp generates a unique file name. It can be used, for example, to name inter-

mediate data files.

Note that the functions tmpnam and tem
pnam each assemble a temporary file
name and then call mktemp. These i iffic il
e e ﬁI;e.] routines eass the difficulty in creating a
See Also

msh, tempnam, tmpnam !

modf — General function (libc)

_Separate integral part and fraction .
__double modf(real, ip) double real, *ip;

modulus 491

modf is the floating-point modulus function.
gument real, which is a valuefin therange 0 <=

part in the doub

ireal = f+ %ip.

Example
This example prompts for a number fro
Jate the number’s fractional portion.

#include <stdio.h>

main()
4
extern char *gets{);
extern double modf(), atof();
doubte rest, fp, *ip;
char string{64);

for (;3)
(4
printf("Enter nurber: “);

tf (gets(string) == 0)
break;

real = atof(string);
fp = modf(resl,ip);
printf(*XLf is the integral part of Xif\n",
*ip, resl);
printf(*Xtf is the fractional part of XLfin",
fp, real);
)

]
See Also
atof, cell, fabs, floor, frexp, ldexp

mddulus:—- Definition e »

It returns the fractional part of its a
; f < 1. It also stores the integral
1e location referenced by ip. These numbers satisfy the equation

from

m the keyboard, then uses modf to calcu-

a division

/Modulus is the operation that returns the remainder derived
_operation. For example, 12 modulus four equals zero, because W

en 12

’ kby‘ four it leaves no remainder,: The term “modulo’ also refers to the p

‘modulus operation; in the above example, th

“modulo is zero. In C, the modulus
‘therefore, 12 modulus 4 is written

is divided .
roduct of

operation is indicated with a percent sign

- the command:
rand()%10
This is demonstrated by the following example.

he modulus operation often is used to trim numbers to a preset range. For ex-
ple, if you wanted to create a list of single-digit random numbers, you would use

492

mousehidden — msh

Example

This example prints a list of 20 single-digit random numbers. The rand
e) « X om-numb
table is seeded with a portion of the current system time. e

main()
<
long nowhere; /* place to put unused pointer */
int counter;
srand({int)time(&nowhere));
for (counter = 0; counter <20; counter++)
, printf("Xd\n", rend()%10);
See Also
operator

mousehidden — Command

‘Return how often mouse pointer has been hidden '

“mousehidden

mousehidden is a command that returns the number of times th i

d 1 e mouse pointer

has been hldden;‘ Under 'GEM, if the mouse pointer has been hidden morx:a than

ggceta},) ;tar:rléztnbe restm:;ld’;a maxlzly tilrlnes as it has been hidden before it reappears
reen. mouse en will tell you how many ti

mouse pointer before it reappears. Y Y times you must restore the

See Also

commands, hidemouse, Line A, showmouse, TOS

msh — Command =

msh is the Mark illiams m]cro-ahel] hich is desi u. und

W , W d 8'ned for use er TOS. It
wlﬂblnes aﬂpectﬂ of the BOUX ne Bhe“ and ﬂl@ Be!ke]ey C ahell into one Con"na"d
that i8 pUWGXfUI and easgy to use.

msh is a command processor. It finds commands and ex: i i

} d g ecutes them either singl
or in batches; and it allows the user to direct the output of a command to a devigcey
into a new file, or to another command for further processing. It can replace t)exi

with symbols defined by the user ith wi i
U S L Y , or with wildcards that are expanded according to

The simplest command consists of a list of words; the words ar

each other by spaces or tab characters, and the list’is terminated sys:p:i ;&;:gni:gr:
sequence. Eacp word may contain hisfory substitutions, variable substitutions, file
name 3ubst'xtu.tton3, quoted characters, quoted strings, or file redirection msh'also
supports aliasing, for use in batch files and scripts. These are discussed l;elow.

Several commands may be i ;
1 . placed on the same line; the commands h
sAe;;f:rated with semicolons or other command separators; these are out]in:(;‘eb:losvn.
ist of commands may be grouped into a single command by enclosing the list

msh 493

within parentheses.

Both simple commands and lists of commands be made to extend over more than
one line by typing a slash /> before pressing the <return> key.

History command

‘msh also comes equipped with a history command. This command allows you to

re-execute a command without having to retype it.

msh automatically records your previously typed commands into a buffer. The
number of commands it “remembers” is set by the history variable: for example,
typing

_ get history=8
tells msh to remember the last eight commands you have issued.

The history command is invoked with the exclamation point V'. The command Il
re-executes your last command. Therefore, the commands

is -w

1"
will give you two columnar listings of the contents of your current directory. The
command Iname re-executes the last command with name that is in your history
directory. For example, when you type the following list of commands:

lg -w

echo foo >stuff

rm stuff

tis
the history command I8 reaches back and executes the command 18 -w. To execute
a previous command by its number, subtract its value from the current command.
For example, I-1 re-executes the previous command; it is a synonym for 1l. To ex-
ecute a command issued three commands ago, type 1-3; this will execute echo foo

>stufl.
Variable substitution

“’A variable is a symbol defined by the user with the set command; for example, the

command

set X="echo foo" .
declares that X is a symbol equivalent to the string echo foo. When a variable is
used in a msh command line, it must be preceded by a dollar sign ‘$’ or an ex-
clamation point ‘. For example, to call the variable set in the above example, type

“$X or IX_ When it sees a token that begins with either of these punctuation marks,
“msh searches for it first on the list of variables that have been assigned with the
set command, then on the list of those assigned with the setenv command, and
finally on the list of tokens that it received from TOS or from the parent shell. For

example, if you type

494 msh

set escw™” M
set clsx=™echo ${esc)E"

(where <esc> indicates the escape character) and then type
Scls

msh will expand this variable into ’
echo "{E

and then execute the echo com i ich i
and then excoute mand with the argument <esc>E, which in turn

he difference between $name and lname. i i
ence between $name and lname is that the latter may include command.
_ separators because it is rescanned as in ut, whereas the former i
For mple, the variable set with the co‘r)nmand oriter fa ot rescanned.

set X="echo foo ; echo bar®
should be reference with the tok
desc;ibed Telorence wad e token IX rather than $X. Command separators are
es.binand .cmd

set in .cmd o=l -w"

This tells msh to equate the command 1 i

. ¢ with the string 1s -w, which pri
2on§ent.s of a dlrgchy in columnar format. .cmd must ge included i:: tg:r;’tj\'tl’l:
environment, or it will not be searched by msh when you issue a command
File name substitutions

File name Bubsbtutlons contain the punctuation marks l ? . The followin,

Uist), [a-z]
; Mubch any of the characters/, i, s, or.f, or.any character in the range a-z.
? - Match any one character or no character. :

’Match”anyyc‘:}‘xgracter, any strmg of chamctx‘er's;oyr no character.

mcesenclosea list of words that are each combined with the remainder of =

msh 495

“msh_supports command substitutions. :These allow. you. to embed a

Command substitutions

mmand; the output of the inner ¢ ymmand is. 8
uter command. Command substitutions are indicated by quoting’
rave ts. For example, the command: ' :

anoth

pr ‘ts -
first invokes the list command Is to read the contents of the current directory, and
then passes its output to the pagination command pr, which paginates what 1s
produces and displays it on the standard output device.

One form of embedded command is included in profile: the command

date ‘dste -1*
resets the GEM time after a warm boot.

Note that the grave mark may be passed to msh as a literal character if it is
preceded with a slash °/’.

Character quotations
Ag tion is used W en you want msh to disregard the special meaning of a_
¢ and read it merely as a literal character. In general, preceding a charac-
ter with a slash will remove the special meaning of a character, except under the
following circumstances: .

1. A slash followed by an end-of-file indicator is always an error.

2. A slash followed by a <newline> becomes a space and continues input on the
next line.

3. When set between " "’s or *vg a slash followed by a <newline> translates
into <newline>, and /" becomes & litera} quotation mark. All other charac-
ters quoted with /* are left untouched.

4. Within literal quotations, */’ is literal.

Quoted strings
Strings may be quoted by enclosing them in apostrophes or quotation
Quoting a'string means that “m#h or a command is to acce] t'literally. Note
~quoting a string wit 68 pre 4y fiirther expansion; all wildcards an
-variables will be - uoting 1otaty
‘marks, however, tells msh to treat w p part of the string, but allows fur.
ther expansion of -variables. “The following exercise will demonstrate how_ these
forms of quotation differ:

496 msh

msh 497

set A=4123n
set B=wXY2M

echo $A 8

echo “SA 38"

echo “$A 88’
File redirection

The term file redirection means redirectin i
i] g the input or output of i
a ﬁ]g. The following redirection operators are recognized bytgmb(:) @ command into

Redirect output of a file into file. If file already exi i
: . sts, repl -
tents with the output of the command. Y replace Jts con

Append the output of a command onto file. If file d i
. = . ¥ oe t
it and fill it with the output of the comu,;nd. i © not exist create

Redirect material normally sent to the standard error device into file.

Append material normally sent to t i
i y sen he standard error device onto the

Redirect material normally sent to the printer into file.
Append material normally sent to the printer onto the end of file.

Redirect the OUtP“t of a CO"““R"d and any dlﬂgnosuc messages it

 Append the output of a command and all of the di i i
. iagnostic messages it

generates onto file. .If file does not exist, create it and fill it witgethle
output and diagnostic messages generated by the command.

‘ file Use the contents of file to control the execution of a command.
Separating and joining commands

Commands can b joi
fotlowring mark:: e separated or joined on the same command line by using the

Execute commands sequentially.

Execute commands se i i i
: quentially until one terminates wi - i
gtatus (i.e., until an error occurs in one). th mon-zero exit

I pipe between the Comm&nd ¥ t of -
Form a tw 8 feed the standa d out;

d ft €y : " Pput o the com

ll.lﬂll on the left of the l into the standard mput Of the command on the

|& - Form a pipe that
: : passes both the output of the comrand on the left
any diagnostic messages it produces as input to the command on theerig:?.d

}]. Commands separated by ‘| |’ i
!)) y ‘| |' are run sequentially until i
with zero exit status (i.e., executed without error). Y one terminates

Commands

Mark Williams C includes a pumber of commands that are designed to be used
with msh, For a list of these commands and a brief description of each, see the
entry for comzr nands. If you need help with msh or any of its built-in commands,
type help and the name of the command for which you need help. msh will print
on the screen a summary of how to use that command.

Setting the environment

msh allows you to set a number of environmental variables. msh uses some of
these variables, and makes all of them available to programs that run under it. A
program can read these variables by using the function getenv. Environmental
variables can be set or changed with the command setenv, and erased with the

command unsetenv. Typing setenv without an argument will display the list of

environmental variables plus their settings.

For Mark Williams C to work properly, the following environmental parameters

must be set:

HOME " The default directory: where msh performs a task when no other
directory is named.

INCDIR Name the directory in which cc searches for header files and other
text files to be included in compilation.

LIBPATH Name the path along which ce searches for the executable files for the
compiler and the linker i.e., ccO.prg, ccl.prg, cc2.prg, cc3.prg,
erts0.0, 1d.prg, and the libraries.

PATH This environmental variable consists of a list of directory prefixes that

are separated by commas. These prefixes name the directories that
are searched in order for commands or batch files to be run. For ex-

ample, typing
PATH = ,\bin,\lib

will ensure that msh will search the the current directory, then the
directories \bin and \lib, in that order, to find the executable file
pamed in a command.

SUFF This consists of a list of file-name suffixes that are separated by com-
mas. These suffixes are appended to the given command name when
searching the directories nam~d in ${PATH)}.

TMPDIR Name the directory into which temporary files are written.
See the Lexicon entry éenvironment for more information.

498 msh

s ewd:

Shell variables

The following vs:n'ables con.trol the operation of msh. Some can be set with the set
con'.xmand. Typing set without an argument will display a list of all current
variables, both those set by the user and those set by msh:

,i,,,l’xlstoryf?: Set the lgngth of the history list. For example, to set the history vari-
able to eight, type the following:

set history=8

This allows you to invoke any of the last eight commands by using the
form l-n.

The current working directory.

?Wd,"kﬁ?” The current working device.
pmmpt This variable holds the prompt string. The defauit is ‘$’.
‘,,T‘s‘tatus /' This variable holds the exit status returned by the last command ex-

ecuted. It should not be reset by the user.

Command files

lpsh reserves the variables $0 through $9 for arguments passed on a command
line. This .a}]ows you to write shell scripts whose variables can be set when you
run the script.

For example, the following commands could be typed into the file foo:
cc -V -f 8132 83 -tm

T‘hereafter, typing foo follm_ved by the names of up to three C source files will com-
5;::3 tr?'e files with the floating point printf routines, and link in the mathematics

msh has three ases built into lt, which extends .
ali the range of your cOlﬂ!ﬂaﬂd files
The alias s xeplesent.q all of the argumeuts to the current COl'ﬂlnand. For ex-

cc -V $*
when placed into a file, compiles all of the files listed as arguments to that file.

3# gives the nu’nbel Ot a!gu“‘e“m m‘gned to the current eommand. For ex-

echo $#
prints 1 on the screen, which is the number of arguments to that command.
I

Finally, the alias $< represents any li i i i

A y line received from the standard input device,
up to the newline character. For example, the followi i ’
slow version of the concatenation commaxfd, 'cat: ng eommand gives & very

msh 499

set in .cmd slowcats(
vhile (set foo="s<" L& not (equal "$foo” ")) (echo $foo)

)
Loops and conditional staterments
msh supports conditional statements and loops. The basic conditional command is

If. Its syntax is as follows:

it wordl word2 [word3]
If word1l executes successfully, then word?2 is executed; otherwise, the word3, if
present, is executed. Commands can be grouped into statements by enclosing them
within parentheses. The text within the parentheses can extend across as many
lines of text without needing to precede newlines with backslashes. For example,
the command

1f (echo foo

echo bar
echo baz) (is -1)

echoes the strings foo, bar, and baz, and then prints the contents of the current
directory.

msh also contains a while command, which can control a conditional loop. Its
syntax is as follows: .

‘while word! word2
As long as wordl executes successfully, word2 will also be executed. Each word
may be a list of commands enclosed within parentheses.
msh contains two test commands, equal and not. equal compares two strings; it
succeeds if the strings are identical, and fails if they are not. Its syntax is as
follows:

eq:gl~§ argumenti srgument?
Note that either argument can be a literal string, an integer, or an embedded com-
mand. not inverts the logical result of its argument.
The command Is_set is also useful in building loops and conditional statements.
This command takes the name of an environmental variable as it,g argument. It
returns zero if the variable is set, and a number greater than zero if it is not. Its
gyntax is as follows:

is set { in dir] name
which is much like that of the set command.
The profile file
Whenever you invoke msh from the GEM desktop, it automatically reads a file

called profile and executes all of the commands that it finds therein. By altering
your profile, you can customize msh to suit your preferences and tasks at hand.

500 Mshrink — msleep

mtoh —mv 501

" when you exit from msh. .

See Also

commands, environment, set, setenv, wildcard, unset, unsetenv

Mshrink — gemdos function 74 (osbind.h)
Shrink amount of allocated memory

; #include <osbind.h>

g long Mshrink(begin, length) long begin, length;

Example
For an example of how to use this function, see the entry for Mfree.

See Also
. gemdos, Malloc, Mfree, TOS

Notes
serts this parameter automatically.
mshversion — Command

Print current version of msh
' mshversion :

using. Typing mshversion returns a string of the form:

Hark Williams Micro Shell, version 3.0

See Also

commands, msh

op executing for a specified time
sleep milliseconds

Mshrh‘:k shrinks the amount of memory allocated by a program, and returss ; :
dynamic memory to the free memory pool. begin points to the beginning of the :
space to be kgpt, and length indicates the amount of memory to be kept. Mshrink f:
returns zero if memory could be de-allocated, and non-zero if it could not. :

The gemdos call has a third parameter that is always zero; the Mshrink macto i

The command mshversfon prints the version of the microshell msh that you are ,

time. milliseconds i? the amount of timets

See Also

commands, sleep, TOS

'— Command
Redraw the screen from medium to high resolution

_mtoh
mtoh redraws the screen, moving from medium to high resolution.

See Also

commands, htom, ltom, mtel, TOS

atol — Command
Redraw. the screen from medium to low resolution
mtol '
mtol is a com
tion.

See Also

commands, htom, ltom, mtoh, TOS

mand that redraws the screen, moving from medium to low resolu-

s

header file, portability

- Command
Rename files or directories
ldfile neufile
mv file ... directory.
mv renames files. In the first form above, it changes the name of oldfile to newfile.
If newfile previously existed, mv deletes its former contents; if not, mv creates it.
If newfile is a directory, mv places oldfile under that directory.
In- the second form, mv moves each file argument into the directory argument. If
the source and destination files are on different disk drives, mv copies the source to
the destination and removes the source.

mv will not copy directories between devices and will not remove directories that
occupy the destination of the command.

502 mwtomw

mwtor)

See Also

commands, ¢p, msh

. Command

ert old Mark Williams format to Mark Williams 8.0 format -
mwtomw “filename
The command mwtomw takes an executable file that had been compiled with
Mark Williams C version 2.1.7 or earlier, and converts it to the format used with
version 3.0. filename is the name of the executable file to convert.

See Also

commands, drtomw, Id

nested comments — nm 503

N

nested comments — Definition
Bo gramm' g Language and the draft ANSI standard declare that com-
arlier versions of Mark Williams C mcluded a switch,
lowed a program er to nest comments. This sthch has
nd kfuture rgions of Mark Williams C abort compilation.

See Also
C language

¥ newline — Character constant

Mark Williams C recogmzes the literal character ‘\n’ for the ASCII newline charac
ter LF (octal 012). This normally feeds the line and returns the carriage. This
. character may be used as a character constant or in a string constant,

See Also
ASCII, character constants
Notes

On the Atari ST, ‘\n’ must be used with the carriage return character \r’ if the
- program does not go through STDIO. '

~.nm = Command
Print a program’s symbol table
nm [-adgnopru] file ...

nm prints. the symbol
od

f each file. Each file argument must be a Mark
an object library. built with the archiver ar. Ifanar
“gument isa hbrary. nm prints the symbol table for each member of the library.

The first argument selects one of several options. It is optional; if present, it must
begin with *-". The options are as follows:

_ Print all symbols. Normally, nm prints names that are in C-style format and
ignores symbols with names inaccessible from C programs.

~ Print only defined symbol.
~ Print only global symbols.

i° * Sort numérically rather than alphabetically. mm uses unsigned compares
* when sorting symbols with this option.

n.out — nout.h 505
504 not-— notmem

i ted by calloc, malloc, lcalloe,
e o bloc‘(tl?:sblbo?i(nt:n boﬁheckg’d. notmem searches the

. 1loc, or realloc. ptr points to) he
Ll:a?m(}gr ptr; it returns one if ptr is not'a memory block obtained from malloc,

_calloc, or realloc, and zero if it'is.

See Also

arena, calloc, free, malloc, realloc, setbuf

'-fo‘;' Append the file name to the beginning of each output line,
. ?p'f Print symbols in the order in which they appear within the symbol table.
-r Sort in reverse-alphabetical order.
-u_ Print only undefined symbols.

By default, nm gorts symbol names alphabetically. ‘Each symbol is followed by ita
~value and its'segment..

n.out — Definition

See Also - o

o¢ commands, 1d, size, strip ‘nout is the format used by the Mark Williams C compiler, assembler and linker
- ' _ generate their output. =

Notes

i i i i h segment.
aation and information about the size of each segment.
e follow the header in a fixed order. n.out defines the

Because version 3.0 changes the format of executable files, the edition of nm
 header structure for the 68000 as

shipped with version 3.0 does not work with executables linked with Mark Williams
C version 2.1.7 or earlier. To convert such files to a format that nm recognizes,
use the command mwtomw.

struct cheader (
short _magic;
short {_flag;
short |_machine; 3
short {_tbase;
size_t |_ssize{NLSEG];
tong L_entry;

nm now works with symbol tables larger than 64 kilobytes. It uses a balanced-tree
to sort symbols, and will absorb as much memory as the system has available.
When memory runs out, nm prints the symbols already sorted and continues with
the remainder of the symbol table.

not — Command 5

byte order. Lmagic is the
contains 0407 1 flag con-
1 machine is the processor
. L entry contains the machine
_ 1 ssize gives the size of eact

value of an argument

not is a test command that is built into the microshell msh. It inverts the logical
value of argument; that is, it changes zero to one and any value other than zero to
zero. argument may be either an absolute value or a value returned by another
command.

Example

The following command prints the string Not high res if the monitor is not in
high resolution, and it prints High res if the monitor is in high resolution.

address where ex
segment. o |
size pri‘nkts;the segment sizes of the n.out format header, nm lists the symbols,
and strip will remove the symbols. -

See Also

as, 1d, nm, size, strip

(if (not (equsl ‘getrez’ 2))
(echo "Mot high res") (echo "High res"))

Note that the command getrez returns two if the monitor is in high resolution.

See Also

commands, equal, if, Is_set, msh, while

output format n.out, which
_the compiler, the assembler,
correctly formatted output file i

ynotmem — General function (libc) i
. Check if memory.is allocated
_int notmem(ptr) char *pir;

See Also

header file, n.out
NUL — Character constant

NUL is the character ASCII 0 and, in C, sig
1 ara K signals the -end of a string.
mp;:;f ;egh ::efo\r(; . r‘;ghe th&t Ni'UL is defined as part of the str'm: ‘:tg ialf‘,e?-
1 > , & Btrin t is d r can
S charactersgp o : 8 .eﬁned to be 50 characters long can, in fact,

See Also
ASCII, character constant, NULL, string

NULL — Manifest constant

It is the null pointer (char

See Also
manlfest constant, NUL, pointer, stdio.h

he term is generally used to
hus, a byte may be said to
encodes one hexadecimal

See Also
bit, byte

obdefs.h — objc_change

header file, object, TOS

objc_add — AES function (libaes)
Redefine a child object within an object tree
#include <aesbind.h>
#include <obdefs.h>
int objc_add(tree, parent, child) OBJECT *tree; int parent, child;
objc.add is an AES routine that redefines a child object within an object tree;
specifically, it redefines an object as being the offspring of & specified parent. trec
points to the object tree being modified. child is the pumber of the object being
redefined, and parent is the number of the object being made child's parent.

objec_add returns zero if an error occurred, and a number greater than zero if one
did not.

See Also
AES, object, TOS

objc_change — AES function (libaes)
Change object’s state
#include <aesbind.h>
#include <obdefs.h> -
int objc_changel(tree, object, junk, x, y, W, h, newstate, redraw)
OBJECT *tree; int object, junk, x, y, w, h, newstate, redraw;
objc_change is an AES routine that changes the state of an object within a named
clipping rectangle. This is done by altering the member ob._state within the
OBJECT structure. For more information on object states, see the entry for ob-
ject.
objc.change is a simple extension to obje_draw, which allows you to reset
ob_state and optionally skip redrawing the object.

free points to the object tree being modified, and object is the number of the ohject
within the object tree. junk is reserved, and must be zero.

508 objc_delete — obje_draw

x, y, w, and h set, respectively, the X coordinate of the clipping rectangle, its Y coor-
dinate, its width, and its height. objc_change will alter only the portion of the ob-
ject that falls within this clipping rectangle.

newstate indicates the new state for the object, as follows:

0x00 NORMAL Object is normal
0x01 SELECTED Shown in reverse video

0x02 CROSSED Object has X’ drawn next to it
0x04 CHECKED Check mark drawn next to object
0x08 DISABLED Object redrawn in gray; unselectable

0x10 OUTLINED Object is outlined
0x20 SHADOWED Object has shadow drawn beneath it

Finally, redraw indicates whether or not to redraw the object being modified: zero
indicates not to redraw, and one indicates redraw.

objc_change returns zero if an error occurred, and a number greater than zero if
one did not.

See Also
AES, object, TOS

objc_delete — AES function (libaes)

Delete an object from an object tree

#include <aesbind.h>

#include <obdefs.h>

int objc_delete(tree, object) OBJECT *tree; Int object;

objc_delete is an AES routine that deletes an object from an object tree. tree
points to the object tree being modified, and object is the number of the object
within the object tree. objc_delete returns zero if an error occurred, and a num-
ber greater than zero if one did not.

See Also
AES, object, TOS

objc_draw — AES function (libaes)

Draw an object

#include <aesbind.h>

#include <obdefs.h>

int objc_draw(tree, object, depth, x, y, w, h)
OBJECT *tree; int object, depth, x, y, w, h;

1
objc_draw is an AES routine that draws an object. free points to the object tree
that contains the object in question. object is the number of the object within the
object tree. depth indicates the number of levels to which the object should be
drawn, as follows: zero, draw only the object itself; one, draw the object plus its

objc_edit — objefind 509

j i i ildren; through eight
5\};'11]1?:}?1;3 hc:l(;‘e;mém ?rl:f)}l)t;e;:lllsfe\:l‘h;‘:lg di:av?: ;:;e. object and gll (;)f itts
descendents. Thus, setting object to zero (thg root _object within the tree) and set-
ting depth to MAX_DEPTH will draw the entire object tree. .

x, y, w, and h set, respectively, the X coordinate of the clipping rectangle, its Y coor-
dinate, its width, and its height.

obje_draw returns zero if an error occurred, and a number greater than ze
one did not.

Example

For an example of this routine, see the entry for object.

See Also
AES, object, TOS

ro if

objc_edit — AES function (libaes)

Edit a text object
#include <aesbind.h>
#include <obdefs.h> '))
in:1 ohjc_edit(tree, object, character, oldt{zdex, kl{ld, n‘ewmfiex)
OBJECT *tree; int object, character, oldindex, kind, *newindex;
i i i i ithin an object tree. The ob-

bic_edit is an AES routine that edits a text object wi)
g e e i St i e

he object tree that contains the obj eing edited,) !
:thoolJ);ect within the tree. character is the character tn_be }nserted mtoft:: ‘t::;‘.:
oldindex is the index of the character being replaced. kind is the type of rep
ment you want performed, as follows:

0 Regerved

1 Move input text into temp]a.te; tur.n on cursor . .
2 Compare input with validation string; update text; display string

3 Turn off cursor
newindex is the index of the character that follows the one being edited. This value
is set by the AES.
objc_edit returns zero if an error occurred, and a number greater
did not.
See Also
AES, TOS

than zero if one

objc_find — AES function (libaes)

Find if mouse pointer is over particular object
#include <aesbind.h>
#include <obdefs.h>

objc_offset — objc_order

int objc_find(tree, object, depth, mousex, mousey)
OBJECT *tree; int object, depth, mousex, maus?y:

objc_find is an AES routine that finds whether the mouse pointer is positioned

over a partigulaf‘ object. tree points to the object tree that holds the object in ques-
tion, and object is its number within the object tree,

depth is the depth to which the object tree should be searched, as follows: zero,
gearch only 'for objgct; one, search for object and its children; two, search for the ob-
ject plus its .chxldren and grandchildren; through eight (which is called
eMAx_Dnts EPTH in obdefs.h), which searches for the object and all of its descend-

Finally, mousex and mousey give the coordinates of the mouse pointer.

objcfind returng the number of the object over which the mouse pointer was
f%\'méit to be positioned, or -1 if it was found not to be positioned over any requested
object.

See Also
AES, object, TOS :

objc_offset — AES function (libaes)

Calculate an object’s absolute screen position
#include <aesbind.h>

int objc_offset(tree, object, x, y)

OBJECT *tree; Int object, *x, *y;

o.bjc..off_set is an AI}‘S routine that returns the absolute position on the screen of &
jg;e?so%m. tr‘;ze pox.r;hts to ;he object tree that holds the object in question, and ob-

: its number within the tree. x and y give, respectively, the X and -
dinates of the object. These are set by AES. P Y, the X and ¥ coor

objc_offset returns zero if an error occurred, and a
obje. offaet , number greater than zero if

See Also
AES, object, TOS

objc_order — AES function (libaes)

Reorder a child object within the object tree

#include <aesbind.h>

#Include <obdefs.h>

int objc_order(tree, object, newposition)

OBJECT *tree; int object, newposition; 1

o}::jc_qrder is an AES‘routine that moves a child object to a new position within
tbg object tree. tree points to the object tree that holds the object to be moved, and
object is its number within the object tree. newposition gives the new position for

object 611

object — Technical information
, “.{\n;dbjﬁect is an AES data form that encodes an element to be displayed on the

this object in the list of its siblings: zero indicates the bottom of 'the list, one in-
dicates one from the bottom, and so on; -1 indicates the top of the list.

objec_order returns zero if an error occurred, and a number greater than zero if
one did not.

See Also
AES, object, TOS

string, a box, a bit-mapped picture, a

An object can be a rectangle, ; ; ! ety
rtantly) a number of such elements

;any’: of‘fthese, or(m0€
n the form of an object

ether in a tree struc
ore child objects an

B

_ no children, then both poi

_Each of these three dr ‘
) example[2]'s siblings are example(1] and example[3
ese children can, in turn, have its own children, each of which can hav
siblings and children of its own.
As you can see, example names an array of objects. Each object’s subscript
depends on the order in which it is loaded into memory. If you wish to write an
object tree by hand, it is up to you to know each object’s subscript in order to write

the tree correctly.

_ Each object within the tree contains three “pointers’ in its description These are
_ not true C pointers (i.e., memory add ‘

resses), but integers that are used by the AES
1o orient each object within its tr The first pointer, next, points to the object’s
_next sibling. For example, the next pointer for example[1] is 2, which points'to
examplel2]. If an object is the last of its siblings or if it has no siblings, then next
must_point_to_ the object’s parent object. The only exception is the root object, =
which has no sibling and no parent; its next pointer is always set to 1. - ‘
The second pointer and third pointers, head and tall, point respectively to the ob-

ject’s first child and its last child. For example, example[0] has a head pointer of

1, which indicates that example[1] is the first of its children, and a tail pointer of

3, which indicates that example[3] is the last of its children. 1fan object has only
_one child, then the head and tail pointers must both point to it: and if an object has
' mustbesetto-1.

Notey‘:tha‘t if object ‘l’s head is set to two arid yi‘t,é:‘tail is set to seven, this does not

3 through 6 are all children of object It only means that the
2 and the last is object 7 The members' of ob-

, nbed with the OBJE CT Btructure thatis
. ‘his structure is declared as follows

typedef struct object
{

int ob_next; /* Object’
ject’s next sibling */
int ob | _hesd; /* First child */
int‘obne;all ® /* Last child */
unsigl int ob_type; FAdR S of object *
unsigned int ob flags; IAd Fms */ : !
unsigned int ob_state; /* Stetus */
tong ob_spec; /* Object’s specification */
‘nt ob_x; /* X coordinate of object */
nt ob_y; /* Y coordinate of object */
int ob_width; 7* uidth */
int ob_height; * Height *
) OGJECT' ! ° !

An object, as can be seen, is built out of the following 11 elements:
’ The next pomter.‘
The head pomter

ob_next
ob_head
ob.tail

ob_type

ob_flags

_selectabl objec£ lh‘ ‘ ~
. and then click and release the butto _The latter must not be
selectable object and exits when the user merely clicks the mouse

The tail pomter

- This mdlcates t
be discussed below ,;

Thls field encodes one of a set of flags for the object. The allowable
flags are as follows:

ject’s type. The different types of object will

0x000 NONE No flags selected
0x001 SELECTABLE Selectable by user
0x002 DEFAULT Default (e.g, for buttons))
gxxggg g)élx?l:ABLE If selected, ends dialogue
 Editable by us st c
0x010 RBUTTON I RN
xgig LASTOB Last object in tree 4
TOUCHEXIT = Exit when butto: 1
0x080 HIDETREE o butlon e pressed 4
0x100 INDIRECT

object 513

. ob_spec The object's specxﬁcabon This field, whi

button, rather than when button is released.

Thls indicates the object’s status, ie,, how the object is to be dls-
played. The status codes are as follows .

0x00 NORMAL Normal display

0x01 SELECTED Displayed in reverse video

0x02 CROSSED X’ drawn in object.

0x04 CHECKED Check mark drawn next to object
0x08 DISABLED Draw in shading rather than solid
0x10 OUTLINED Draw border around object
0x20 SHADOWED Draw shadow beneath object

ob_state

The SELECTED specification is often used to show that an object has been
selected, such as happens when you click an icon on the GEM desktop. The .
speclﬁcanons CROSSED, OUTLINED, and SHADOWED are used “only with boxes.
€ program runs, for example, the specifica- -
\dicate that the item is disabled or has been
selected. You can either change an obje specification by hand; or you can use an
_AES library routine to do so. For examp e,‘menu_tnormal will change a menu
entry’s specification from DISABLED to' NORMAL and vice versa, without your"
having to_address that object directly within its tree.. See objc_change for more

information.

_The specxﬁcatlon can be changed as th
tio . menu objectcan change to in

ch is the only long field in the ‘
a pomter toa ring, a omter to a structure, or a bi " /
Wlnch specification belongs

_OBJECT structure, can hold ¢
ependmg on the type of object bemg described

m
_with which object w:ll be descnbed below

kob._x‘fX coordinate of the bject. ln the root object, this value is an absolute value,
h su inate obj this value is relative to. the X value of its

‘:parent This allows the entire ohjec’t tree to be reposmoned on the screen simply
by changmg the X coordinate of the root object '
~ob..ny coordmate of the object. In the root ob)ect, this value is an absolute value,
in rasters; for each subordmate object, this value is relative to the Y value of its
parent

__ob_width The object’s width. Thisis always an absolute value.

ob_helgbt The object’s hexght This is always an absolute value.

ists the available types of objects. As noted above, each type of

llowmg
the speclﬁcatnon is also given:

object uses the field ob_spec in a different way,

‘,‘}5‘} G.BOX raw a rectangle on the screen. The field ob_spec holds a bxt map
esenbes the box's color and the thickness of its border as o

. follows:

514 object

object 616

G_BOXCHAR .
,;Thxs d

_the same as for G_BOX, except that bits 24-31 encode the charac- ’

b{ts 0-3 mtenor co]or

55374-6 . ;nhenor patbem (O-empty, 1 -sohd)
i 1=transparent, 0=

bx.tx 8-11 . text colog nt’ e

gggs ;gég border oo]or i
its 16- _border thickness (-127 th

bits 24-31 character mdex oneh 127)

Negative numbers draw the border ontwards from the edge of the

~ rectangle, whereas posmve numbers draw the border inwards.
The codes for text and interior color are as follows:

WHITE
BLACK
RED
GREEN
BLUE
CYAN
YELLOW
MAGENTA
LWHITE
LBLACK
10 LRED

11 LGREEN
12 LBLUE
13 LCYAN
14 LYELLOW
15 LMAGENTA

COADGT AN D

’ g‘::d;):mﬁels in c;gltal letters are mnemonics that are defined in the ‘
e e obdefsh. This means that you can use these

cs in your program w:thout having to ‘femember the

numeric code of each color. Example: To set a figure with a border -

:xv‘ladnt:p:ge o:tebx;t:s(t,g, tah:ogﬁer ctrilor of black, a text color of black, the
al
e focwring C c?)d e ern of solid, and an interior color of

(1<<16) | (BLACK<<12) | (BLACK <<B) | (1<<7) | (7<<&) [WHITE)
This translates into the hexadecimal number 0x111FOL

for elem nts like the ‘'fuller” button on GEM windows. ob_speci

ter to be displayed within the ho

a rectangle with a single character ingidé it It is used

G_BOXTEXT

G_BUTTON

G_FTEXT

G_FBOXTEXT

_G_IBOX

G ICON

. G_.IMAGE

G_STRING
G_TEXT

G_TITLE

. This draws a Yox and writes text inside. it. ob_spec points to the
_ structure TEDINFO, which i is described below. ‘

Thxs draws a button, which. AES handles in its usual manner
‘ ob_spec pomts to the strmg that is wntten inside the button.

Thns dmws a string on. the screen that can be edited by the user in

the formof a dialogue. This is demonstrated in the second ex-

ample, below. ob_spec points to the atructure TEDINFO, which
is described below.

This draws an_ edxtable string, like G,FI‘EXI‘ but surrounds 1t
with a box as well. ob_spec points to the gtructure TEDINFO,
which is described below.

This. draws an. “invisible box”’ on the screen This box is used to
number of elements. without changmg the appearance
or example, if you ;Mshed to reverse a large section. of
hen an icon is clicked, you wou ‘ rlay the icc
to the dimension

the screen’
an mvxmble box sized

e; when ! as clicked, the entire area ,
visibl xf\‘vo'uld be rev rsed, not just the icon itself. ob.spec is
. the same as for G..BOX

Thxs draws an icon on the screen. ob_spec pomt.s to the structure
ICONBLK, which is descnbed belc

This draws 8 user-defined shape on the screen. ob_spec points to
the structure BITBLK, which'is descnbed below.

Thls vmtes string. oh. spec points to the string being wntten

This writes formatted text. ob.spec points to the structure
TEDINFO which is described below.

This creates a title on the menu bar. ob_spec points to the string
bo be wntmn Thls object is used only in a menu '

G| USERDEF Thxs xs an object deﬁned by the programmer. ob_spec points to the

ra USERBLK, which is described below.

As indicated above, four specialized structures are used by the set of objects:

The BI'

BITBLK, ICONBLK, T’EDXNFO and USERBLK.

* The BITBLK structure is definied in the header file obdefs.hb as follows:

B ww

516 object

typedef struct bit_block
¢

int *bi_pdats; /* Points to bit mep */

int bi_wb; /* Width of bit map in bytes .
int bl hl- /* Hefght in tines */

int bi x, /* Source X in bit form */

fnt bi_y /* Source Y in bit form */

fnt bl color- /* Color of blt */

) BITBLK;
;b pdata points 1o an array of integers that encode the object's bit map. biwb
 of the bi , in b Note thal the val @ of this variable must

bL hl gives the height of the bit ‘map, in

the X and Y coonhnat,es of the bit map.

The: CONBL structus
The structure ICONBLK is deﬁned in the header file obdefs.h as follows:

typedef struct icon_block
(4

int *{b_pmask; /* Points to icon mask */

int ‘ﬂ_)_pdata; /* Points to icon description ¢/
char *ib_ptext; /* String to eppeer in icon */
int ib_char; /% Charecter to sppesr in fcon */
int ib_xchar; /* X Location of charscter */

int i'b_ychar; 7* Y location of charscter */

int ib_xicon; /* X tocation of icon */

int ib_yicon; /* Y tocation of icon */

int ib_wicon; /* Width of fcon */

int ib_hicon; /* Height of icon */

fnt ib_xtext; /* X locetion of text */
int ib_ytext; /* Y location of text */
fnt Tb_wtext; /* Width of text */

int ib htext; Height of text */

)} ICONBLK;

ts'to an array of integers that describe the icon mas
ibe th lf b te

‘background ,(mask) color is stor
or G_BOX, above. 1b. x
: coordinates of the character. 1b_xic
' ectively, the X ordinate, the Y co
the ncon ib xtext. ib_ytext, ib_wtext, and ib_htext give, respectively, the X

coordinate, the Y coordinate, the width, he
e and the height of the text string at the bot-

object 517

The TEDINEO structure
This structure is to create an editable dialogue; Itis defined in the header file
obdefs h as follows:
typedef struct text_edinfo
(4
long te_ptext; /* Points to text */
tong te_ptmplt; /* Points to template */
long te_pvalid; /* points to validation chers */
int te_font; /* Font */
int te_junkl; /* Junk word */
int te_just; 7* Justification */
int te_color; /* Color */
int te_junk2; /% Junk word */
int te_thickness; /* Border thickness *f
int te_txtlen; /* Length of text string */
int te_tmplen; /* Length of template string */
) TEDINFO;

jfte_ptext poinistoa string to be displayed within the object. The text typed by the
er will be wntten over this string.. u do not ~want text to be dlsplayed ’
eplace it with a string of ‘@' characters as long as the maximum length of the =

string to be input.

mplate that will be used to input. data. The template con- k
s string of underbar chamcters that is Bs long as the maxi-
string that the user can mput The following is an example of kak"

ENTER FILE NAME:
te_pvalid points to a string of valxdaton ‘¢haracters. This stri

ng must be as long

as the string that the user can mput~ Fach character input. by the user is checked"
against its. correspondmg yalidation character to ensure that it is of the right type.
, The va]ldahon characters are as follows:

All numerals, zero through nine

All alphabetic characters plus space

Alphabetic characters, numerals, space

Valid TOS path name characters

Upper-case alphabetic characters plus space

Upper-case alphabetic characters, space, numerals

TOS file name characters, question mark, asterisk, colon
TOS path name characters, question mark, asterisk, colon

Anything

SEETTO LR

In some versions of the AES, entry of an underscore to any validation character be-
azdes F or X will cause a catastrophic system error.
cates which font you want, te junkl and te.Jun}d are reserved they

any value. te just mdlcates how you want th text to be j\lstl ed.
indicates left]ushﬁcahon' TE.RIGHT right Justxﬁcaﬂon, and

518 object

TE_CNTR, centering. te color indicates the color of the object; the color codes

are the same as for G_BOX.v

other bindings. It is defined in the header file obdefs.h as

USERBLK structure is called the APPLBLK or APPL BLK structure in

follows:

typedef struct user_blk

{
tong ub_code; /* points to user’s code */
{ong ub_parm; /* points to parsmeter */
) USERBLK;

This structure allows you to define your own object or routine; ub_code points to:
t.he routine in questlon, whlch can bhe specmhzed code wntten in C or assemb y lan-

oints

strue-

mp, the Mark Williams

resource compller The followmg descnbes how to buxld‘ an object by hand in C, to.

help you grasp the structure of objects and object trees.

_Before begmmng, you should do the fo]lowmg' Fxmt, draw a picture of the object on
F ;

' zmph pape

the pxcture is tedlous,‘ but it will save you time over trying to‘dmw it “on the ﬂy !

) on the screen.

d, draw A “‘genealogical table” of all the objects withi

in the object tree. This

kSe
will ensure that you set the next, head. and tail pointers for each object correctly.

An example of such a table appears in the entry for menu.

.

Example

This example draws a set of seven nested rectangles on the
returns you to msh.

screen. Typing any key

object 6519

#include
#include
#inciude

<aesbind.h>
<gemdefs.h>
<obdefs.h>

#define SPECY Ox100FIL

/Q
* f.e.:

L]
*
»
-
*/

#define
/'

» f.e.: (1 << 16) |

[B B

*/

hickl
(1 << 16) (Border 1 raster t
(WHITE << ¥2) | [Border color; WHITE = 0]
(WHITE << 8) | ([Text color]

(1 << [Turn on replace]
(T << &) (Fitl pattern to solid]
BLACK [Fitll color; BLACK = 11

SPEC2 Ox111FOL

[Border 1 raster thick}
(BLACK << 12) | {Border color]
(BLACK << 8) | (Text color]

(1 << T) {Turn on replace)
(7 << &) [Fill pattern to solid]
WHITE tritt cotor]

/* define object; widths and heights will be set elsewhere */

fitlg = (.

%Jiﬂt/heagtml/type/ flags / state /spec./ X/ Y/ : / : /
-1, 1, 1, G_BOX, DEFAULT, HORMAL, spECt, O, O, 0, 0,
0, 2, 2, G_BOX DEFAULT, NORMAL, sPEc2, 0, O, 0, 0,
1, 3, 3, G_BOX, D DEFAULT, NORMAL, sPECt, O, g, o, 0,
2, 4, &, G_BOX, DEFAULT, NORMAL, sPEC2, O, 0, 0. 0,
3, 5, 5, 6_BOX, DEFAULT, NORMAL, spect, O, 0, 0, 0,
4, -1, -1, 6_BOX, DEFAULT, NORMAL, sPEC2, O, . .

¥

main()

(8

int nowhere = 0; /* fFor unused pointers */

int {;
int x, vy, W, h;

sppl_init(); /* Begin aspplication */
/'
» get size of screen; set object dimensions.

* g;“ is desktop window, which alusys fills screen
*/

wind_get(0, WF _FULLXYWH, tx, Ly, &, &h);

f£i1110) .ob_ width = w;

filt(ol.ob, heiuht = h;

for (1 = 1; 1 < 6; i+0) (
fitl{il.ob x = w/12;
filtil. ob._ y = h/12;
fill(il.ob width = w - w/6)*i);
fELLLid.ob hevght = h - ((h/6)*1);

/* Dimensions of screen */

520 object format — od

/* Turn off mouse pointer */
graf_mouse(M_OFF, &nowhere);

/* Draw object */
objc_draw(fili, ROOT, MAX_DEPTH, 0, 0, w, h);

/* Wait for keybd event */
evnt_keybd();

/* Turn on mouse ptr */
graf_mouse(M_ON, inowhere);

appl_exit();
exit(0);

)
See Also

AES, menu, obdefs.h, rescomp, resdecom, resource, TOS, window

objgct forma't“f—“— Definition

An object format describes the form of compiled program that still contains

freloéétiqn:iﬂx‘iformat.ion.‘:‘Th‘e‘linkér“ld" reads file in object format to create execut-

ablefiles.

Mark Williams C creates object modules that are in the format n.out, which dif: -

_fers somewhat from other formats used on the Atari ST.
See Also '

1d, n.out

: od — Command

Print a hexadecimal dump of a file .~
od [-bedox] [file] [[+] offsetl.l{b))}

-od prints the specified file as a sequence of octal numbers, or machine words. “If no :

‘file is specified, od dumps the standard input. =

The following options allow the user to select the output format:
-b:. bytes in hexadecimal

bytes in ASCII characters

words in decimal
-0 words in octal

Dumpmg can start at O)fset into the file.* The spe ified Dnset is octal unless the *.
& pec

ffix i s 0 The o . B .

suilix"1s plesent to sxgmfy decimal. he O];Set 18 In bytes unless: the b suffix is

A

Offgibit — Ongibit 521

See Also
ASCII, commands, db, msh

Offgibit — xbios function 29 (osbind.h)

Clear a bit in the sound chip’s A port
#include <osbind.h>

#include <xbios.h>

vold Offgibit(mask) char mask;

Oftgibit manipulates the sound chip’s register A (also called the “A port’™). This
port controls the disk drives.

Offgibit reads the contents of register A; it then ANDs this value with mask; and
it writes the result back into register A. The bits in this register are bound to
various control lines within the Atari ST. For a table of which bits bind which
lines, see the entry for Ongibit. .

Example
The following example demonstrates Ongibit and Offgibit:

#include <osbind.h>

main() ¢
unsigned char s;
Ccorms("Wait for both floppy drives to stop and type & key\r\n");
Cnecing);
a = Giaccess(0, 14); /* save the original value... */
Offgibit(OxF9); 7* turn off bits 1 and 2*
Ceonss("Both floppy drive lights on...\n\r%);
Crecin();

Ongibit(0x02);
Ceons("Drive A Light off...\nm\r");
Crecin();

Ongibit(Ox04);
Ccorms("Drive B Light off...\nm\r");

/* turn on bit 1 %/

/* turn on bit 2 */

Cnecin();
Ginccess(s,0x80]14); /* restore original contents */
pterm0(};

2

See Also

Giaccess, Ongibit, TOS, xbios

Ongibit — xbios function 30 (osbind.h)

Turn on a bit in the sound chip’s A port
#include <osbind.h>

#include <xblos.h>

void Ongibit(mask) char mask;

522 open

Ongibit manipulates the sound chip’s register A (also called the A port”).

Ongibit first reads the contents of register A; it then ORs with mask; and finally it
writes the result back into register A.

The bits in register A are bound to various control lines within the Atari ST, as
follows: :

0 side of the floppy disk (0/1)

1 drive A (selected when clear)

2 drive B (selected when clear)

3 RS-232 request-to-send (RTS) line

4 RS-232 data-terminal-ready (DTR) line

5 Centronics data strobe

6 general purpose output (GPO) on video connector

7 unused '
number should be set the bit that corresponds to the desired line.
Example
For an example of this function, see the entry for Offgibit.
See Also

Glaccess, Offgibit, TOS, xbios

open — UNIX system call (libc)

Open a file
int open(file, type) char *file; int fype;

open prepares a file to receive data, or to have its data read. When it can open
file, open returns a file descriptor, which is a small, positive integer that identifies
the open file for subsequent calls to read, write, close, dup, or dup2. fype deter-
mines how the file is opened, as follows:

0 read only
1 write
2 read and write

After file is opened, reading or writing begins at byte 0.
Ezample

This example copies the file named in argv{1] to the one named in argv(2] by
using UNIX-style routines. It demonstrates the functions open, close, read,
write, and creat.

operator 523

- operator — Definition

#include <stdio.h>
Ndefine BUFSIZE (20%512)
char buf [BUFSIZE];
main(erge, argv) int srgc; char *argv(d; €
register int ifd, ofd;
register unsigned int n;
=3 .
i (argfut;i(BUsage: copy source destination™);
§f ((ifd = open(argviil, 0)) == -1 .
fatal("cannot open frput fite®);
if (Cofd = creat(argv(2], 0)) == ~1)“
fatal ("cannot open output file®);
while ((n = read(ifd, buf, BUFSIZE)) i= 0
if (n == -1)
fatal("resd error®);
1§ (urite(ofd, buf, n) 1= n)
fatsl("urite error™);

M

if (closecifd) == -1 {{ close(ofd) == -1)
fatal("cennot close");
exit(0);
3

fatal(s) char *s;

fprintf(stderr, neopy: Xs\n", s);
exit(1);

)
See Also i
fdopen, file descriptor, fopen, STDIO, UNIX routines

Diagnostics ' .
open returns -1 if the file is nonexistent, or ifa

Notes .
open is & low-level call that passes data directly to TOS. It should not be mixed

with high-level calls, such as fread, fwrite, or fopen.

gystem resource is exhausted.

An operator relates one operand to another. For example, the statement

142

 relates the operands 1
_the statement .

A>B

and 2 through the operation of addition; on the other hand,

524 operator

A=B

. ;rke]gt;es}kthg;op,etgndq A and B logically, by asserting that the former is greater than
_the]atter; whereas

relates the operands A and B by assigning the value of the latter to the former.
/ The following is a table of the C operators:

multiplication
division
remainder
addition
subtraction

less than

less than or equal to
greater than

greater than or equal to

logical AND
inequality
logical negation
logical OR

assign

increment and assign
decrement and assign
multiply and assign
divide and assign
modulo and assign
increment
decrement
equivalence

bitwise AND

bitwise exclusive OR
bitwise complement
bitwise inclusive OR
shift left

shift right
indirection

render an address
function indicator
array indicator
structure pointer
structure member
conditional expression

osbind.h 6525

/ sizeof _ size of an object
For A‘mblekof the precedence of operators, see the entry for precedence.
See Also

precedence, sizeof
The C Programming Language, page 48,

Header file

See Also
bios, gemdos, header file, xblos, TOS

|

526

path — path

tﬁath‘ — Definition

path

P

A path is a sequence of names that are separated by a fixed _character, /' under

the COHERENT or UNIX operating systems, or °\' under TOS or MS-DOS. Each
name is a directory that ns the next-na
the last name in the path, q
For example, the COHERENT path i

doc/let}ers/fred

names first the directory doc; then the directory letters, which is a sub-directory
of doc; and finally fred, which can name either a directory or a file.

th begins with the separator character, then it it ;

a sub-directory of the root directory of the current Dphysxcyal"device

‘Otherwise, ; ;
the above example is a relative path that begins with the current directory;
however, the following path names an absolute path for MS-DOS or TOS:

A:\doc\letters\fred

See Also
msh, PATH, path.h, setenv

— General function (libc)

Build a path name for a file

#include <path.h>

#include <stdio.h>

char *path(path, filename, mode) char *path, *filename; int mode;

' path is a general furiction that builds a path name for a file. path points to the list

ting of PATH found in the header file path.h; or, you can define path by hand.
filename is the name of the file for which path is to search. mode is the mode in
which you wish to access the file, as follows:

1 | execute the file
2 - write to the file
4 ¢ read the file

path uses the function access to check the access status of filename. If path finds
the file you requested and the file is available in the mode that you requested, it

_returns a pointer to a static area in which it has built the appropriate path name. ..
. It returns NULL if either path or filename are NULL, if the search failed, or.if the

_requested file is not available in the correct mode.

xt-named directory; the only exception is
vhich may be the name of a file instead of a directory.

of directories to be searched for the file. You can use the function getenv to obtain
he current definition of the environmental variable PATH: or use the default set-

path.h — PATH 527

Example
This example accepts a file nam

one of the directories named in the PATH environmental variable.

#include <stdio.h>
#include <path.h>

main(argc, argv)
int argc; char *argvi);

4

See Also
path, PATH

char *env, *pathname;

extern char *getenv(), *path();
int mode;

if (argc 1= 3)

[¢

printf("Usage: tindpath filename mode\n*);
exit(0);

>

{£(((mode=atoi (argvi21))>4) || (mode==3) || (mode<1))

<
printf("modes: 1=execute, 2=write, 3=zread\n*);
exit(0);
3
env = getenv("PATHY);
{f ((pathname = peth(env, ergvil], mode)) 1= NULL)
(¢
printf("PATH = %Xs\n", env);
printf(”pethname = Xs\n*, pathname);

else
printf("search faited\n®);

)
See Also
access, access.h, PATH, path.h, stdio

_path.h — He

ader file

e and a search mode. It then tries to find the file in

Environmental variable
ectories that hold executable files

peekl

‘ Séé :Also

msh, path, path.h, setenv

_ pattern — Definition
A pattern is any combination of ASCII characters and wildcard characters that can

~ bé‘ihterp‘ret‘edb‘y a command.

The function pnmatch compares two patterns and signals if they match.

~ See Also

egrep, pnmatch, wildcard

peekb — General function (libe)

Extract a byte from memory
Int peekb(bp) char *bp;

peekb examines an arbitrary location infmemc; It readsa b

dress bp. peekb circumvents th S et Visgoaled st heas
Pld el e system'’s memory protection by temporarily en-
See Also

peekl, peekw, pokeb, pokel, pokew

Notes

peekb is supplied for use in user-mode i

s 8u programs. Programs that run i i
mode, i.e., interrupt h'andlers, trap handlers, and boot sector progmm::l :ggilr(;qit
cess the memory locations directly with the following macro: '

#define peekb(cp) (*((char *)cp))

.peekb does not work correctly 'in supervi i
Pokh s o el ly pervisor mode, which’ allows you to access

— General function (libc)

_Extract a long from memory

long peekl(ip) long *Ip;

 peekl returns the long (four bytes) at [i
eekl rett , g (Ip. peekl circumvents th ’
_protection by temporarily entering supervisor mode. PRl A e

peekw — perror 529

See Also

peekb, peekw, pokeb, pokel, pokew

Notes

peekl does not test for odd addresses, and will generate a bus error if given such
0 address. In general, be careful about what you peek and poke.

peekl is supplied for use in user-mode programs.. Programs that run in
mode, i.e., interrupt handlers, trap bandlers, and boot sector programs,

supervisor
should ac-

- cess the memory locations directly with the following macro:

#detine peekl(lp) (*((long ")IP))
peekl does not work correctly in supervisor mode,
memory locations directly.

which ‘allows you to-access

peekw — General function (libc)

Extract a word from memory

int peekw(wp) int *wp;

peekw_returns the word . (two_ bytes) st wp. peekw circumvents the system'’s
memory protection by temporarily entering supervisor mode.

See Also
peekb, peekl, pokeb, pokel, pokew
Notes

elcw does not test for odd addresses, and will generate a bus error if given such
an address. In general, be careful about what you peek and poke.

peekw is supplied for use in user-mode programs. Programs that run in super-
visor mode, i.e., interrupt handlers, trap handlers, and boot sector programs, should

acoess the memory locations directly with the following macro:

#define peeku(wp) (*({int *)up))

peekw does not work correctly in supervisor mode, which allows you. to access .

memory locations directly.

perror — General function (libc)

System call error messages

#include <errno.h>

perror(string)

char *string; extern int sys_nerr; extern char *sys_errlist[];

. perror prints an error message on the standard error device. The message con-
 sists of the argument string, followed by a. brief description of the last system call
that failed. The external variable errno contains the last error n
_string is the perror of the comrmand that failed or a file perror. -

umber. Normally,

530

Pexec

_The external array sys_errlist gives the list of messages used by perror. The ex-
_ternal sya_nerr gives the number of messages in the list.

See Also

errno, errno.h, error codes

Pexec — gemdos function 75 (osbind.h)

Load or execute a process
#include <osbind.h>

long Pexec(mode, path, tail, env)
int mode ; char *path, *tail, *env;

Pexec loads or executes a process. mode equals zero if the process is to be loaded
and executed, or three if the process is to be loaded but not executed; the latter
mode is used with overlays. path points to the path name of the file to be loaded; it
must be a NUL-terminated string. fail points to the command tail, which included
redirection information. env points to a block of strings that define the environ-
ment. Each string must terminate with a NUL character, and the block as a whole
must terminate in NULL.

If mode equals zero, Pexec returns the child process’s exit status when the child
process exits; if mode equals three, it returns the address of the base page of the
loaded process. In either instance, it returns a negative error code if it cannot load
the process.

Example

This example times the execution speed of a program. It also demonstrates the
time function clock.)

#include <osbind.h>
#include <time.h>

main(argc, argv)
int ergc; char *argv(];
(
char progrem{80];
char command[256) ;
int x;
clock_t timer;
int status;

tf (argec < 2) (
printf(“usage: time command { args ... J\n");
exit(1);

)

strepy(program, srgv(1]); '
strcat{program,".PRG");
command (0] = 0;

Physbase 6531

for (xx2 ; x < argc ; x++) (
streat(command, ® ™);
strcat(command, ergvixl);
}
timer = clock();
status = Pexec(0, program, command, "PATH=\0");
timer = clock() - timer;
printf(¥Xid.x03ld seconds\n®,
timer/CLK_TCK, (timerXCLK_TCK) * (1000/CLK_TCK));
return status;

}
See Also
argv, gemdos, TOS

Physbase — xbios function 2 (osbind.h)

Read the physical screen’s display base
#include <osbind.h>

#include <xbios.h>

char *Physbase()

Physbase reads the physical screen’s display base, 'and. returns a pointer to tpe
display base. The physical screen base is the location in memory currently dis-

played.

Example '
The following example uses Physbase and Setscreen to allow you to display
graphically the entire system memory. Typing the up-arrow key scrolls the scr:;n
up the equivalent of one character row; typing the down-arrow key scrolls the
screen down; typing <Help> lets you move the display to an absoluFe memory ad-
dress; and typing <Undo> tells you the current memory base. Typing < return >
exits. Moving the memory base to zero sllows you to observe the operation of TOS,
including stack, clocks, and peripheral devices; you are invited to manipulate the
peripheral devices to observe them in action.

#include <sesbind.h>
#include <gemdefs. h>
#include <osbind.h>
#include <stdio.h>

/* manffest constants */
#define UP_ARRON Ox4800
#define DN_ARROM 0x5000
#define HELP 0x6200
#define RETURN Ox1C00
#define UNDO Ox6100

/* externs */
extern long atol();

TR TR,
Y
y

R v

532 Physbase

picture 533

wain()

2::: :::22?y:; ;: ::se of default video display */

ng; se of
cher holder(sbj; maneuversble video display */
unsigned long tmp;

/* initialize bese of video displ

pley, and in*
setting = oldphys = Physbase(); beain 2/
sppl_inft();

tor (;;)

4
switch(evnt_keybd())
(¢

/* move up one row */
case UP_ARROW:
/* round to row boundary */
setting -= 1280;
if (setting < 0)
setting = 0;
/* reset base of physical display */
Setscreen(-1L, setting, -1);
break;

/* move down one row */

case DN_ARROM:
setting += 1280;
Setscreen(-1L, setting, -1);
break;

/* move to absolute address */

case HELP:
Setscreen{-1L, oldphys, -1);
printf(“Enter memory setti de HAD H
ftlush(stdout); o, declmel: ™3
tmp = atol(gets(holder));
setting = (char *)tmp;

1f (setting < 0)

setting = 0;
Setscreen(-1L, setting, -1);
break;

/* reset original video base *
case RETURN: o and exie ®/
Setscreen(-1L, oldphys, -1);
sppl_exit();

exit(0);

/* show current video memory base */

case UNDO:
Setscreen(-1L, oldphys, -1);
printf(“Screen base fs Xlu\n", setting);
evnt_keybd();
setscreen(-iL, setting, -1);

bresk;
defsult:
bresk;
)
)
)
See Also

Logbase, Setscreen, TOS, xbios

picture — Example

Format numbers under mask
double picture(number, mask, output)
double number; char *mask, *output;

picture uses a mask to format a double-precision number. It is designed to be
used with programs that require precige formatting of printed numbers.

picture formats a given pumber by using a mask string. The mask may contain
any characters; however, only & few have special significance. Non-special charac-
ters in the mask body are printed if, during execution, they are preceded by one or
more numerals. Trailing non-special characters print if the displayed number is
negative.

The following lists the special characters that control formatting within a mask:

9 Provides a slot for a number. For example, § with mask 9898 CR gives
005<sp> <sp> <sp>, whereas printing -5 with mask 999 CR gives 005
CR. Note that ‘C’ and ‘R’ are not special characters, but are taken literally.

zZ Provide a slot for a number but supress leading zeroes. For example, prin-
ting 1034 with mask 772,277 gives <sp><sp>1,034. Note that the
comma is not a special character, but is printed literally.

J Provide & slot for a number but shrink out Jeading zeroes. For example,
printing 1034 with mask JJJ.JJJ gives 1,034,

K Provide a slot for a number but shrink out all zeroes. For example, prin-
ting 070884 with mask K9/K9/K9 gives 7/8/84.

$ Print a dollar sign to the front of the displayed number. For example, prin-

ting 105 with mask $Z,ZZZ gives <sp>< sp>$105.

534 pnmatch

nt nmatch(string, pattern; flag)’

. Separate the number between decimal and integer portions. For example,

printing 105.67 with mask 77Z.999 gives 105.670.

T Provide a slot for a number, but supress trailing zeroes. For example, prin-
ting 105.670 with mask ZZ9.9TT gives 105.67<8p>.

S Provide a slot for a number, but shrink out trailing zeroes. For example,
printing 105.600 with mask ZZ9.988 gives 105.6.

- If you place a hyphen to the left of the mask, it is printed at the beginning

of the number, but only if it is negative. For example, printing 105 with
mask -Z,ZZZ yields <sp><sp>105, whereas printing -105 yields
<gp> <sp>-105.

(Tl'xia.character acts like the minus sign ', but prints a ‘(. For example,
printing 105 with mask (ZZZ) gives <sp> 105<sp>, whereas printing -5
gives <sp> <sp>(B).

+ If placed to the left of the mask, this character floats to the front like the
minus sign ', but is replaced by a -* if the number is minus. For example,
printing 5 with mask +ZZZ gives <sp> <sp>+5, whereas printing -5 gives
<sp> <sp>-5. Placed behind the mask, it is printed if the number is posi-
tive, but is replaced by a minus sign ‘' if the number is negative. For ex-
amp'le, printing 5 with mask ZZZ+ gives <sp> <sp> 5+, whereas printing
-5 gives <sp><sp>5-.

hd When placed to the left of the mask, this character fills all leading spaces to
its right. For example, printing 104.10 with mask *ZZZ,2Z27.99 gives
+0242104.10, and printing 104.10 with mask *$77,277.99 gives
*n*28104.10.

Example

f"gr an ;:xample of plcture, compile the source program picture.c with the option

See Also
commands, STDIO
Diagnostics

plcture returns all overflow as a double. For example, attem ting to print -1234
with mask (ZZZ) gives (234) and returns -1. PR TP

Notes

For the source code of picture, see the file picture.c, which is included with Mark
Williams C. Note that picture is not included in a library. .

;kg':pyl‘lmatc}f?-—;,String function (libc)

ring pattern

pointer 635

“whereas one means that pattern can match any part of string. In
"the wildcards ‘~and '$' can also be used in pattern.

“pointer — Definition

Aﬂpolnter is a data type that consists of the address sl anothier item of data; there-
 fore, it is said |
The physical size of the pointer data type is determined entirely by the

68000, and the VAX.
Note

- pointer consi

_ restrictio

. computing environments.

char *string, *pattern; int flags

pnmatch matches string with pattern, which is a regular ‘expression: pomatch -

retuins one if paftern matches string, and zero if it does not. Each character
pattern must exactly match a character in sfring, however, the wildcards ', 7, ‘[
and ']” can be used in pattern to expand the range of matching. The f

must be either zero or one: zero means that patfern must match string exactly

Example
For an example of this function, see the entry for {gets.

See Also
egrep, msh, string

Notes
flag must be zero or one for pnmatch to yield predictable resuits.

“point” to that item of data.

ointers are 16 bits long on the 18086, SMALL model, 78001, and

on the PDP-11; they are"32‘bits’ Jong on the 18086, LARGE model, Z8002, the

' tf;at failure to
unction bein

, roproceasor in which an int consists of 16 bits and a_
32 bits will result in the pointers being truncated to 16 bits and

_ the program p obab]j}, failing.

G allows pointers and integers to be compared or converted to each other without
estriction. Mark Williams C flags such conversions with the strict message

. integer pointer pn

and“cqmpéﬁsonsy with the strict message

integer po!n’t‘er‘c’mper!gm ,
 These problems should be corrected if you want your code to be portable to other .

sointer from one data type to another may result in the loss of precision
' restrictions are taken into account. These sorts of data transfor-

done with great care to ensure that code remains portabl

pokeb — pokel

pokew — portability 537

See Also
data formats, declarations, portability, pun

. pokeb — General function (libc)

Ingert a byte into memory
int pokeb(bp, b) char *bp; int b;

x:::ngﬁ;else t:;e s::x:x;acter b at an arbitrary location bp in memory. pokeb cir
s.memo i i in isor
et s argumrzn tp;(-)tectlon by temporarily - entering . supervisor
See Also

peekb, peekl, peekw, pokel, pokew

Notes

pokeb is supplied for use in. user-mode programs. Programs that run' in super

__ visor mode, i.e, interrupt handlers, tra :
fihss ae,) , trap handlers, and
access the memory locations directly with the fOIlOW?"Zb:;tc :oect.o_ r_programs, should

#define pokeb(cp,c) (*((char *)cp) = ¢)

- pokeb does not work correctly. in i i
i y./in"supervisor mode, which allows you to access

pokgl — General function (libc)

Insert a long into memory.
long pokel(ip, 1) long ‘lp; I

pokel writes the long ! (four bytes) at an arbitrary location Ip.in 'memory. pokel

circumvents the system’ i i
o sy s memory protection by temporarily entering supervisor

See Also
peekb, peekl, peekw, pokeb, pokew
Notes

pokel does not test for odd addresse 1 ger
| s sges, and will if i
_an address. In general, be careful about what yo ‘fe"eg(tz :db::ke:ror if given such

pokel is supplied for use in user-mod

el is supp - e programs. Programs that i i

Zggi,h i.e, interrupt handlers, trap handlers, and bootg;ector proéril:nl: sﬁpe;’g]sor
e memory locations directly with the following macro: She s

¥define pokel(ip,1) (*((long *)lp) =)

 pokel does not work correctly ‘i i i 4
B : y.-in supervisor mode, which allows &ou to access

. port"—-— Definition

. code is portable:

pokew — General function (libc)

Insert a long.into memory.
int pokew(uwp, {) int *wp, w;

pokew writes the word .w . (two bytes) at an arbitrary location_wp _in_memory..
i ts the system’s memory protection by temporarily entering su-

_pokew circumven

pervisor mode.

See Also
peekb, peekl, peekw, pokeb, pokel
Notes

pokew does not test for odd addresses, and will generate 8 bus_error. if given such.
an address. In general, be careful about what you peek and poke.

pokew is supplied for use in user-mode programs, Programs that run in super-
visor mode, i.e, interrupt handlers, trap handlers, and boot sector programs,‘sho’u]d “
access the memory locations directly with the following macro:

Ndefine pokew(wp,w) (*({int *)wp) = W)
pokew does not work_correctly in supervisor mode, which allows you to access
memory locations directly.

A port passes data to and receives data from a remote device.

See Also

aux, fclose, FILE, fopen, prn:, stream

portability — Technical information

Portability means that code can be recompiled and run under different computing f
*_environments without modification. Although true portability is an ideal that is

difficult to realize, you can take a number of practical steps to ensure that your

1. Do not assume that an integer and a pointer have the same size. Remem-
_ber that undeclared functions are assumed to return an int. a function

returns a pointer, declare it so.

2. f\D;o_not w:itemutjnesthaﬂ depend on a particular order of code evaluation,

* particular byte ordering, or particular length of data types.
3. Do not write routines that play tricks with a machine’s “magic characters’;

“for example, writing a routine that depends on a file’s ending with <ctrl--

7> instead of EOF ensures that that code can run only under operating
gystems that recognize this magic character.

638 pow—pr

;Alkways use manifest constants, such a5 EOF, and make full use of
#define statements.

Use headerﬁlea to hb]d all 'mac‘hine-dependent‘dedaraﬁons and definitions.

Declare everything explicitly. In particular, be sure to declare functions as

void if they do not return a value; this avoids unforeseen problems with
undefined ‘ ~ ‘

tegers and pointers have the same size or even the

Do not assume that pointers are all the same or

_same

can point anywhere. On the i8086, in SMALL model a pointer to a func-
tion addresses relative to the code segment, whereas a pointer to data ad-
dresses relative to the data segment. On some machines, character
pointers are of a different size or structure than word pointers.

8. Theconstant NULL is defined as bei"r‘xyg‘,diﬁer'ent from any valid pointer.
Use it and nothing else for that purpose. ‘

See Also k
#define, header file, manifest constant, pointer, pun, void

pow — Mathematics function (libm)

Compute a power of a number

#include <math.h>

double pow(z, x) double z, x;

pow returns z raised to the power of x, or z”x.

Example

For an example of this function, see the entry for exp.

See Also

mathematics library

Diagnostics

pow indicates overflow by an errno of ERANGE and a huge returned value.

¢ pr— Command

Paginate and print files
pr loptions] [file...]

pr paginates each named file and sends it to the standard out put. The file name '
means standard input. 1l { standard input.

Each page has a header. that gives the dat
sed with the following option

precedence 6539

am:iw pégegnd line numbers.

Skip the first n pages of each input file.

Print the text in n columns. This is used to print out material that was
typed in one or more columns.

‘h header
Use header in place of the text name in the title. If header is more than
one word long, it must be enclosed within quotation marks.

-eck " Reset spacing represented by tab character. On input, expand tab charac-

ter ¢ to positions k plus one, two times k plus one, three times k plus one,
etc. The default ¢ is \t’. The default value of k is eight.

lick’ Replacing spacing with the tab character. On input, replace spaces with
the tab character ¢ at positions k plus one, two times k plus one, three
times k plus one, etc. The default ¢ is “t'. The default value of k is eight.

-In. Set the page length to n lines (default, 66).

‘ -m Print the texts simultaneously in separate columns. Each text will be as-

signed an equal amount of width on the page; any lines longer than that
will be truncated. This is used to print several similar texts or listings

simultaneously.
_-n~ Number each line as it is printed.
-sc Separate each column by the character c. You can separate columns with a

Jetter of the alphabet, a period, or an asterisk. Normally, each column is
left justified in a fixed-width field.

-t Suppress the printing of the header on each page, as well as the header
and footer space.

Zwn Set the page width to n columns (default, 80). Text lines are truncated to
fit the column width. The maximum width is 256 columns.

Example
To print a numbered listing of a text file, do the following: First, plug a printer into
your Atari ST and turn it on. Second, type this command:
pr -n filename >prn:
where filename is the name of the file you wish to print.

See Also

commands, pri

precedence — Definition

Precedence refers to the property of each C operator that determines priority of

execution; operators are ‘e‘X‘e@ﬂted*fiﬁ*order of their degree of precedence, from

‘i

TN 1
7k (?‘ &;:'.‘éy;

6540 printf

. highest to lowest.

The following taBie summarizes the precec

_descending order of preced

f1ze8 the precedence of C operators. The ate
ence: those listed higher in the table are execute

listed in
ed before

f~ ;hrg:d leo;l‘:':‘iﬁ' the table. Operators listed on the same line have the same level of
Operator Associativity
O {] > Left to right
I - 4 - . (type) * & sgizeof Right to left
* /0 Left to right
+ - Left to right
<< >> Left to right
< <= > >= Left to right
==]= Left to right
f' Left to right
Left to right
] Left to right
&& Left to right
1 Left to right
?: Right to left
= 4= = %= o 1o Right to left
See Al'so o
operators

The C Programming Language, page 48

printf — STDIO function (lib
- Format output

oo int printf(format, largl, ...

c)
argN1)

char *format; {data typelargl, .. argN;

8 percent sign is copied to

: :speciﬁes how ‘the correspon

the output. directly. ‘e

a.string that is introduced with

 tells printf that what follows
tted; the characters that follow

printf 541

%' can set the output width and the type of conversion desired. The follow\riﬁg
modifiers, in this order, may precede the conversion type:

|

2.

A minus sign - will left-justify the output field, instead of the default right

justify.

A string of digits gives the width of the output field. Normally, the field is
padded with spaces to the field width; it'is padded on the left unless left
justification”is specified with a ‘-’ If the field width begins with ‘0" the
field“is padded with ‘0’ characters instead of spaces; the ‘0’ does not catuse
the field width to be taken as'an octal number. If the width specification’is
an asterisk ‘*', the routine uses the next arg as an integer that gives the
width of the field.

A period .’ followed by one or more digits gives the precision. For floating
_point (e, f, and g) conversions, the precision sets the number of digits

printed after the decimal point. For string (s) conversions, the precision
" sets the maximum number of characters that can be used from the string.

If the precision specification is given as an asterisk **’, " the routine uses the
next arg as an integer that gives the precision.

The letter ‘I’ before any integer conversion (d, o, x, or u) indicates that the
argument is a long rather than an Int. Capitalizing the conversion type
has the same effect; note, however, that capitalized conversion types are not.
compatible with all C compiler libraries, or with the draft ANSI standard.

The following format conversions are recognized:

%

e oo o

Output a ‘%’ character. No arguments are processed,
Convert the Int argument to a character.

Convert the int argument to signed decimal.
Convert the long argument to signed decimal.

Convert the float or double argument to exponential form. The format is:
d.ddddddesdd, where there is always one digit before the decimal point and
as many as the precision after it (the default is six). The exponent sign s
may be either ‘+’ or *-’,
Convert the float or double argument to a string with an optional leading
minus sign *-’, ‘at least one decimal digit, a ‘decimal point (*."), and optional
decimal - digits ‘after the decimal point. The number of digits after the
decimal point is the precision (default, six).
.Convert the float or double argument to whichever of the formats d, e, or
"1 loses no significant precision and takes the least space.

Convert the int argument to unsigned octal.

542 printf

(o] Convert the long argument to unsigned octal.

r The next argument points to an array of new arguments that may be used
recursively. The first argument of the list is a char * that contains a new
format string. When the list is exhausted, the routine continues from
where it left off in the original format string.

s Print the string to which the char * argument points. Reaching either the j

end of the string, indicated by a NUL character, or the specified precision,
will terminate output. If no precision is given, only the end of the string
will terminate.

Convert the int argument to unsigned decimal.

u
U Convert the long argument to unsigned decimal.

x Convert the int argument to unsigned hexadecimal.
X

Convert the long argument to unsigned hexadecimal.

Example
The following example demonstrates many printf statements.

main{)

extern void demo_r();

int precision = 1;

int integer = 10;

float decimsl = 2.75;
double bigdec = 27590.21;
char letter = ’K’;

char buffer(20];

strepy (buffer, "This ie 8 string.\n");

printf("This is an int: Xd\n", integer);

printf("This is & float: Xf\n*, decimal);
printf({"Another float: X3.*f\n", precision, decimal);
printf("This is s double: Xlf\n", bipdec);

printf("This is & char: Xc\n", letter);

printf("Xs", buffer);

printf("Xs\n", "This is also s string.");

demo_r("Print everything: Xd Xf Xlf Xc*,
integer, decimal, bigdec, letter);
exit(0);
)

vold demo_r(string)

char *string; .

{ 1
printf("Xr\n", (char **)Lstring);

printf 543

The following example uses printf to print the location of the mouse pointer on the
screen. The code \033H tells printf to output an <esc> character and the letter

‘H’, which tells TOS to home the cursor.

Rinclude <gemdefs. h>
#include <sesbind.h> .
/* no. of clicks expected on mouse button */

#define CLICKS 1 : ot 7
i /* which button; 1 = leftmo
:3::;?\: gmo.: ! /* i.e., the mouse button is down */

/* throw-away declarations, to keep system from scribbling over itself */

int nowhere = 0;
Rect norect = (0, 0, G, 0);

main() ¢ O
4 decl:::t:::\:c:‘s;i‘by evnem /* code for event thet occurred */
H
KEYBD | MU_BUTTON);

ngeiﬁ‘l;‘-ﬂm "o l 7+ plece to write AES messages */

nt H ’ /* mouse X coordinate */

‘i:t xz::" /* mouse Y coordinate */

H

/% OK, here we go ... */
sppl_init();
graf__muse(ARROU, Lnovhere);

fortzid & , CLICKS, BUTTOH, DOWN,

tion = evnt_multi(which
setec 0, norect,. 0, norect, buffer, 0, 0, &mousex, &mousey,

tnovhere, &nowhere, &nowhere, tnowhere);

switch(selection)

case MU_KEYBOD:
appt_exit();
exit(0);

case MU _BUTTON:

graf_mouse(M_OFF, &nowhere); .
prin?f("\OSSHX: x03d Y: X03d\n", mousex, mousey);

graf_mouse(M_ON, &nowhere);

bresk;
default:
break;
)
>
)
See Also
fprintf, putc, puts, scanf, screen control, sprintf, write
Notes

Because C does not perform type checking, it is essential that each argument match
its specification in the format string.

i i t standard
f upper-case format characters to specify long arguments is not st ,
Z:g :?1‘; !‘))e p?lgsed out to conform with the ANSI standard. Use the ‘1" modifier.

e S

&

6544 prn:—Protobt

Prtblk 545

At present, printf does not return a meaningful value.

pra: — Operating system device
TOS logical device for parallel port

TOS gives names to its logical devices, Mark Williams C uses these names, to allow
the STDIO library routines to access these devices via TOS. prn: is the logical
device for the the parallel port.

Example

#include <stdio.h>
mein()(
FILE *fp, *fopen();
if ((fp = fopen(¥prn:* "w")) [= KULL)
fprintf(fp,"prn: ensbled.\n");
else printf("prn: cannot open.\n");
)

See Also

aux:, con:

process — Definition

' A process is a program in the state of execution.
See Also

daemon, file

Protobt — xbios function 18 (osbind.h)
Generate a prototype boot sector
#include <osbind.h>
#include <xbios.h>
vold Protobt(buffer, serialno, type, flag)
char *buffer; long serialno; int type, flag;

Protobt generates a prototype boot sector, and returns nothing. buffer points to a
512-byte buffer; this buffer may already contain an image of a boot sector, but
whether it does or not is irrelevant. serialno is a serial number that will be
stamped into the boot sector; setting serialno to -1 leaves the boot sector’s serial
number unchanged, whereas setting it to any number higher than 0x01000000
creates a random serial number that will be stamped into the boot sector. type is
an integer that encodes the type of disk being worked with, as follows:

0 40 tracks, single sided ;
1 40 tracks, double sided

2 80 tracks, single sided

3 80 tracks, double sided

Setting type to -1 retains the current disk type.

indi i table or non-executable: zero
Finally, flag indicates whether the boot sector 1s execu
indica{eg efecutable; one, non-executable; and -1, retain the current type.

Example

For an example of how to use this macro, see the entry for Flopfmt.

See Also
TOS, xblos

Prtblk — xbios function 36 {osbind.h)
Print a dump of the screen
#include <osbind.h>
#include <xblos.h>
int Pribik(p) struct prtblk *p;

i i t a block of

ki macro that uses the TOS function xbios. It prints ou
lr:l?x::)ry'l sit,aret\f‘rcns 0 if the printing was successful, and nonzero if it was n(;lt. P
points t(’) a specialized structure, which is defined in the header file xblos.h, as

follows:
struet :t:.:flrpé blkptr; /* Address of bit block or text string */
int pb_offset; ! /* 8it offset into block */ rats o/
int pb_\ﬂdth; /* Width of ares to dump, in pixels Y cext print */
int pb‘hcight; /* Height of block to dufp,.or zero for p
int pb_teft; /* pixels to left of block */
int pb:right; /* Pixels to right of block:

« enclosing bitmap is
* pb riqhupb_uidth‘pb_left wide */

int pb_srcres; " source resolution, a la Getrez() */
X : /* output resolution */
::: Ebpgdcs:;{;:’l; /* Color palette, sla setpallete() (sicl */
int pb ;ype; /* Printer type */
int pb:port; /* printer port */
int *pb_masks; /* Halftone dithers */
b H
Priblk can also be used to print text strings.
Example
This example demonstrates the functions Prtblk, Setprt, Physbase, Getrez, and
Setcolor.

#include <osbind.h>
¥include <xbios.h>
struct prtbik pb;

main() (
int palettef16};
register int i;

546 Pritblk

/* Determine printer chsrecteristics */
{ = Setpre(-1);
1 (1 & PR_DAISY)
. .pb_type = PB_DAISY;
else {f (i & PR_MONO)
pb.pb_type = PB_MONO160;

else f (1 & PR_EPSON)
pb.pb_type = PB_MON0120;
else
pb.pb_type = PB_COLOR160;

pb.pb_port = (& PR_SERIAL) 7 PB_AUX : PB_PRT;
pb.pb_dstres = (1 & PR_FINAL) ? PE_FINAL : PB_DRAFT;

/* Print the screen */
ff (pb.pb_type I= PB_DAISY) {
pb.pb_blkptr = Physbase();

switch (pb.pb_srcres « Getrez()) (
case O: pb.pb_width = 320;
pb.pb_height = 200;
break;

case 1: pb.pb width = 640;
pb.pb_height = 200;
break;

case 2: pb.pb_width « 640;
pb.pb_height = 400;
bresk;

)

pb.pb_colpal = Spalette(0];
for (1 = 0; § <16; 1 += 1)
palette(i] = Setcolor(i, -1);

pokew(Ox4EEL, 1); /% Set prtent, locks out Scrdmp() */
if (Priblk(8pb) 1= 0)
Cconus("Scresn print failed.\r\n");

) else
Cconus("Cannot print graphics on daisy wheel printer.\r\n");

/* Print a text string */

pb.pb_blkptr = *\r\nThis is & string.\r\n";
pb.pb_width = strien(pb.pb_blkptr);
pb.pb_height = 0; .
pokew(Ox4EEL, 1);

ff (Prtbik(pb) I= 0)
Ccorms("Text print failed.\r\n");
return 0;

Pterm — Ptermres

6547

See Also
TOS, xbios, xblos.h

Pterm — gemdos function 76 (osbind.h)
Terminate a process
#include <osbind.h>
void Pterm(status) int status;

Pterm terminates the current process, and returns control to the parent process.
status can be a status code that can be interpreted by the parent process. Pterm
returns non-zero in the unlikely event that the process could not be terminated.

Example
This program exits with a non-zero status.
#include <osbind.h>

main() (
Pterm(2); /* Exit with return code set to 2 */

b
See Also

gemdos, Pexec, Pterm, Ptermres, TOS

Pterm0 - gemdos function 0 (osbind.h)
Terminate an TOS process
#include <osbind.h>
void Pterm0()

PtermO0 terminates a TOS process, and should never return.

Example
For an example of this function, see the entry for Beonin.

See Also

gemdos, Pterm, Ptermres, TOS

Ptermres — gemdos function 49 (osbind.h)
Terminate a process but keep it in memory
#include <osbind.h>
void Ptermres(n, code) long n; int code;

Ptermres terminates a process in TOS, but retains n bytes of the process in
memory. code is the exit code for the process being terminated; it is returned to

the process that invoked the current process.

Example

For an example of this function, see the entry for \auto.

648 pun — pute

_ machine that defines ar

See Also
gemdos, Pexec, Pterm, Pterm0, TOS
Notes

Programs that use this macro may not be portable to future versions of TOS, but
they are interesting to work with in the meantime,

- pun — Definition

In the context of C, a pun occurs when a programmer uses one data form inter-
changeably with another. Puns are supported by C's willingness to apply implicit
onversion rules.

/A pun most often occurs unintentionally when ftheﬁiogrammer fails to declare a

inter; by default, what the function returns is
as such. No trouble. an
int and a pointer

7ill arise if the progra

 which this is not the case (e.g., 18086 LARGE model

See Also
pointer, portability

Puntaes — xbios function 39 (osbind.h)

Disable AES

#include <osbind.b.h>
#include <xbios.h>
vold Puntaes()

Puntaes disables the AES. This function may not do anything when the AES is in
ROM.

See Also
TOS, xbios

putc — STDIO macro (stdio.h)

Write character to stream

#include <stdlo.h>
int putel(c, fp) charc; FILE *fb;

putc is a macro that writes a character. c onto file stream fp, and returns that

character upon success.
Example

The following example demonstrates putc. It opens an ASCII file and prints its con-
tents on the screen. For another example of putc, see the entry for gete.

putchar 548

e have the same length (eg, 8086
. SMALL model); however, such code cannot be transported to an environment in

#include <stdio.h>

main()

(¢
FILE *fp;
int ch;
int filename(20];
printf("Enter file name: *);
gets(filename);

if ((fp = fopen(filename, #r")) I= KULL)

while ((ch = fgetc(fp)) I= EOF)
putc(ch, stdout);

)
else
printf("Cannot open Xs.\n¥%, filensme);
fclose(fp);
>
See Also

fputc, gete, putchar, STDIO
The C Programming Language, pages 152, 166

* Diagnostics

EOF is returned when a write error occurs.

Notes
Because putc is a macro, arguments with side effects may not work as expected

putchar — STDIO macro (stdio.h)

Write a character to standard output
_#include <stdio.h>

int putchar(c) charc; ‘ I ’)”
putchar isa macro that expands to pute(c, stdout); it writes a character onto the

_ standard output. :

Example
For an example of this routine, see the entry for getchar.

See Also

fputc, putc, STDIO
The C Programming Language, pages 144, 152

Diagnostics ,
EOF is returned when a write error occurs.

Notes

/ Becauge putchar is a macro, arguments w1th side effects may not work as ex-

pwd 5651

5560 puts—pwd

. See Also

puts — STDIO function (libc) cd, commands, msh
Write string to standard output
#include <stdio.h>
void puts(string) char *string
puts appends a newline character to the argument 3tnng and writes the result on ¢
the standard output.

Example
The following uses puts to write a string on the screen.
#include <stdio.h>

main()
<
puts("This is & string.\n%);

>
See Also
fputs, STDIO

putw — STDIO macro (stdio.h)
Write word to stream
#include <stdio.h>
_int putw(word, fp) Int word; FILE */p;

The macro putw writes word onto the file stream fp. It returns the value written.

* /putw differs from putc in that putw writes an Int, whereas pute writes a char
that is promoted to an int.
See Also
ferror, STDIO
Diagnostics
putw returns EOF when an error occurs. A call to ferror may be needed to dis-

_ tinguish this value from a genuine end-of-file flag.
Notes

Because putw is a macro, arguments with side effects may not work as expected.
]The bytes of word are written in the natural byte order of the machine.

pwd — Command
Print the name of the current directory - ‘
pwd

pwd prints the name of the current working directory.

662 gsort

Q

qsort — General function (libc)
Sort arrays in memory
vold gsort(data, n, size, comp) char *data; int n, size; int (*comp)();

gsort is a generalizc'ed alggrithm for sorting arrays of data in primary memory. It
uses C. A, R. Hoare's “quicksort’’ algorithm. gsort works with a sequential array

of memory called data, which is divided into n parts of size bytes each. In practice,
data is usually an array of pointers or structures, and size is the sizeof the pointer
gr’séguct%lll;e. Each ro;::;e compares_ pairs of items and exchanges them as re-
uired. e user-supplied routine.to which co oints performs the i
It is called repeatedly, as follows: il P comparison
(*comp)(p1, p2)
) char *pl, *p2;

. Here, pI and p2 eagh point to a block.of size bytes in the data array.. In practice,
they are usually pointers to pointers or pointers to structures. The comparison
routine must return a negative, zero, or positive result, depending on whether p1 is
logically less than, equal to, or greater than p2, respectively.

Example
For an example of this function, see the entry for malloc.

See Also

shellsort, stremp, strncmp
The Art of Computer Programming, vol. 3

Notes

gsort differs from the other sorting.function, shellsort, in that it i
algorithm that makes heavy use of the stack. ’ = ERRR Y

«

rand — Random 663

R

rand — General function (libc)
_ Generate pseudo-random numbers

int rand()
rand generates a set of pseudo-random numbers. ‘It returns integers in the
0 to 32,767, and purportedly has a period of 2°32. rand will always re
same seriés of random numbers unless you change its seed, or beginn
with srand.
Example
This example demonstrates the functions rand and srand. It uses a t._hreshold levgl
that is passed in argv(1] (default, MAXVAL/2), the number of trials passed in
argv(2] (default, 1,000), and a seed passed in argv(3] (default, no seeding).

/* range of rend: (0,2°15-11 */

#define MAXVAL 32767
main{argc, argv)
{nt argc; char *argvil;
C

register int i, hits, threshold, ntrisls;

hits = 0;
threshold = (arge > 1) 7 stoi(ergv(l))
ntrials = (srgc > 2) 7 stoi(argvi2]) :
if (arge > 3)

srand(atof(argvi31));

: MAXVAL/2;
1000;

for (1 = 1; | <= ntrisls; i++)
it (rend() > threshold)
++hits;

printf("Xd values sbove Xd in %d trials (XOXX).\n",
hits, threshold, ntrials, (100L*hits)/ntrials);
)

See Also

srand
The Art of Computer Programming, vol. 2

Random — xbios function 17 (osbind.h)
Generate a 24-bit pseudo-random number
#include <osbind.h>
#include <xbios.h>
long Random()

Random generates and returns a 24-bit pseudo-random number. Thg generator is
geeded from the frame-counter, and is likely to be different every time the com-

puter is turned on.

564

random access — ranlib

Example

The following example generates an ar
y } ray of random numbers. You m i
use this as input for the example in malloe, which demonstrates sortjng.ay wish to

#include <osbind.h>
main() {
int i;
for (1=100;1>0;i--) (
printf("X8id *, Random());
(% ==0)
, printf("\n");
)

See Also

TOS, xbios
The Art of Computer Programming, vol. 2

Notes
The lowest bit has a distribution of exactly 50%.

- random access — Definition

_ quential access, in which entities must be ac in a parti dor '
s oo O NER S ; accessed in a particular \at
_ 8ome entities take longer to access than do others. RS order, o that

A tape drive is an example of‘g:‘se,qu,enti‘al access

_random access. In this regard, the t

_quickly. This contrasts with se-

‘ s an _exa] ss device, ie, the order in
d is dictated by the order in which they stream past he tape
Random ccess memory (RAM) is an example of ran

oppy disks combine elements of random access and sequential access

RAM, which usually consists of semiconductor integrated circuits, is also strictly

cees: ard, the term “RAM" is slightly misleading; a more ac-
namewould be “read/write memo S t SIgaLly 1 adi g; ﬂmqre‘ 8(:- ”
memory (ROM), which is also random acbéésgm;m(t,Sf;?p?rast FAM. with read;only
See Also

read-only memory

ranlib — Definition

s “direcboxy”n tha‘t:f“appears‘ at the be‘gir‘ming‘o

eolen 0t ., function

defined. Thus,
braly*se‘i]uenﬁally‘ to

rational number — rc_copy 665

If :ﬁhe,dat,g, on the library file is later than that in the ranlib header, the linker will

ignore the ranlib and perform a sequential search through the library; the linker
_ will also send the warning message

_Outdated ranlib
‘to the standard error device. This is done to prevent the accidental use of an out-
dated ranlib, which could be disastrous. When you use the archiver ar to update a.

library or to create a new library, be sure to employ the options that update the

_ranlib as well as modify or create the library.

See Also
ar, date, Id, touch

Notes

Under certain circumstances, it was possible to generate the Outdated ranlib er.
‘ ssage even though the ranlib was in fact up to date. In previous releases of
‘Mark Williams C, this occurred when it was installed on a system with the date set -
“to the current date, rather than not set, as requested in the installation procedures.

ror

ling Mark Willi ms C with the date set on the system had the effect of up-

_dating the date stamp on the library files, which put the date on the ranlib header
_and that of its library file out of synch. The linker thus thought that the ranlib
was outdated, when it was in fact correct. This problem was fixed on a previous

 release.
rational number — Definition
£ A rational number is the quotient of two integers. -
See Also

integer, real numbers

re.copy — AES function (libaes)
Copy a rectangle
#include <aesbind.bh>
fut rc_copy(oldrect, newrect) int oldrect(4), newrect{4];

rc_copy is an AES routine that copies a rectangle from one part of the screen to
another. oldrect and newrect hold, respectively, the rectangle being copied and the
area to which it is being copied. Each array holds the following information:

rectangle{0] X point (upper left corner)
rectangle[11 Y point (upper left corner)
rectangle[2] width

rectangle[3} height

re_copy returns zero if an error occurred, and a number greater than zero if one
did not.

o i

566 rc_equal — rc.intersect

See Also
AES, TOS

Notes .

A clipping rectangle should be set using the VDI function vs_clip before this

routine is used. If you do not, you may inadvertentl
element in low memory, such as a RAM disk. Y CopY & rectangle over an

rc_equal — AES function (libaes)
Compare two rectangles
#include <aesbind.h>
int re_equal(rectl, rect2) int rect1{4], rect2{4};

re_equal is an AES routine that compares two rectangl
] gles. rectl and rect2 hold th
two rectangles being compared. Each array holds the following information: °

rectangle[0] X point (upper left corner)
rectangle[1] Y point (upper left corner)
rectangle[2] width

rectangle[3] height

rc_equal returns zero if the rectangles are not identical, and one if they are.
See Also
AES, TOS

rc_intersect — AES function (libaes)
Check if two rectangles intersect
#include <aesbind.h>
int re_intersect(rect!, rect2) int rectI[4], rect2(4);

rc_intersect is an AES routine that check to see if two rectangles intersect. rect!

and rect? point to the two rectangl i i
oot &0 . tangles being compared. Each array holds the

rectangle[0] X point (upper left corner)
rectangle[1] Y point (upper left corner)
rectangle[2] width
rectangle(3] height

'CI;}:i velues within the array rect2 will be changed to the coordinates of the area
chmtf)n to both rect,anglgs, or to meaningless values if they do not intersect
ntersect returns zero if the rectangles do not intersect, and one if they do. '

See Also ,
AES, TOS

rc_union —rdy 657

rc_union — AES function (libaes)

Calculate overlap between two rectangles
#include <aesbind.h>
void rc_union(rectl, rect2) int rect1{4], rect2[4];

rc_union is an AES routine that computes a rectangle that encloses two overlap-
ping rectangles. rectl and rect2 point to the two overlapping rectangles. Each ar-
ray holds the following information:

rectanglel0] X point (upper left corner)
rectangle{1] Y point (upper left corner)
rectangle[2] width
rectangle{3] height
The values within the array rect2 will be changed to the coordinates of the rec-

tangle that encloses the overlapping rectangles. These variables are set to
meaningless values if the rectangles do not intersect. rc_union returns nothing.

See Also
AES, TOS

Notes

This routine should be used only if you are certain that the rectangles in question
do overlap. The routine rc_intersect returns a value that indicates if the rec-
tangles do in fact overlap.

Command

save, and load rebootable RAM disk

rd" i

rdy [CMD =command FILE=filename ...}/

rdy is the Mark Williams C utility that creates, saves, and loads a RAM disk. The
RAM disk that rdy makes has, among others, the following properties:

e The RAM disk will survive system resets. Pressing the reset button on the
back of the computer will not cause the RAM disk to be erased.

e The RAM disk can be made the system’s boot disk. This allows you to reboot
your system and load all desk accessories from the RAM disk.

e The RAM disk can be set to substitute for any physical drive from C through
P, and to any size that fits into the memory available on your machine.

e The RAM disk can be copied, contents and all, into an executable file; this file
can then be loaded directly into memory. This simplifies the task of recreating
the RAM disk after your computer has been turned off.

rdy is designed to work either under msh by using a command-line interface, or
from the GEM desktop by using a graphics interface.

568

rdy

All source code for rdy including its resource files and header file, is included in
the archive rdy.a. See the entry for the archiver ar for information on how to ex-
tract the contents of rdy.a for alteration and compilation.

How rdy works
rdy goes through the following steps when it builds a RAM disk.

1. It writes a prototype RAM disk and copies it into a file. The size of the RAM
disk, its device name (e.g,. “C"), whether it should be the boot device, and the
name of the file into which the prototype should be copied, are ell set either
according to variables supplied by the user or, if no such variables are set, ac-
cording to built-in prototypes.

2. It loads the RAM disk into memory. After it does so, the system automatically
warm boots. rdy automatically updates various system tables, so that TOS
knows that the RAM disk is present, but it is up to the user to install the icon
for the RAM disk on the GEM desktop.

3. rdy can then be told to back up the installed RAM disk, plus whatever files
you have copied into it, into an executable file.

4. If you wish, rdy will remove one of its RAM disks. Note that the only certain
way to remove a RAM disk is either through rdy itself or by cycling power on
your computer.

5. Finally, rdy can read an installed RAM disk, a back-up file, or a prototype file,
and print.its parameters on the screen.

To operate rdy, you must tell it the command that you want it to execute {(e.g,
create a prototype file or load a RAM disk into memory), and then supply the
necessary variables the command needs (e.g., if you are getting information about a
prototype file, the name of the file you want rdy to read).

As noted above, you can pass this information to rdy either through a command-
line interface under the shell msh, or through a graphics interface directly from
the GEM desktop. rdy reads the environment and looks for the environmental
variable CMD; if it is not set, or if it set to NULL (which is always the case when
running from the GEM desktop), rdy reads its associated resource file and runs
through the graphics interface; otherwise, it ignores its graphics routines and
operates through an ordinary command-line interface. Each interface is described
in detail below.

Using the command-line interface

As noteq above, rdy checks its environment for the environmental variable CMD.
If CMD is found, rdy invokes the command-line interface; otherwise, it invokes the
graphics interface.

The set of environmental variables that rdy uses is as follows:

rdy 559

BOOT boot flag for the RAM disk
CMD choose one of:
DROP - remove a RAM disk from memory
HELP - give information on rdy
LIST - list RAM disks active in memory or saved in file
LOAD - load a RAM disk into memory from a file
MAKE - create a new RAM disk file
SAVE - save a RAM disk from memory into a file
DISK drive identifier of the RAM disk
FILE file name for RAM-disk prototype or backup
ROOT size of the RAM disk root directory, in 6512-byte sectors
SIZE size of the RAM disk data ares, in kilobytes
CMD and the envionmental variables that rdy uses can be set either by using the

setenv command to implant them into the msh environment, or by setting them
on the rdy command line itself. As far as rdy is concerned, typing

setenv CMD=LOAD

setenv FILEx"a:\bin\ramdisk.rdy"

rdy
is equivalent to typing

rdy CMO=LOAD FILE="a:\bin\ramdisk.rdy”
The only difference is the command setenv fixes the variables CMD and FILE
within the environment, where they can be read by rdy and other programs,
whereas passing them on the command line means that they disappear when rdy
has finished its work.

To build a new RAM disk on your machine, use the following script:

1. Decide how large a RAM disk you want. To perform compiles, a RAM-disk
must be at least 100 kilobytes. A 512-kilobyte machine can support a 100- to
200-kilobyte RAM disk, where a 1,024-kilobyte machine can support a RAM
disk of up to 512 kilobytes. The rest of this example will demonstrate building
a 100-kilobyte RAM disk.

2. Enter the microshell msh. Now, type the command:
rdy CMO=MAKE D1SK=C SI1ZE=100 FILE="8:\ramdisk.rdy

Change the SIZE and DISK parameters to suit your preferences. rdy will
create a description of the RAM disk, and write it into the file ramdislk.rdy,
and then return you to msh.

3. Reinvoke rdy, as follows:
rdy CMO=LOAD FILE=rdydisk.ram

rdy will now load the prototype RAM disk into memory. Note that during the
loading process, your system will warm boot and return you to the GEM

560 rdy

rdy 561

desktop.

4, gic;thw? }(lieg;(top's lnst:ll utility to install the RAM disk on the desktop. You
8 rename the icon, and otherwise modify the desk '
have done so, save the desktop settings. the desktop. When you

5. Re-enter msh. Now, use cd to move to the RAM di i
: . v,) isk. Configure the disk
youalw:sh: create dlrectgnes and copy files into it that you ug;le often. g)naz
sti];k'l(f}lAidldlSk’ the MlgroEMACS edito}' performs very well out of the RAM
linkér n & itta.rge RAM disk, you may wish to move the entire compiler and

8. Now, place a newly formatted disk into drive A, and invoke rdy as follows:
rdy CMD=SAVE FILE="a:\ramdisk.dta"

There is nothing magical about the file name i
y e in the above example; you
::lali‘ the file whatever you wish. rdy will copy an image of thepentj);z R"/g\{
bls : u}:to the file ramdisk.dta on drive A. The next time you need to cold
00 tdg s?'ste'm, you can use rdy to copy the contents of this file back into the
RAM disk; this should save you considerable amounts of time.

Your RAM disk is now ready.
Using the graphics interface
As noted above, if rdy does not find the
: t) if find parameter CMD defined either in its en-
vironment or on its command line, it will automatically invoke its graphics intir;-

face. The graphics interface is easi
. fe 8 easier to use than the command-line interfa
especially by users unfamiliar with rdy, but offers a narrower range of options. h

i'Ic'g :t;zbh?]wdtl;g graphics interface wprks, type exit to leave msh, and then click the
K e eh y.prg. The screen will clear, and in a moment, a new menu bar will
R,pear at the top of the screen. The title at the left of the menu bar, called Desk,
ﬁl m“e"s r};‘(;l “t:cciss t; all desk accessories. The title at the right, Read ,Me describes
orks. You can use this feature to refresh your memory. The iiﬂ i
. e in th
center, Optlons, lets you command rdy to perform one or more l;yasks for you.l e

If you pass the mouse pointer over th i i
o B e s aps fter o r the Options title, a menu will drop down. This
Create a RAM disk

Write a t isk i
8:\mmdlglr<‘jr(:it£),e RAM disk into a file named by the user (default,

Load a RAM disk

This loads a prototype or backu isk i
; p RAM disk into memory. Note th
system will warm boot automatically as soon as the disk ignsm?l:d.t at the

Back up a RAM disk

Copy a RAM di i : .
bacp)z’into mem;‘;,and its contents, into a file. This file can later be loaded

Remove a RAM disk
Erase a RAM disk from memory. Note that the only sure way to remove &

RAM disk is either with this command, or by cycling power on your com-
puter. Note that the system will warm boot automatically as soon as the

disk is removed.

Get data on a RAM disk
Resd & RAM disk, a prototype file, or a backup file, then print information

about it on the standard output device.

Quit

Exit from rdy.
To begin, click the first entry, Create a RAM disk. A series of dialogues will ask
you to describe the RAM disk that you want to build.

The first dialogue box asks you how much RAM your system has, either 512
kilobytes or 1024 kilobytes. Click the appropriate button.

The next dialogue asks the size of the RAM disk you wish to create. Again, click
the appropriate button. Note that your RAM disk should be large enough to hold a
gignificant number of files, but not so big that it stops you from loading any
program that you use frequently. A good rule of thumb is to use a RAM disk that
takes up approximately between one quarter and one half of the RAM on your
machine.

The next dialogue asks the name of the drive you wish to call your RAM disk. You
should not use a drive that is already taken up by another device, such as a logical
partition on your hard disk, or by another RAM disk. If you do so, rdy will not be
able to load your RAM disk.

rdy asks the name of the file in which to store the prototype RAM disk. Then, it
asks you if you want this RAM disk to be your system’s boot disk. When you have
answered these questions, rdy displays the configuration of the new RAM disk, and
ask you if it is correct. If you answer “No', you will return to the rdy desktop;
otherwise, the new prototype RAM disk will be written.

Finally, rdy asks if you wish to load the new RAM disk. If you answer “No”, rdy
returns you to its desktop. Answer “Yes”, which tells rdy to load the new file.
Note that as it installs a new RAM disk, rdy warm boots your gystem. Do not be
alarmed when the screen elears and you are returned to the GEM desktop: this in-
dicates that the RAM disk has been loaded successfully.

Now, you should install your new disk on the GEM desktop. To do so, first single-
click the icon for one of your existing storage devices; then move the mouse pointer
to the Options title on the menu bar, and double-click the entry Install Disk
Drive. Change the name of the drive from its old setting to the name of your
RAM disk (e.g., from A to D), and then type in the name that you want to appear
under the icon (e.g., “RAM DISK”). Then click the button labelled Install. The

562 rdy

desktop will return with the new icon displayed.

Finally, you shou!d create a new directory (or “folder”, in Atari jargon) named
tmp. Do 8o by clicking the “New Folder” entry on the Desktop’s File menu, and
following its directions.

Working with a RAM disk

4 RAM disk improves the speed with which you work by reducing the amount of
time the compiler needs to read a file. Even a small RAM disk will speed your
work greatly if it is used properly. For example, the compiler writes a temporary
files to pass information between its four phases; writing the temporary files onto
the RAM disk eliminates the time taken by writing these files onto a disk and
reading them back again. Test compiles have shown that this change alone will
reduce the time needed to compile and link a large program by more than half.

Tg take full advantage of your RAM disk, you will need to tell the Mark Williams
microshell msh that it exists and how you want it to be used. To do sn, you must
edit the file profile, which msh reads when you invoke it; make the following two
changes. First, the line that begins TMPDIR = indicates where you wish to store
temporary files; this line should be changed to the name of your RAM disk. For
example, if your RAM disk is named D, this line should read as follows:

THPOIR=0:\

Then, the line that begins PATH = lists for msh all the directories where it should
look for executable files. Your RAM disk should go near the beginning of that list.
For example, this line may read as follows:

PATH=.cmd, ,a:\bin, b:\bin

If your RAM disk is named as drive D, change the PATH description to the
following:

PATH=.cmd,d:\,,8:\bin,b:\bin

’Ijhis tells msh that .the RAM disk should be searched for executable files before
extper of the floppy disk drives; naturally, a RAM disk can be searched much more
quickly than a floppy disk drive, which will save you time.

We suggest that you not attempt to alter the profile until after you have installed
Mark Williams C and have read the chapter in the manual that introduces msh. If
you alter the profile too radically without knowing how it works, you may confuse
msh and create difficulties for yourself.

The bootable RAM disk
As noted abm‘/e, rdy can create a RAM disk that is defined to the system as its boot
disk. TOS will look for its boot file in directory \auto on that device, and look for

its desk accessories in its root directory. The following describes how to use rdy in
order to take advantage of this and other more advanced features.

rdy 563

1.

5.

Create a RAM disk using the steps listed above. Load it into memory and
create its icon. Then, double-click the RAM disk’s icon to open it. Create
two new folders for it, called tmp and auto. If you are running a hard disk,
put the hard disk driver into the auto folder; then press the reset button to
warm boot. This allows you to access the hard disk throughout the rest of
this routine. Then double-click the RAM disk’s icon to reopen it.

Now, drag into the RAM disk the programs and utilities you want to store
there. Some programmers prefer to keep msh and MicroEMACS (or
another preferred editor) in a folder called bin on the RAM disk, because
they are used constantly. Be sure to leave enough room on the RAM disk
to hold the compiler’s temporary files.

Save the desktop and copy the file desktop.inf onto the RAM disk if it was
not written there. Note that if you have a hard disk with drive C, TOS will
insist on writing desktop.inf there.

The next step is to test the RAM disk by warm booting. Press the reset
button. The floppy disk drive should run for a second as the system looks
for a boot block; then, the programs in the RAM disk’s auto folder will
run. Finally, the desktop you saved should appear as the desktop in-
itializes.

If anything is missing or wrong, go back, fix it, and test again until every-
thing is right.

The next step is to back up your configured RAM disk. Put a blank floppy
disk into drive A. Format it with the volume name coldstrt.dsk, copy the
files rdy.prg and rdy.rsc onto it, and make an auto folder on it.

Then click rdy.prg, select Back up a RAM disk, and follow its directions
to save the contents of the loaded RAM disk into file
as\auto\coldstrt.prg. Note that a backed-up RAM disk is an executable
file in its own right; you do not need to invoke rdy to load it into memory.

Now that the back up is finished, you have a disk from which you can cold
start your system easily. To test whether all will work correctly, turn off
your computer for a few moments, then turn it on again. Drive A should
be selected for several seconds while TOS loads the program coldstrt.prg
into memory. The screen will flash as the RAM disk warm boots to install
itself. Then, the programs installed in the auto folder of the RAM disk will
run and take effect. If you installed a hard disk driver, you should see the
hard disk initialize. Finally, the desktop that you saved on the RAM disk
will be displayed as the desktop initializes.

The screen should not flash after the initial reset, but it often does. This
could be due to any number of reasons. The most easily fixed is a loose
cable: make sure that the cables that plug into the back of your ST are
pressed all the way into their sockets.

564 rdy

You now have a RAM disk that you can use either to warm boot or cold boot your
system. When ever you need to cold boot your system, simply place the boot disk
you just created into floppy disk drive A, turn on the computer, let it boot, then put
the boot disk away.

When an error occurs, you have reason to believe that TOS or the AES has cor-
rupted itself, or a program enters an infinite loop, just push the reset button. The
machine will reboot off the RAM disk in a few seconds, and all the contents of the
RAM disk will be exactly as you left them.

Problems can occur from a number of sources. If a program had a file open on the
RAM disk when you reset the system, the file may not have been completely writ-
ten to the RAM disk. Removing the file name may not recover all the clusters
allocated to the file. These lost clusters may become a problem if you continue to
reset out of the program, because the RAM disk will eventually run out of data
clusters for files. This can be fixed by saving your work to a floppy or hard disk,
removing the RAM disk, and reloading it from your cold boot disk.

The RAM disk occupies high memory, beyond the value of the system variable
phystop, which is normally 32 kilobytes past the start of the video display. If a
program writes into this memory, it will destroy your RAM disk and all its contents
will be lost. This is most easily done by not clipping graphics to the screen cor-
rectly: then, if you scribble past the border of the screen, the virtual image you
create will overwrite the RAM disk.

You probably will want to update your cold boot RAM disk from time to time. If

you are replacing an old version of a file with a new version, you can simply copy

the new version in and replace the old back-up RAM disk file. However, if you are

;hanging the structure or contents of the RAM disk, then do it in the following or-
er.

First, remove the old files from your loaded RAM disk. Remove the old folders
from your loaded ramdisk. Create the new folders on your loaded RAM disk; then
copy the new files onto your loaded RAM disk.

T.hen_, place coldstrt.dsk into the floppy drive, run rdy.prg, and save the RAM
disk image to a:\auto\coldstrt.prg. If you change the contents of your RAM disk
in another order, you may get a much larger RAM disk image than necessary.

A saved RAM disk contains all the data clusters up to the last one allocated. You
can eliminate fragmentation of your RAM disk data clusters by simply copying all
the files and folders from your RAM disk onto a floppy disk, deleting all the files

and folders from your RAM disk, and copying the files and folders back onto the
RAM disk from the floppy disk. :

i
You can also use rdy.prg from a shell command file; for example:

setenv CMO=SAVE FILE=a:\suto\coldstrt.prg DISK=c; rdy

rdy.a 566

You may wish to store this command in a file on your cold boot d%sk; Be sure to
set the variable DISK to the correct drive identifier for your RAM disk!

j i RAM disk. You may wish to
Finally, enjoy the speed and convenience of your new 1)
s;i:ndysor:\ue if this time studying the sources for'rdy; they are stored in the acl;chlve
file rdy.a. See the entry fur the archiver ar for information on how to extra es

from the archive.

See Also
commands, TOS
NOteSs hard disk autoboot can sometimes interfere with RAM disks built with
r .
I('l‘; T:plx;:e I:AM disks with the Supra hard disk autoboot, do the following:
’ 0 0 K3 . . ﬂict
RAM disk of the desired size and dnve_, thxs_ must not confl
* Sirt?t: }?a:de?;rive identifier. Make it non-bootable. f}xve. thx{; file a name Bk'e
ramXXXD.prg, where XXX is the size of the RAM disk, in kilobytes, and D is
the letter of the RAM disk’s identifier.

2. If you already have an \auto fold on partition C, move all of its files into
another folder, and delete the \auto folder.

3. Create a new \auto folder.

Put the RAM disk into the new \auto folder first.

Move all of the files that were moved out of the \auto folder into the new

\auto folder.

for the first time after a power-up, the RAM disk will load
Xi\ge?hgr]\ec:{l!;t:xtnh: gzem to warm-boot. Oq warm-boot, the RAM disk l?aderdpg:-
tion of the RAM disk file sees that a drive is .already‘ loaded \:vnh the glvenp rtlh:
specifier and exits without loading the RAM disk again and mthoutt;: ooting
system. The rest of the programs in the \auto folder are then executed.

rdy.a — Archive

rdy.a is an archive that holds the source ﬁleg for rdy, the Mark Williams utility
that creates rebootable RAM disks on the Atari ST.

i i he source files from the ar-
If you wish to recompile rdy, you must first gxtract t! T
chi)":e. Use the command cd to move to the directory where you have stored this
archive, then give msh the following command:

ar xv rdy.s

See Also
ar, rdy

566 read — read-only memory

read — UNIX system call (libc)

Read from a file
int read(fd, buffer, n) int fd; char *buffer; int n;

read reads up to n bytes of data from the file descriptor fd and writes them into
buffer. The amount of data actually read may be less than that requested if read
detgcts EOF. The data are read beginning at the current seek position in the file,
which was set by the most recently executed read or lseek routine. read advan-
ces the seek pointer by the number of characters read.

Example

For an example of how to usge this function, see the entry for open.

See Also

UNIX routines, STDIO

Diagnostics

With a successful call, read returns the number of bytes read; thus, zero bytes sig-
nals the end of the file. It returns -1 if an error occurs, such as bad file descriptor,
bad buffer address, or physical read error.

Notes

re.ad is a low-level call that passes data directly to TOS. It should not be inter-
mixed with high-level calls, such as fread, fwrite, or fopen.

- readonly _C keyword

Storage class

__readonly is a C keyword that modifies data declarations. | As its name implies, the
_ readonly modifier declares that data are to be read only; this helps protect key
_data against casual modification by the user or another programmer.

See Also

C keywords, C language, keyword

Notes

The draft ANSI standard for the C language eliminates this keyword.

. read-only memory — Definition

As its pame suggests, read-only memory, or ROM, is memory that can be read
but_;:not‘ov'erwqt,ten. It most often is used to store material that is used frequently
or in key situations, such as a language interpreter or a boot routine. ;

See Also

random access

realloc — register 567

realloc -~ General function (libc)

Reallocate dynamic memory
char *realloc(pfr, size) char *ptr; unsigned size;

realloc helps you manage a program’s arena. It returns a block of size bytes that

" holds the contents of the old block, up to the smaller of the old and new 8iz

realloc tries to return the same block, truncated or extended; if size is smaller

than the size of the old block, realloc will return the same ptr.

Example
For an example of this function, see the entry for calloc.

See Also

arena, calloc, free, lcalloc, lImalloc, Irealloc, malloc, notmem, setbuf

Diagnostics

realloc returns NULL if insufficient memory is available. It prints.a message and, .
ealls abort if it discovers that the arena has been corrupted, which most often oc- .
curs by storing past the bounds of an allocated block. realloc will behave un-

predictably if handed an incorrect ptr.

The related function lrealloc takes an unsigned long as its size argument, and"

therefore can reallocate memory blocks that are larger than 64 kilobytes.

‘real number — Definition

A real :x‘xumber is any number of the set of rational numbers or irrational num-

. bers.

See Also

float, rational number, Integer, irrational number

record — Definition

‘A record is a set of data of a fixed length that has been given a unique identifier,

' and whose structure conforms to an exact description. An example of a record is
an entry in a file of names and addresses: each entry has a fixed length, is marked
by a unique identifier, and has a fixed number of bytes set aside in fixed order to
record name, address, city, state, and ZIP code.

Note, too, that what is called a “record” in Pascal is called a “structure” in C.
See Also

field, structure

_register — C keyword

_ Storage class

568 register — rescomp

rogister is a C keyword that declares a class of data storage. A variable so
declared will be stored in a register, which may increase the speed with which it is
read by a program.

See also
auto, C keywords, C language, extern, register variable, static

register — Definition

A register is special high-speed memory within a microprocessor that can be ad:
d concisely and within which data can be stored and modified. The size and
. the ,onﬁguxjat on of a microprocessor’s registers affect its computing potential.
Registers can be manipulated much faster than RAM.
: The routines, in the Mark Williams C libraries generally assume that they have
‘been called from C programs; thus, they may freely overwrite any registers that the
compiler overwrites in its generated code.
See Also ‘

register variable

_register variable — Definition

_register is a o storage class’ A register declaration tells th
R gister declaration tells the compiler to try to

the Int foo can be declar

! gister VArigblé with the following statement- o

: register int foo:‘

‘On the i8086, two registers are available to acce i i i
pt register variables; if more than
two are declared, all after the first two will be treated as ordinary a,utos. On the

. 68000,_eig,ht registers
registers and five data r

available to accept register variables:three address
By déﬁ’niﬁp‘n,‘of the C langusge, registers have no addresses
; be passed as function arguments. Placing heavily-
registers often improves performance. but in s
variables can degrade performance somewhat.
See Also
auto, extern, static, storage class
The C Programming Language, page 81

80 pointers to registers
e used local variables into
in some cases declaring register

. rescomp — Command

E Resour’g:ek compiler :
p [-v] [-0 outfile] inﬁlé[.ext]

nd rescomp compi
xt into a GEM resource.

infile, which must be a file of resource-descrip-

a machine register. Under Mark Williams C,

resdecom 569

The option -v tells rescomp to report statistics as it compiles.

The option -0 changes the name of the three files it produces to outfile. By default,
rescomp names its output files after infile. When the compiler creates these files,
it gives them the extensions .rsc for the resource file, .rsd for the compiled
resource description, and .h for the C header file.

See the section in the introduction on the Resource compller and decompller
for a summary of the resource description language.

See Also

resdecom, resource

The command resdecom decompiles a GEM resource into a file of resource-

description language. This can be useful when you want to change a line of text
within a resource, globally change a string which appears in more than one place
within a resource, or if you want to create a simple resource without using the
Resource Editor. It is easy to track changes between versions of your resource by
comparing decompiled resource files.

Decompiled resources often take much more room than their compile(f “counter-
parts. The text descriptions of some objects are more compact, but images, “icons,
buttons and compound objects take up more space.

To decompile an existing resource set into a resource description file, use the
program resdecom.pryg. Its options are as follows:

-d defile[.ext]
Specify the name of the definition file.

-0 outfilef.ext]
Rename the output file that the decompiler creates. The default is the
name of the resource you are decompiling, with the extension .rdl.

-m Force menus to be treated as forms.
-v Verbose option: decompile with messages.
- Send output to the standard output.

resdecom looks for two files that are labeled with the extensions .rsc and .rsd. It
reads them and writes a resource description file that takes the names of the
regource fileg, adding the extension .rdl.

The file produced by resdecom can be edited with MicroEMACS or most other
text editors. You can then recompile it into a resource by using the resource com-

6570 resource

piler rescomp.

See Also

rescomp, resource

resource — Command

Invoke the resource editor’
resource

Thg command resource invokes the Mark Williams Resource Editor. A resource

editor simplifies the creation of icons; ‘mentis, dialogue boxes, forms, and alerts. In:

helps you' to design and implement graphics interfaces for your

resource encodes objects that you display and manipulate on the editor’s desktop.
With resource, you can move objects around the screen, and edit each until it is as
you want it to appear with your GEM application program. It then fills in the X, Y,
height, and width coordinates, and records the relative position of each object
within its object tree. resource also allows you to name each object. It then
produces a header file that contains the names and their “handles,” so you can
refer to each object easily from within your program.

In addition to the C header file, resource produces two other files that contain in-
formation that your application program will use to reproduce the interface you
have created. One file, with the suffix .rse, is the resource file called by your ap-
plication program. The other is & “name and type” definition file with the suffix
.red. This definition file is used only by resource and by the resource decompiler
resdecom. It is not used by the application program.

To use the editor, you must have an Atari ST system with TOS in ROM, at least
one disk drive, a monochrome or color monitor in medium or high resolution, and
Mark Williams C for the Atari ST.

The Mark Willlams Resource Editor is designed to work in medium or high
resolution. Many of the dialogues in the Resource Editor contain large amounts of
information and will not work correctly in low resolution.

The editor also has the following limitations:
e The structure of a resource file limits it to 64 kilobytes. '
® A text string cannot be longer than 65 bytes.

e The colors in an object are limited to white, black, red, and green, and the
thickness of its border to four rasters (inside and out).

To run resource, you must install the files resource.prg and rksource.rsc into
the same directory; the directory should be one of those named in the environmen-
tal variable PATH.

return — rindex b571

retu

To run the Resource Editor from msh, the Mark Williams micro-shell, type:

resource
at the prompt. If you want to invoke the Resource Editor from the GEM desktop,
double-click the mouse on resource.prg.

See Also

rescom, resdecom, object, menu

rn — C keyword .
Return a value and control to calling fanction

return is a C statement that returns a value from a function to the fur cti
called it. return can be used without a value, to return control of the p:
the calling function; also, the calling function is free to ignore the valu
_ hands it. Note that it is good programming practice to declare functions
_ return nothing to be of type vold. -
Note that a function can return only one value to the function that called i
often, this value is used to signal whether the function performed succ
not.

See Also

C keywords, C language
The C Programming Language, page 68

rewind — STDIO function (libc)

Reset file pointer

#include <stdio.h>

int rewind(fp) FILE */p;

rewind resets the file pointer to the beginning of stream fp. It is a synonym for
feeek(/p, OL, 0).

Example

For an example of this routine, see the entry for fscanf.
See Also
feeek, STDIO

Diagnostics
rewind returns EOF if an error occurs; otherwise, it returns zero.

: rindex — String function (libc)

Find a character in a string
¢ char *rindex gt'ring, ¢) char *string; c¢har ! 4

572 rm — rmdir

. returns a pointer to it. If it is not found, rindex returns'NULL.

Example
This example uses rindex to help strip a sample file name of the path information.

#include <stdio.h>
#dafine PATHSEP ’\\'
extern char *rindex();
extern cher *basensme();

/* path name separetor */

mein()
(4
char *testpath » “A:\\foo\\bar\\baz";
pr!ntf("ﬂefore massaging: Xs\n", testpath);
) printf("After messeging: Xs\n", basensme(testpath));
char *basename(path)
char *path;
(4
char *cp;
return (((cp = rindex(path, PATHSEP)) == NULL)
? path : ++cp);
)

See Also

index, memchr, string, strrchr

Notes
This function is identical to the function strrchr, which is described in

: nt 1 X d the ANSI
:}t;artxd:r% Mz:;(;k.Wlllutimﬁ;f(i:i includes strrehr in its libraries. It is recommended
‘that it be used instead of rindex so that programs more cl ict
‘conformity with the ANSI standard. PEvES re cloeely approch stiet

— Command
REm ove files
m ﬁle o

rm removes each file; and frees data blocks associated with it.

See Also

commands, msh, rmdir

: /g'mdir ~ Command

rindex scans string for the last occurrence of character c. If:c is found, rindex

o

Rsconf 573

s#adir-will not allow you to remove the current working directory. .

See Also

commands, mkdir, msh, rm

Rsconf — xbios function 15 (osbind.h)
Configure the serial port
#1loclude <osbind.h>
#linclude <xblos.h>
Jong Rsconf(speed, flow, UCR, RSR, TSR, SCR)
int speed, flow, UCR, RSR, TSR, SCR;

Rsconf configures the serial port. speed is an integer that sets the baud, as

follows:
0 19,200 8 - 600
1 9600 9 300
2 4800 10 200
'3 3600 11 160
4 2400 12 134
5 2000 13 110
6 1800 14 76
7 1200 15 50

flow is an integer that sets the flow control, as follows:

0 None (the default)

1 XON/XOFF (<ctrl-8>/<ctrl-Q>)

2 Request to send/clear to send (RTS/CTS)
3 XON/XOFF and RTS/CTS

UCR stands for USART control register. (USART, in turn, means universal
synchronous-asynchronous receiver-transmitter). This variable is a byte-length bit
map that controls the operation of the serial port. Its bits encode the following in-

formation:

WL

e

b

Rsconf
Bit 0 unused N
Bit 1 0 indicates odd parity; 1, even parity
Bit 2 0 indicates no parity; 1, parity as set in bit 1
Bits 3,4 Start/stop bits and format:
00 synchronous; start=0; stop=0
10 agynchronous; start=1; stop=1
01 asynchronous; start=1; stop=1.6
11 asynchronous; start=1; stop=2
Bits 5,8 Word length:
00 8 bits
10 7 bitg
01 6 bits
11 5 bits
Bit 7 0=Use frequency from transmit control

and receive control directly
1=Divide frequency by 16

RSR is a byte-length bit map that controls the receive status register; setting the
bits sets the following conditions:

Bit 0 Enable reception
Bit 1 In synchronous mode, enable comparison of
character in SCR with character in
receive buffer
Bit 2 In synchronous mode, signal that character
identical to character in SCR may be
received; in asynchronous mode,
. signal reception of start bit
Bit 3 In synchronous mode, signal that character
identical to character in SCR has been
" received; in asynchronous mode,
signal reception of BREAK

Bit 4 Signal frame error: stop bit is a NUL, but
byte received is not

Bit 5 Signal parity error

Bit 6 Signal buffer overrun

Bit 7 Signal buffer full

TSR is a byte-length bit map that controls the transmitter status register. The bits
in this map indicate the following:

rsconf 875

Bit 1 Enable transmission
Bits 2,3 High or low output mode:
00 High
10 High
01 Low
11 Loop-back mode
Bit 3 In synchronous mode, not used; .it’x
asynchronous, sends break condition
Bit 4 Send end-of-transmission character after
current character
Bit 5 Switch to reception immediately after
end of transmission .
Bit 6 Send character in sender floating register
before writing new character into send
buffer
Bit 7 Buffer empty
Finally, SCR initializes the synchronous character register; this variable should be
set to zero.

Note that setting UCR, RSR, TSR, or SCR to -1 will cause it to be ignored by TOS.
Rsconf returns a long that holds the old UCR, RSR, TSR, and SCR, in that order.

Example
This example sets the serial port to 4800 baud with XO.N/XOFF flow control. For
an example of using this function from the \auto directory, see the entry for

\auto.

#include <osbind.h>

#define BR_4B00 (2) /* 4800 beud */
#define FC_XON (1) /* XOR/XOFF */
mafn() (

Rsconf(BR_4800, FC_XON, -1, -1, -1, -1);
Cconms("Serial port set to 4800 baud, XON/XOFF\n\r%);
>
See Also
TOS, xbios

« Notes ,
‘Resetting the speed, even if there is no change, will transmit an ASCII DEL across
the serial line. This may be intended to help remote systems or modems to deter-
mine line speed.

rsconf— Command
_ Configure the serial port ;
_ racon{ speed flow UCR RSR TSR SCR

676 rsrc_free —rsrc_gaddr

rsconf ig a command that uses the xblos function Rsconf to reconfigure the gerial
port. speed is the baud rate to which the port will be set, as follows:

0 19,200 8 600
1 9600 9 300
2 4800 10 200
3 3600 11 150
4 2400 12 134
5 2000 13 110
6 1800 14 75
7 1200 15 . 60

flow sets the flow control, as follows:

0 None (the default)

1 XON/XOFF (<ctrl-8>/<ctrl-Q>)

2 Request to send/clear to send (RTS/CTS)
3 XON/XOFF and RTS/CTS

UCR, RSR, TSR, and SCR set, respectively, the control register, the receive status,
the transmission status, and the synchronous character register. See Rsconf for
more information on the values to which these arguments can be set. Setting each
to -1 will cause them to be ignored by TOS.

See Also :

commands, Rsconf, TOS

rsrc_free — AES function (libaes)

Free memory allocated to a set of resources
#include <aesbind.h>
int rsrec.free()

rsrc_free is an AES routine that frees the random-access memory that had been
allocated to a set of resources by the routine rsrc_load. Because the contents of
only one resource file can be kept in memory at any given time, you should use this
routine before loading a second resource file. rsre_free returns zero if an error oc-
curred, and a number greater than zero if one did not.

See Also
AES, TOS

rsrc_gaddr — AES function (libaes)

Get the address of a resource object .
#include <aesbind.h>]
Int rsrc_gaddr(type, index, address) int type, index; OBJECT **address;

rsrg:-gaddr is an AES routine that gets the address of a given resource object. fype
indicates the type of object being sought, as follows:

rsrc_load — rsrc.obfix 577

object tree

object within a tree

text (TEDINFO)

icon (ICONBLK)

predefined bit pattern (BITBLK)

string

image data

object specification

pointer to text (TEDINFO)

pointer to text template (TEDINFO)

10 pointer to text validation string (TEDINFQO)
11 pointer to mask for icon image (ICONBLK)
12 pointer to data for icon image (ICONBLK)
13 pointer to icon text ICONBLK)

14 pointer to bit image (BITBLK)

15 address of pointer to free string

16 address of pointer to free image

index gives the index number of the object within the resource file. address points
to the address of the data sought; this value is set by the routéne. rsg-c..gnddr
returns zero if an error occurred, and a number greater than zero if one did not.

See Also
AES, TOS

rsrc_load — AES function (libaes)
Load a resource file into memory
#include <aesbind.h>
int rsrc_load(filename) char *filename;

rerc_load is an AES routine that loads a resource file into memory. filename
points to the name of the file to be loaded. Note that by convention, the name of
the file must have the suffix .rsc.

Note that only one resource file can be loaded into memory at any given time;
rsre_load automatically calls rsre_free to free the memory allocated to any
previously loaded resource file.

rsrc_load returns zero if an error occurred, and a number greater than zero if one
did not.

See Also

AES, TOS

rsre.obfix — AES function (libaes)
Change the form of an object’s coordinates
#include <aesbind.h>

DRI N DWW =-O

578

rsre_saddr — runtime startup

#include <obdefs.h>
int rsrc_obfix(tree, object) char *tree; int object;

rsrc..obflx is an AES routine that changes the form the coordinates for an object
that is stored in a resource file. A resource file encodes an object’s coordinates in
the form of character coordinates, not pixel coordinates. These character coor-
dinates are transformed into pixel coordinates when the resource file is loaded, be-
cause only then is the resolution of the screen known. tree points to the address of
the tree that contains the object in question, and object is the number of the object
within the tree. rerc.obfix always returns one.

Example
For an example of this function, see menu,

See Also
AES, TOS

rsrc-saddr — AES function (libaes)

Store address of a free string or a bit image
#include <aesbind.h>

int rsrc_saddr(type, index, address) int type, index; char *address;

rsrc_saddr is an AES routine that copies into an object the address of a pointer to
either the free string or the free image of another object within the object tree.
type denotes the type of pointer whose address is being stored: 15 indicates a
pointer to a free string, and 16 indicates a pointer to a bit image. rsrc_saddr
returns zero if an error occurred, and a number greater than zero if one did not.

See Also
AES, TOS

_runtime startup — Overview

_The C runtime startup is a routine that is linked with a C program as the first part

_ofan eexecutable program. It performs the functions needed to start and terminate

; ;he C environment. To begin the program, it initializes the stack and calls main;
to conclude the program, it calls exit w1th the return value from maln:

,Three c runtnme startup routmes are available on Mark Williams C for the Atani
 ST: crta().o. the normal runtime startup, crisg.o, the runtime startup for the
. GEM enviror 1ment, and crtsd.o, which is used to create a GEM desktop applica-

~ tion. The default is crts0.0, which is appropriate for most uses You can call

) ‘crtsg o0 on the cc command line i in either of two ways: with the switch :-VGEM, or

_the name option Nrcrtsg 0. The crtad.o start-up routme canibe called with.

the option -VGEMACC or with the name option Nertsd.o.

rvalue — Rwabs 579

See Also -
ealling conventions, cc, crts0.0, crisd.o, crtsg.o, stack, _stksize

‘ rValue";; Definition

‘An rvalue is the value of an expressio The name comes‘fmm the assignment ex-
pression el=e2;, in which the right operand is'an rvalue.

Unlike an lvalue, an rvalue can be either a variable or a constant

See Also

lvalue

Rwabs — bios function 4 (osbind.h)

Read or write data on a disk drive

#include <osbind.h>

#include <bios.h>)

lo:; I‘;wabs(r_or.w, buffer, n, rec, drive) int r_or_w, n, rec, drive; char *buffer;
Rwabs reads from or writes data to a disk drive. r_or_w indicates the task to per-
form, as follows:

0 read

1 write

2 read, no medium change
3 write, no' medium change

n is the number of sectors to transfer; rec is the number of the first record to trans-
fer; and drive is the name of the disk drive to use: zero indicates drive A, one in-
dicates drive B, etc.

buffer points to the area to which the data are to be wn'tt;:n, or from which they
are to be read. If buffer is set to zero, then the status set in the argument r_or_w
is used to set the drive’'s medium change status.

Rwabs returns zero if all went well, and a number less than zero if an error oc-
curred.

See Also
blos, TOS

580 sbrk — scanf

sbrk — General function (libc)

_Increase a program’s data space
char *sbrk(increment)
- unsigned Int increment;

sbrk increases a program’s.data space by. increment bytes. It increments. the vari:
_able p_hitpa of the base page, which points to the end of the program’s data

_space. See basepage.h for more information on p_hitpa. Note that the memory
allocation routine malloc calls sbrk should you attempt to allocate more space
than'is available in the program’s data space.

sbrk returns a pointer to the previous setting of p_hitpa if the requested memory
is available, or ((char *)-1) if it is not.

See Also

basepage.h, malloc, maxmem

Notes

sbrk will not increase the size of the program data area if the physical memory. re-
quested exceeds the physical memory allocated by TOS, or if the requested memory
_exceeds the limit set in the user-defined variable maxmem. sbrk does not_keep
track of how space is used; therefore, memory seized with sbrk cannot be freed.
Caveat utilitor.

scanf — STDIO function (libc)

t and format input

#include <stdio.h>

int seanf(format, argl, ... argN)

char *format; [data type] *argl, . *argN;-

scanf reads the standard input, and uses the string format to ‘specify ‘a format for i

each argl through argN, each of which must be a pointer.

,scanf reads one character at a time from format; white space characters are ig-

nored. The percent sign character ‘%’ marks the beginning of a conversion -

. specification. ‘%’ may be followed by characters that indicate the width of the input
field and the type of conversion to be done.

:scanf reads the standard input until ‘the return. key is pressed. Inappropriate

into an int. :

The following modifiers can be used within the conversion string: k

scanf 681

characters are thrown away; e.g., it will not try to write an alphabetic character

_ pose of it someho rOgT s have been known to forge
~_buffer before calling scanf a second time, which leads to unexpe

1. The asterisk '*', which indicates that the next input field should be skjppedié‘:
rather than assigned to the next arg.

A string of decimal digits, which specifies a maximum field width.

3. An 1, which specifies that the next input item is a long object rather than ~

an Int object. Capitalizing the conversion character has'the same;effect’f

The following conversion characters are recognized: :

c Assign the next input character to the next arg, which should be of type
char *.

d ASSign the decimal integer from the next input field to the next arg, which =
should be of type int *.

D Assign the decimal integer from the next input field to the next arg, which

should be of type long %.

e Assign the floating point number from the next input field to the next 'arg;
which should be of type float *. ;

E Assign the floating point number from the next input field to the next arg,
which should be of type double *.

f Same ase.
Same as E.

o ‘Assign the octal integer from the next input field to the next arg, which

should be of type int *.

o ‘Assign the octal integer from the next input field to the next arg, which

should be of type long *.
8 Asslgn the string from the next input field to the next arg, which should b

‘of type char *. The array to which the char * points should be long

_enough to accept the string and a terminating NUL character. -

x Assign the hexadecimal ‘integer from the next input field to the next arg,”
which should be of type Int *.

X Assign the hexadecimal integer from the next input field to the next arg,”

which should be of type long *. ’
It is important to remember that scanf reads up, ‘but not through, the newline
character; the newline remains in the standard input device’
pose how. Programmers have been known to fi

682

Scrdmp

Example
The following example uses scanf in a brief dialogue with the user.
#¥include <stdio.h>

main()

int left, right;

printf("No. of fingers on your left hand: “j;
fflush(atdout);

sc?nf("xd", Lleft);

while(getchar() I= ‘\n’); /* est newline cher */

printf("No. of fingers on your right hand: "y;
fflush(stdout);

scanf("Xd", &right);

while(getchar() 1= '\n’);

printf("You've Xd left fingers, Xd right, & Xd total\n»
, left, right, lefteright);)
See Also
fscanf, sscanf, STDIO
The C Programming Language, page 147
Diagnostics

canf ,reiturns the number of arguments filled. It returns EOF i
e filled or if an error occurs. FRROE A aTeaent oo

Notes

Because C does not perform type checking, it is essential that an argument match

_its specification; for that reason, scanf is best used to process only data . you
s s ication, f | nf is best used to process only data that you
. are certain are in the correct data format. The use of upper-case foimat charz‘iég'eisﬁ '
o specify long arguments is not standard; use the ‘I modifier for portability. '

It is not recommended that scanf be used to,obtain a string from the keyboard: use

gets to obtain the string, and sscanf to format it

Serdmp — xbios function 20 (osbind.h)

Print a dump of the screen
#Include <osbind.h>
#include <xbios.h>
void Serdmp()

Scrdmp dumps the screen to the printer port, and returns nothing. Note that at

present this routine works only with the monochrome monitor
. i

screen control 5683

* ‘sereen control = Technical information

Example
This example dumps the screen to a printer. Be sure that before you use this ex-
ample, your printer is plugged into your computer, properly described to TOS, and
turned on.

#include <osbind.h>
#include <bios.h>
main()

§{(Bcostat(BC_PRT) == 0)
Ccorms("The printer (s not ready.\n\r");

else {
Ccomis("The screen {s being printed... Please wait. \n\r*);

Scerdmp();

Ccorms(“The screen is printed.\n\r");

)
return(0);
)
See Also
TOS, xbios

TheAtan ST uses the following escape sequences to control the terminal screen. '

These can be passed by the macro Cconout, as well ag by numerous other output

routines, to manipulate the Atari ST’s screen:
Note that <esc> represents the escape character, ASCII 033.

‘<esc>A | Cursorup

<esc>B Cursor down

<esc>C Cursor forward

<esc>D Cursor backward

<esc>E Clear screen, home cursor

<esc>H Home cursor ‘

<esc>] Return to same position on previous line.
<esc>J Erase to the end of the page ‘
<esc>K Clear to the end of the line

<esc>L Insertline

<esc>M Deleteline

<esc>Y row col ’
Position cursor at row, col, which are
_ row/column numbers plus 040 (space character)
<esc>be ~ Set foreground colortoc

<esc>cc Set background colortoc
<esc>d ° Erase beginning of display
<esc>e Make cursor visible
<esc>f Make cursor invisi

<esc>) Save cursor positio

584 scrp-read

<esc>k Restore cursor position

<esc>l Erasealine .
<esc>o0 Erase from beginning of line to cursor
<esc>p Enter reverse video mode
<esc>q Exit reverse video mode
<esc>v Wrap text at end of lin ~
<ese>w Discard text at end of line

For the sequences <esc>b and <esc>c, the 'yqriable,c ig the color index plus 040.
In monochrome mode, the color index can be zero or one; in medium resolution, it
can be zero through three; and in low resolution, it can be one through 15.)
Example

The following example clears the screen and homes the cursor, then moves the cur-
gor to row 12, column 6 on the screen.

main() (
char row = 1247\040';
char colum = 6+/\040’;

printf("\033E");
printf("\033vXcXc", row, colum);
)

See Also
Cconout, gemdos, TOS

scrp.read — AES function (libaes)

Read the scrap directory
#include <aesbind.h>
int scrp_read(buffer) char *buffer;

The “scrap” feature provides a way for applications to pass information among
themselves.

The information to be passed is written into a file, which is always called scrap.xxx.
The suffix indicates what type of information the file contains: text (.txt), a GEM
metafile (.gem), a bit image (.img), or spreadsheet data (.dif).

The name of the directory that holds the scrap file is written into a static buffer, or
clipboard. The clipboard contains only the name of the directory in which the infor-
mation is kept, not the information itself. The clipboard is overwritten each time it
is used, so in effect only one scrap file can be used at any given time. AES provides
routines for reading and writing to the clipboard; it is up to you to see to it that the
scrap file is correctly written and read.

scrp_read is an AES routine that reads the clipboard. buffer points to the name of
a buffer into which the contents of the clipboard will be written. scrp.read
returns zero if an error occurred, and a number greater than zero if one did not.

scrp-write — set 0586

See Also
AES, TOS

scrp-write — AES function (libaes)

Write to the scrap directory

#lnclude <aesbind.h>)

int serp_write(directory) char *directory;

_write is an AES routine that writes the name of the scrap directory onto the

8¢ r ¢
cli;'l;;oard. directory is the name of the scrap directory. scrp_write returns zero if

an error occurred, and & number greater than zero if one did not. For more infor-
mation on using the clipboard, see the entry for scrp_read.

See Also
AES, scrp_read, TOS

set — Command

'Set an msh variable
‘set (VARIABLE= ualug] 7
set sets sets the msh VARIABLE to value: For example, the command

set b="b:\bin" .
tells msh that the variable b is equivalent to b:\bin; thus, typing

cd $b
is equivalent to typing

cd b:\bin
Typing set without an argument displays all the variables that have been set.
Typing

set in history
lists the contents of the shell’s history buffer. Typing

get in .bin ' .
lists the installed built-in functions; .bin is msh's internal directory, which points
to areas in absolute memory where commands are stored.
A second internal directory, .cmd, set aside for the user to install functions with
the set command. For example, the command

get in .cmd off=vcursconf 3*

i i i t to the com-
installs the command off into .cmd, and declares it to b? equivalen
mand cursconf 3. cursconf{ is a command that is built into the mlcr'o-shell, and
uses the TOS function Cursconf to manipulate the system cursor. This command
turns off the cursor blink.

586 setbuf — Setcolor

See Also

commands. msh, unset

setbuf STDIO function (libc)
; ’Set alternative stream buffers

, on of streams to terminal devnces. STDIO. normally uses
_malloc to allocate the buffer, which is a char array BUFSIZ characters long;
. BUFSIZ is defined in the header file stdio.h. .

getbufs arguments are the file stream /b and the buffer to be associated with the

| stream The call should be issued afte ‘the stream has been opened, but bef'oré_f";
any. mput or output request has been issned. The buffer passed to setbuf may be
'NULL, in which case the stream will be unbuffered, or contains at least BUFSIZ

i bytes.
See Also

STDIO

_setcol e}itiy, color

the color palette that you wish to reset, from zero through 16, col r
‘is the three-digit number that indicates the color to which you wish to set entry.

See Also

commands, getcol, TOS

Setcolor — xbios function 7 (osbind.h)
Set one color
#include <osbind.h>
#include <xbios.h>
int Setcolor(number, value) int number, value;

Setcolor sets one color. number is the element on the color palette that is being
redefined; it can be any number from zero to 15. value is the color value to which

number is being reset; setting any number to a negative value ensures that no
change is made.

i
On monochrome monitors,

Setcolor(0, 0);

‘STDIO automatncally buffers all data read and written in_

a command that uses.the xblos function Setcolor to reset a color. entry.

setenv 587

1

gives a black background and white letters, whereas

setcolor(0, 1);
switches the screen to a white background and black letters.

Setcolor returns the old value of number. The change will be made during the
next vertical blank.

Examples
The ﬁrlth example reads and prints out the values of the color map.

#include <osbind.h>

color_disp(indx, val)
fnt indx;
int val;

int red, green, blue;

/* Red value in bits 8-10 */
/* Green value in bits 4- -6 */
/* 8lue value in bits 0- 2%
+ Xid %1d %1d\n*, indx, red, green, blue);

red = (val>>8) & 7;
green = (val»L) & 7;
blue = val & 7
printf(* XZd
)
main() (
int §;
printf("Entry R G B\n");
for (i=0; 1<16 ; i++)
color_disp(§, Setcolor(, -1
) .
The second example works with a monochromatic monitor. It reverses the colors of

the characters and background.
#include <osbind. h>
maing) €

int color = Setcolor(0, -1);
setcolor(0, ++cotor¥2);

)
See Also
TOS, xbios

setenv — Command
Set an environmental vanable
setenv [VARIABLE= valuel

setenv sets an env1 memal variable Ent\}r:ronme

ntal variables are those that are
at run ume. For exa h

able TIMEZONE
?, whereas he environmental’ vanable LIBPATH

read by the

1 hn‘kér 1d to locate

588

Setexc

You are free to define new environmental variables withi

re free to define new environmental thin your programs, and use

nv to define them on your system. Note that it is traditional [environ
mental variable with capital letters. IClopel fo spel envieoly

AAYP g ?étepv without any arguments displays all of th i i :
that have been set so far. ~ play of the environmental variables,

See Also

commands, msh, unsetenv

Setexc — bios function 5 (osbind.h)

Get or set an exception vector
#include <osbind.h>
#include <blos.h>

long Setexc(number, address) int number; char *address;

Setexc gets or sets an exception vector. Vectors 0x00
2 through OxFF are defined b;
;!;etpofliﬁ)%)g hardware; the extended vectors are defined in the header file signal.h),'

0x100 timer tick

0x101 critical error handler

0x102 terminate handler
0x103-0x1FF reserved for future use by TOS

0x200-0x2FF reserved for future use by users

number is the n}lmber of the exception vector to be read or set. address is the ad-
dress to be set into the exception table; -1 indicates that the vector is to be read
rather than set. Setexc returns either the previous address if it is setting the vec-
tor, or the current address if is reading the vector.

Example

This example shows how to use Setexc t ivi

h : o trap divide-by-zero errors. Note that
this program calls the routine setrte, which is included with Mark Williams C ?n
the file setrte.s. To compile, use the command line

€C -0 Setexc.prg Setexc.c setrte.s
The following gives the text of Setexc.c:

¥#include <osbind.h>
#define DIVO (5) /* Divide by 0 vector number */
diverr() (

setrte(); /* Mpke this an exception routine */ !
i

Ceonus("\r\nbivision by O\r\n");

setjmp — setjmp.h 589

main()
register unsigned long oldvec;

int & = 0;
int b;
oldvec » (unsigned long)Setexc(DIVO, diverr);

/* Set the exception */
printf("This is a test of divide by 0...\n");
b = 133/»s; /* Generate error */
printf("The result of 133/%d is Xd\n", a, b);
Setexc(DIV0, oldvec); /* Set vector back */
exit(0); /* Return to system */

3}
See Also
bios, signal.h, TOS

Notes
TOS does not reset exception vectors on process termination; therefore, you must
reset them yourself or face the consequences.

_setjmp — General function (libc)

Perform non-local goto

#include <setjmp.h>

int setymp(env) jmp_buf env;

The function call is the only mechanism that C provides to transfer control between

functions. . This mechanism, however, is inadequate for some purposes, such
“handling unexpected errors or interrupts at lower levels of a program. To answer
_this need, setjmp helps to provide a non-local gofo facility. setjmp saves a stack
context in env, and returns value zero. The stack context can be restored with th
function longjmp. The type declaration for jmp_buf is in the header file
setjmp.h. The context saved includes the program_countet, stack pointer, and
‘stack frame. This routine does not restore register variables, but other variables.

are not affected.

See Also
getenv, longjmp, setjmp.h

Notes

Programmers should.note that many user-level routines cannot be interrupted and
reentered safely. For that reason, improper use of setjmp and longimp will resuit
“in the creation of mysterious and irreproducible bugs. The use of longjmp to exit
interrupt exception or signal handlers is part cularly hazardous.

ee Also
header file, longjmp, setjmp

mmand that uses the xbios function Setpallete (
alette. The arguments entryl through entryl6 each

e swer than 16 arguments are given, only that many entries in the i
L g y that many entries in the palette
To alter a specifi¢ entry in'the color palette, use the command setcol.

See Also ;,

commands, getpal, setcol, Setpallete, TOS
Setpallete — xbios function 6 (osbind.h)

Set the screen’s color palette

#include <osbind.h>

#include <xblos.h>

void Setpallete(palette) int palette{16];

Setpallete (sic) sets the s'creen’s color palette, and returns nothing. palette points
to an array.ot: 16 hexadecimal integers, each of which indicates a different color.
The palette is implemented at the next vertical blank interval.

Example

This .e:‘{ample sets the color palette. A palette is a table of 16 words containing the
definitions for 16 colors as indexed by set bits in the “planes”.

#include <osbind.h>

short ugly{) = {
0x000, Ox111, Ox222, 0x333,
Ox4644, Ox555, Ox666, Ox777,
0x007, 0x070, Ox700, Ox707,
Ox770, Ox077, 0x737, 0x337
I H

main() {

Setpaliete{ uvgly);
)

See Also
TOS, xblos

palette. The arguments entry , three-digit
pecifies the color code for the corresponding entry in the Atari color

setphys — Setprt 591

- setphys — Command
_ Reset physical screen’s display space

“ getphys address.

setphys is a command, that resets the physical screen’syd}isplgy}basgg It ea
use isplay any part of the ST’s themory as a bit map. addressis the add
the new display base. o
See Also
commands, getphys, TOS

setprt — Command
Reset the printer port
setprt configuration:

-setprt is a command that uses the xbios

_printer por fig: is an integer that
tion. For a table of the configuration codes, see the entry for Setprt.

See Also
commands, Setprt, TOS

Setprt — xbios function 33 (osbind.h)
Get or set the printer’s configuration
#include <osbind.h>
#include <xblos.h>
int Setprt(configuration) int configuration;

Setprt gets or sets the configuration of the printer port. configuration is a 16-bit

map that configures the port. If it is set to OxFFFF (-1), the port's current con-
figuration is read; otherwise, its value is used to set the port, as follows:

0x01 daisywheel printer

0x02 monochrome printer

0x04 if set, Epson-type dot-matrix printer; if not, Atari printer
ox08 if set, final mode; if not, draft mode

0x10 if set, printer uses serial port; if not, printer port

0x20 if get, uses single sheets; if not, uses fanfold paper

Bits 6 through 14 are reserved, and bit 15 must be zero. These values are defined
in the header file xbios.h.

Setprt returns the printer port’s current configuration when configuration is set to
-1; otherwise, it returns a meaningless value.

592

setrez — Setscreen

Settime 593

Example

For examples of this function, see the entries for \auto and prtblk.
See Also

Prtblk, TOS, xbios, xbios.h

setrez — Command

 Reset the screen resolution
‘setrez resolution

resolution. Note that changing from a color resolution to a
monochrome resolution will warm start the machine and put you back to a correct

resolution for your monitor. Changing from low to medium resolution, or vice:

versa, will create a distorted image that can be corrected with, respectively, the.

‘commands ltom and mtol.

See Also

commands, getrez, Getrez, TOS
Notes

If you enter msh or run a GEM program without restoring the resolution, unpre-
dictable results will be evident.

Setscreen — xbios function 5 (osbind.h)

Set the video parameters
#include <osbind.h>
#include <xbios.h>

vold Setscreen(log, phys, res) char *log, *phys; int res;

Setscreen sets the video parameters, and returns nothing. log and phys are the
bases of the logical and physical screen displays. res is the new screen resolution:

0 low resolution
1 medium resolution
2 high resolution

Setﬁ(r;g any variable to a negative number ensures that that variable will be ig-
nored.

Example

This example demonstrates Setscreen. For another example, see the entry for
Physbase, : '

¥include <osbind.h>

#include <bios.h>

a command that resets the screen’s resolution, . resolutior‘z\ indicates th,ej‘
solution, as follows: zero, high resolution; one, medium resolution;

maing) {
char *newscr, *oldscr, *memblk;

int x, y;
Ceonws{"Working...\n");
oldser = (char *) Physbase();

merblk = (char *)Halloc(32%1024L)) == 0) (.

H printf("Malloc of Xid bytes faited.\n", 32%1024L);
pterm(1);
)
~(OxFFL));

newscr = (char *) (((long) memblk + OxFFL) & ~(H
setscreen(newscr,-1t,-1); /* Change logicsl base '{/
Ceonws(*\O33H\0334"); /* Clear logical screen

-
s y<2h: y+4) (/* for 20 rows... */
for (yzzéry}x-d;y;<39; x++) /* 39 times each... */
Bconout(BC_RAW, OxOE);
Bconout(BC_RAW, Ox0F);

Ceoms{"\r\n"};
>
Setscreen(- 1L, newscr,-1); /* Move physical base... */
Ceonin();
setscreen(oldscr,oldscr,-1); /* Restore addresses... */
return 0;
>
See Also
Getrez, Logbase, Physbase, TOS, xbios
Notes

i i i tine, the screen will be
hange the resolution of the screen v_nth this rou) U
Icgeig:d.c Un?ier some circumstances, the previous screen base will alsq be clea{ﬁg{.
Therefore, it is best to switch screen bases and then change resolutions, ra
than doing both with one call.

Settime — xbios function 22 (osbind.h)

Set the current time

#include <osbind.h>

#include <xbios.h>)
vold Settime(datetime) long datetime;

i i igent keyboard (IKBD), and
ttime sets the current time and date for the u‘)tel.hggn KBl
§eetur:s‘ nothing. datetime is a 32-bit mask whose bits indicate the following:

R

LAY
P

iy,

it o

Lo

y .r;-;,"
oy ,4‘

f§k€£}?

594 Settime

0-4 no. of two-second increments (0-29)
5-8 no. of minutes (0-59)

9-15 no. of hours (0-23)

16-20 day of the month (1-31)

21-28 month (1-12)

27-31 year (0-119, 0 indicates 1980)

Example

This examples sets the IKBD time. Note that this does not affect the current
GEM-DOS time.

#include <osbind.h>

main() ¢
register unsigned long time;
int seconds;
int minutes;
int hours;
int day;
int month;
int year;

printf("Enter the date and time (MM/DD/YYYY HH:MM): ");
sconf ("Xd/Xd/%d Xd:Xd", &month, &day, byesr, Lhours, &minutes);
seconds = 0;
if(yesr < 100)

year += 1900;
time = ((unsigned long)(year-1980)<<25)

((unsigned long)month<<21)

((unsigned long)day<<16)

((unsigned long)hours<<11)

((unsigned long)minutes<<5)

((unsigned long)seconds>>1);
timeprint("We are setting the time to", time);
Settime(time);

i el

Settime 6595

7% verify what we did. */

)

time = Gettime();
timeprint(*What we get is", time);

void fixdig(buf, onurber, size)
char *buf;

int onumber;

int size;

<

M

register long Limit;
register long number;
int o;

number = onumber;

timit = 10;
for (o = 1; o < size ; o*+)
Limit *= 10;

tf ((oumber >= Limit)]}(number <03 {
for (0 = 0; o < size; o++)
*hufes = 1R12
*buf = 0;
return;

1or (o = 0; o < size; o++) (
Limit /= 10;
*hufss = *0’snumber/timit;
rwarber = ramberXtimit;

)
*huf = 1\0;

timeprint(string, time)
char *string;
register unsigned long time;

¢

int seconds;
int minutes;
int hours;
int month;
int deay;

int year;
char mins{3];
char secs(3];

596 Sgettime —shel_envrn

seconds = (time & Ox001F) << 1; /* Bits 0:4 */

minutes = (time >> 5) & Ox3F; /* Bits 5:10 */
hours » (time >> 11) & OxIF; /* Bits 11:15 */
day = (time >> 16) & OxiF; /* Bits 16:20 */
month = (time »> 21) & OxOF; /* Bits 21:24 */
year = ((time >> 25) & Ox7F)+1980; /* 3its 25:31 %/

fixdig(mins, minutes, 2);

fixdig(secs, seconds, 2);

printf("Xs Xd:Xs:Xs on Xd/Xd/Xd\n", string, hours, mins,
secs, month, day, year);

)

For another example of this function, see the entry for time.
See Also

Gettime, Ksettime, time, TOS, xbios

Notes

The time data in the bit map used by Settime is in exactly the reverse order of the
data used by the gemdos functions.

S'gett’ime'—- Time function (libc)

:Réad time from intelligent keyboard’s clock
#include <time.h>
tm *Sgettime();

Sgettime is a function that reads the time from the intelligent keyboard's clock.
‘This clock is maintained apart from the other clocks on the Atari ST. Sgettime

returns a pointer to the structure tm, which it initializes. tm is defined in the,

header file time.h. For more information about it, see the entry for time.

See Also

Kgettime, Ssettime, time (overview), time.h, tm
Notes

Unlike the function Gettime, which deals.in two-second increments, Sgettime
allows the programmer to work with clock ticks.’

Unlike the related function Kgettime, Sgettime works on the Mega ST.

shel_envrn — AES function (libaes)

Search for an environmental variable
#include <aesbind.h>
int shel.envrn(parameter, name) char *parameter, *name;

shel_envrn is an AES routine that searches for a particular environmental vari-
able in the desktop’s environment. name points to the name of the variable whose
value you want; note that the name must end with an equal sign ‘=". paramefer
points to the byte immediately following the value of the variable. shel_envim al-

-

shel_envem 597

ways returns one.

Example ' _ .
The following example uses the shel library to exchange information with the en-
vironment.

#include <sesbind.h>

alertf(n, p) int n; char *p;

static char buffer(512);
sprintf(buffer, "Xr", &p);
return form atert(n, buffer);

3
main()
(¢
char *cp;
char cmd(128), tail(128);
int retval;
appl_init();
retvsl = shel_envrn{icp, "PATH=");
slertf(l, "[0] [shel_envrn |returns [xd }{ok]", retval);
alertf(1, *[0] [PATH= is |Xs J{OKI", cp);
retvatl = shel_resd(cmd, tail);
slertf(1, *[0] (shel_read |returns |Xd]1(OK1", retvat);
alertf(1, "(0) [command is |Xs](Ok}", cmd);
slertf(1, "(01({tail fs |Xs 1(Ok}™, tatl);
retval = appl_find(“SHEL L H
alertf(1, "{0] (appl_find SHEL is 1% 11OK1™, retval);
retval = appl_find("shel),
alertf(1, "[0] fappl_find shel is {xd 1(0K1*, retval);
retval = appl find("MSH W
alertf(1, “(0] (eppt_find MSH {s [Xd 1(0K)", retvel);
i# (slertf(1, #(21[invoke shel 1No|Yes]™) == 2) (
retvsl = shel write(1, 1, 1, vghel.prg”, “sock it to me");
atertf(1, "0} { shel write | returns | Xd 1{0kI*, retval);
)
appl_exit();
return 0;
}
See Also
AES, TOS
Notes

shel_envrn can find a variable only in the desklop environment, not the environ-
ment of the current process. Due to the design of the AES, it-can return only that
part of the environment which fits into a small buffer. The sixth character of the

598 shel _find — shel_write

desktop environment is always set to *;’ by the desktop because the PATH environ-
ment passed by the ROM always has a null character in that position.

shel_find — AES function (libaes)
Search PATH for file name
#include <aesbind.h>
int shel find(pathname) char *pathname;

shel_find is an AES routine that does searches for a file in the directories named
in the PATH environmental variable. pathname points to the name of the file
being sought; shel_find changes this name to the full path name of the file if it is
found. shel_find returns zero if an error occurred, and a number greater than
zero if one did not.

See Also
AES, PATH, TOS

shel_read — AES function (libaes)
Let an application identify the program that called it
#include <aesbind.h>
int shel_read(command, tail) char *command, *tail;

shel_read is an AES routine that returns the name of the command that invoked
the current AES application. command points to the name of the command, and
tail points to its tail; the values of both are set by this routine. shel read returns
zero if an error occurred, and a number greater than zero if one did not.

Example

For an example of this function, see shel_envrn.

See Also
AES, TOS

Notes

Even after a command and a tail is passed successfully through shel_read,
shel_write returns two copies of the command, instead of the command and its
tail.

shel_write — AES function (libaes)
Tell desktop which application to run next
#include <aesbind.h>
int shel_write(flag, graphic, gem, command, tail)
int flag, graphic, gem; char *command, *tail;

shel_write is an AES routine that tells AES whether to run another application,
and, if necessary, which application to run. In GEM terms, it combines Pterm and
optionally Pexec. In UNIX terms, it combines exit and optionally exec. In effect, it
tells the desktop to continue.

shellsort 6599

flag indicates whether to run another application: zero, exit to the operating sys-
tem; one, run another application. graphic indicates if the application to be run is a
graphics application: zero indicates no, and one indicates yes. gem indicates if the
application to be run is an AES application: zero indicates no, and one indicates
yes.

Finally, command and tail point, respectively, to the command’s name and tail.
shel_write returns zero if an error occurred, and a number greater than zero if
one did not.

Example

For an example of this function, see shel_envrn.

See Also
AES, TOS

shellsort — General function (libc)
Sort arrays in memory.
void shellsort(data, n, size, comp)
char *data; int n, size; int (*comp)();

shellsort is a generalized algorithm for sorting arrays of data in primary memory;,xk

It uses D- 1. Shell's sorting method. shellsort works with a sequential array of

memory called data, which is divided into n parts of size bytes each.’ In practice,
data is usually an array.of pointers or structures, and size is the sizeof the pointer

or.structure,

Each routifie compares pairs of items and exchanges them as required. The user-

supplied routine to which comp points performs_the comparison. . It is called
repeatedly, as follows:

(*comp)(pl, p2)
cher *pl, *p2;

Here, pl and p2 each point.to & block of size bytes in the data array. In practice,

they are usually pointers_to. pointers or.pointers to structures. The _comparison

‘routine must return a negative, zero, or positive résult, depending on whether pl is ‘

less than, equal to, or greater than p2, respectively.

Example

For an example of how to use this routine, see the entry for string.
See Also

ctype, gsort
The Art of Computer Programming, vol. 3, pp. 84ff, 114ff

600 short —show

*Notes

shellsort differs from the sort fun

ction gsort in that it uses an iterative algorithm
that does not require much stack.

‘ short — C keyword

_ Data type

A short is a numeric data type. By definition, it cannot be Jonger than an int ora
_ long. For Mark Williams C; a short is equal to an Int; that is,
__two chars, or 15 bits plus a sign. A short normally i3 sign extended when cast to
a larger data type; however, an unsigned short will be zero extended when cast.

See Also
C keywords, C language, data format, data type, declarations

‘show — Command

lay a stored screen image
eenfile

show displays a screen ima
or with one of several grap
the screen image is stored.

dicated by its suffix:

ge that has been stored either with the command snap,
hics editors. screenfile is the name of the file in which
screenfile can be in any of the following formats, as in-

Pl DEGAS uncompressed screen images, low resolution
PI2 DEGAS uncompressed screen images, medium resolution
P13

DEGAS uncompressed screen images, high resolution
NEO Neochrome uncompressed screen images
.MUR COLR editor screen murals

PIC Atari Logo SAVEPIC files

show checks the size of each file to confirm that it is of the correct type; if it is of
the wrong size for its type, show exits silently.

Note that you may need to alter the image’s resolution to resolve it on your current
device. This can be done with the battery of commands htom, Itom, mtoh, and

mtol. For example, to display the low-resolution DEGAS file foo.pil on a high-
resolution monitor, use the following command line:

show foo.pit1 ; ltom ; mtoh

show can also be used with the command snap to convert an image from one for-

mat to another. For example, to convert the high-resolution DEGAS file foo.pi3 to
Neochrome format, use the following command line;

show foo.pil ; htom ; mtol ; snap foo.neo i

sizeof short equals

showmouse — sinh 601

See Also

commands, htom, ltom, mtoh, mtol, snap, TOS

showmouse — Command

y the mouse pointer .
 showmouse [' -
showmouse uses the function linea8 to redisplay the mouse pol .

See Also

commands, hidemouse, Line A, mousehidden, TOS

bombs, header file, TOS

sin — Mathematics function (libm)

Calculate sine
#include <math.h> .
double sin(radian) double radian;

, . . . re.
sin calculates the sine of its argument radian, which must be in radian measu

Example

For an example of this function, see the entry for acos.

See Also

mathematics library

sinh — Mathematics function (libm)

Calculate hyperbolic sine
#include <math.h>)
double sinh(radian) double radian;

sinh calculates the hyperbolic sine of radian, which is in radian measure,

Example

For an example of this function, see the entry for cosh.

See Also
mathematics library

802 size — sizeof

. size — Command
int the size of an object module
[-act lfile..
‘prints the size of each segment of each given file, which must be a relocatable.
_ Lhe total size 13 g] of each segment is
decimal and hexadecir

‘Th'e options are as follows:

a Print the size of debug, symbol, and relocation segments as well.

Print the total size of all common areas in each relocatable object module.

At the end, print the total size of each segment summed over all the files;
no total is printed if only one file is specified.

size prints.out the size of each segment, as follows:

code

data

extra
stack
auxiliary 1
auxiliary 2
auxiliary 3
auxiliary 4

The ‘s’,t!ftjxx_x (for extension) on a segment identifier indicates the difference between
the lpltlallzed size in the file and the minimum size in memory. For programs
c}(:mpﬂed under Mark Williams C, this only appears as dx and indicates the size of
the arena.

See Also

c¢, commands, cpp, nm, strip

Notes

Because version 3.0 changes the object format, the edition of size shipped with ver-
sion 3.0 does not work with objects compiled with Mark Williams C version 2.1.7 or
earlier. To convert such objects to a format that size recognizes, use the command
mwitomw.

 sizeof —— C keyword

Return size of a data element

eof isa C op
T

element examined can be a data obj
eof returns the size of the element in chars; for example

erator that ré‘turn‘s,a constant int that is the size of an)}ngiven data
ect, a portion of a data object, or -

sleep — snap 603

L e

long foo;
sizeof(foo);

se a long is as long a8 four chars.)
routines, and when you need to
r stead of

: returns four, becau

i 1ally useful in malloc e)
oot o soutines. Using it to set the size of data types In

aill mérease'theportabﬂity,of,your,,code-,, -

C keywords, C language, data types, operators
The C Programming Language, page 188

t.mg or a specified time
sleep seconds

for & specified. number of sc;:ondks,,'l‘h,ijs routine . is

n,l‘eéli suspends exccution e shell msh. For example; typing

especially useful ‘with other commands to th
sleep 3600; echo coffee bresk time o . '
the echo command in one hour (3,600 seconds) to indicate an impor

3 will execute *tes in two-second increments under TOS.

tant appointment. sleep ope

See Also

commands, msh, msleep

snap — Command
Save a screen image
snap scrfile

= and -writes it-into _scrfile. sna

[»” reen’s image, an 3.) SCH] S Sr Po ot
k:snﬂp;takes a. 5“‘*?5*‘0; of t?:h:cfoﬂcwing fOrmﬁtS, as indmated by th suffix to
scrfile:

a screen image in any o

Degas uncompressed screen images, low resolution

ot i i lution
uncompressed screen images, n}edmm reso

?’g gzgﬁa; uncomgressed screen images, high resolution

.NEO Neochrome images

MUR COLR editor screen murals

Atari Logo SAVEPIC files

For example, typing
snap foo.mur

saves the current
the show command.

screen image into file foo.mur. It can then be redisplayed with

604

sort

See Also

commands, show, TOS

‘ :s'ort‘;”—— Command

g. i K]
lions are selected. ult, the key is the entire input
e ine) ordering is by the 'ASCII collating ‘sequence; i.e.; Tower-valued -
' ASCII characters sorted before higher-valued. -

wing options affect how the key is constructed or how the output:is or-;

, Ignore leading white space (blanks or tabs) in key comparisons.
-d Dictionary ordering; only letters, blanks, and digits are considered in key
comparisons. This is essentially the ordering used to sort telephone direc-
’ tories.
F ¢ Fold upper-case letters to lower case for comparison purposes.
{wl Ignore all characters outside of the printable ASCII range (octal 040-0176).
’k"-;ﬁ/ This option tells sort that the key is a numeric string, which consists of

optional leading blanks and optional minus sign followed by any number of
digits with an optional decimal point. The ordering is by the numeric, as
opposed to alphabetic, value of the string.

r Reverse the ordering, i.e., sort from largest to smallest.

As noted above, the key compared from each line need not be the entire input line.
The option +beg indicates the beginning position of the key field in the input line,
and the optional -end indicates that the key field ends just before the end position.
If no -end is given, the key field ends at the end of the line. Each of these posi-
tional indicators has the form +m.nf or -m.nf, where m is the number of fields to
skip in the input line and n is the number of characters to skip after skipping
fields. Optional flags f are chosen from the above key flags (bdfinr) and are local
to the specified field.

The following additional options control-how sort works.
,;V-c ‘' Check the input to see if it is sorted. Print the first out of order line found.

Merge the input files. sort assumes each file to be sorted already. For
large files, it runs much faster with this option.

sprintf — sqrt 606

-ooutfile.. .
fPut the output into outfile rather than on the standard output. This allows

sort to work correctly if the output file is one of the input files.

.tc. Use the character ¢ to separate fields rather than the default blanks and
tabs.

‘477 Suppress multiple copies of lines with key fields that compare equally.

See Also

commands

gprintf — STDIO function (libc)

Format output

_ #include <stdioh>

int sprintf(string, format [, argl.)

: char *string, *format;

_sprintf uses the strihg format to apegifykqn_gutput fprmgt:nfor_gakck,hk arg,
_writes every arg into string, which it ends with NUL. For a detailed discu
_sprintfs formatting codes, see printf.

Example

For an example of this function, see the entry for sscanf.

See Also
printf, sprintf, STDIO
The C Programming Language, page 150

Notes

The output string passed to sprint{ must be large e.nqugh to .hold all.
characters. Because C does not perform type checking, it is essential that ea
gument match its format speci cation.

At present, sprhitf does not return a meaningful value '

sqrt — Mathematics function (libm)

Compute square root
#include <math.h>
double sqri(z) double z;

‘gqrt returns the square root of z.

Example

For an example of this function, see the entry for ceil.

606 srand — sscanf

See Also

mathematics library

Diagnostics

When a domain error i i i

When a domain occurs (i.e,, when z is negative), sqrt sets errno to EDOM

srand General function (libc)
/Seed random number generator
_void srand(seed) int seed;

fsrand uses seed to initialize the se

. quence, of pseudo-random

rand. Different values of seed initialize dxfferegt sequences. ruimbers. returned by
Example

For an example of this function, see the entry for rand.

See Also

rand
The Art of Computer Programming, vol. 2

i_SScanf — STDIO function (libc)
Format input

s include <stdio.h>

int ascanf(slrmg, format [, ar,
char *string; char ‘forma;- s 1wl

. 88
canf reads the argument string, and uses format to specify a format for each arg
2

_ codes, see scanf.
Example

This example uses sprintf to i
’ create a st it wi
illustrates a common problem with thi: rx;ﬁgi'n:r.‘d then readsa it with sacant. It also

#include <stdio.h>

main()

(4
char string(80};
char 81{10), s2{101;

sprintf(string,"123456789012345
sscanf(string,;19c",s1); STBI0TZ3670R0™:
sscanf(string,"X10c",s2);

printf("27s is the string\n"

i s string); :
printf("Xs: first ¢ charucte;s in string\n¥, s1);

printf("Xs\n", s2); ' ’

printf(“comes from not leaving space for terminator\n*);

each of w
hich must be a pointer. For more information on sscanf’s conversion

stack 607

_can be filled or if ¢ an error. occurs

'the Zotrect data format, such as data that were written with sprintf.

st,ack Definition e
) The stack is the segment of ‘memory. that holds function arguments, Yocal by 120

‘k ~hbrary It may be set to another value by including an initi

|

See Also
fscanf, scanf, STDIO
The C Programming Language, page 150 ;

Diagnostics
gscanf returns the number of arguments filled: /1t returns zero if no arguments

Notes
Because C does not perform type checking, an argument must match its form
specxﬁcat.\on., sscanf is best used only. to process data that you are certam are in

ddresses, and‘ stack frame linka Lio Nmther
upp ck resizing, 8 \

allocated to the gtack at run time.

il ,ms C runtime startup routme,aklklocates _stksize bytes of st
] is Yecuted, and 68000 stack pointer register, a7, to
gh his ksegment. ks ze is then assxgned a poi 3
ress that the stack pomter y reach before the stack beging

gram data. _stksize is set to two kilobytes by the Mark Williams C
alized declaration for it

_in your program' for example
long _stksize = 160001 ;
sets the stack size to 16,000 bytes.

_The va]ue of _stksize must be even _The size of the stack cannot change once
‘ pegun ,executa becal se the allocat.\on ‘must be made before the =
d your program uses stack as soon as it begins to execute .

eclareg large amounts of automatic
he stack may overﬂow

P
. stack is ‘used an

If your program uses recursive algorithms, or d
data, or simply. contmns many. levels of functxons call
_and overwrite the p m data. You can. check for stack overﬂow very. simp

T he‘ runtxme mrtupﬁrel itializes the long _stksize to point to an address. that tho:
t reach. You can _compare. _stksize o the address of the last

vanable in any funct)on' as long as _ stksize is less than the address of
that automattc function, you are safe.

Example

This example checks for stack overflow; it aborts the program and prints a message
when overflow occurs. The main routine prints the location of its arguments, calls
the stack overflow routine, and then calls itself recursively. For another example,

see the entry for Fgetdta.

808 standard error — standard output

g _stktest()(
int i;
ff ((long)ti <= _stksize) (
puts ("Stack overflowl™);

g exit(1);
3

%.f)

';{b main(arge)

int srge; €
extern long _stksize;
printf("argc at Xix\n", &argc);
_stktest();
main{argc);

)

See Also
\auto, .stksize
Notes.

TOS pushes data onto

the user stack; therefore, you should make sure that your
t least 128 bytes to hoid these data when your program

standard error — Definition

ka'he standard error is the peripheral device or file where programs write error
 mes ult.] the heac tdio.h under the abbreviation
_stderr, and by defauit is the computer’s monitor. T ‘
See Also

freopen, header file, msh, standard input, standard output, stdio.h

standard input — Definition

"'T‘h.‘e Is‘tfanxda‘td fnput is the (device or file from which data are aécébtéd:by default.
.’It‘yils:‘dgﬁned“\in‘fth‘g*hg“z’ider‘ file stdio.h under eviatior n, and will be
the computer’s keyboard unless redirected by the operating system, a shell, or

. freope
See Also
freopen, header flle, msh, standard error, standard output, stdio.h

‘standard output — Definition

The standard outpt where programs write output by default.
Itis n the header file stdi r the abbreviation stdout, and in most
_instances is defined to be the computer’s monitor. ‘

rd output is the device or file

stat 609

See Also
freopen, header file, msh, standard error, standard input, stdie.h

stat — General function (libc)
Find file attributes
#Include <stat.h>
int stat(file, statptr)
char *file; struct stat *statptr;
stat returns a . structure that contains the. GEM-DOS attributes of a file.. This .
function is included to maintain compatibility with the UNIX and COHERENT.
operating systems.
file_points to the path name of file, and stafptr points to a structure of the type
* stat’ as defined in the header file stat.h:

The following summarizes the structure stat:

struct stat {

short st_dev; /* set only under COHERENT */

short st_ino; 7* set only under COHERENT */

ghort st_mode; /* stiributes */

short st_nlink; /* set onty urder COHERENY */

short st_uid; /* set only under COHERENT */

short st_gid; /* set only under COHERENT */

gshort st_rdev; /* set only under COHERENT */

tong st_size; /* file size (in bytes) */

time_t st_atime; /* time last sccessed ./

time_t st_mtime; /* time last modified */

time_t st_ctime; /* time created */
b H .
The following summarizes the legal settings for st_mode, which sets the file’s at-
“tributes:

S_IJRON 0x01 read-only file

S_IJHID 0x02 hidden from search

S_IJSYS 0x04 system, hidden from search
S_IJVOL 0x08 volume label in first 11 bytes
S.IJDIR 0x10 directory

S_IJWAC 0x20 written to and closed

. The entry st_size gives the size of the file, in bytes.

Entries . in. the structure stat_are there to preserve compatibility. with the
COHERENT operating system. Most return meaningless values when used on the
_Atari ST, with the following exceptions: st_atime, st mtime, and st ctime all. .
return the time that the file or directory was last modified; st_size gives the size of
the file, in bytes; and st_mode gives the mode of the file. ‘

il 610 stat.h —stdin E STDIO 611

See Also , ;)
i iati i i in the h file stdio.h.
: fstat, 1s, msh, open, stat.h % {gdh‘x‘s llS an’abbrevxgtxon for standard input. Tt is defined in the header file stdlo.h.
: Diagnostics - ee Also
g i > io.h, stdout
stat returns -1 if an error occurs, e.g., the file cannot be found. Otherwise, it standard input, stderr, stdio.h, stdou
FELERS 2010, . STDIO — Overview

at.h — Header ﬁle: STDIO is an abbreviation for standard input and output. It refers to a set of stan

_ dard library functions that accompany all C compilers and that govern input an

3 1 output with peripheral devices.
¥ Mark Williams C indludes the following STDIO routines:
, e e s el e e g clearerr present status stream
' See Also 3 exit leave a program gracefully
header file, stat fclose closge a file stream
i = ﬁ’ fdopen open a file stream for 1/0
b static — C keyword 3 feof discover a file stream’s status
‘ Declare storage class 3 ferror discover a file stream’s status
: : . fflush flush an output buffer
: statlc is a C storage class. A statle variable resembles an extern in that it does - fgete get a character
~ not disappear when its calling function exits. Unlike an extern, however, a static fgets get a string
; vanaple is “‘private’: when used within a function, it can be accessed only by that fgetw get a word
} function; when used outside a function, it can be accessed only by functions that ~ & fileno get a file descriptor
B are@eﬁned within the same source file as the variable. This helps to avoid name ~ : fopen open a file stream
l __conflicts; for example, if a program consists of two files, each of which has a vari- g fprintf format and print to a file stream
d _able named foo, declaring each foo to be static keeps them from overwriting each % fpute output a character
BT other: . fputs output a string
“‘.J, z Functions that are used locally can also be declared to be statie; this helps to s fputw output a word
_prevent name conflicts when assembling programs from a number of different sour- ' fread read a file stream
' ces, such as libraries from a variety of vendors and modules written by different freopen open a file stream
3} . _programmers. : fscanf format and read from a file stream
See Al] fseek seek in a file stream
ce Also . : ftell return file pointer position
5 auto, C keywords, C language, extern, register variable, storage class { fwrite write to a file stream
1 The C Programming Language, page 80 getc get a character
. stderr —Definition gg::har gﬁt 2 f,.{‘;‘in“;““
14 , - SRy s 5 ; -
! ‘ ;:g;’:’!}‘llsan abbreviation for standard error. It is defined in the header file g:a_:::vtf ;g)?'itni :’?;gmmd string
pute output a character
% See Also .] putchar output a character
stdin, stdio.h, stdout, standard error ! : puts output a string
ot . 3 putw output a word
stdin — Definition rewind reset a file pointer
) scanf format and input from standard input
setbuf set alternative file-stream buffers
,

612 stdio.h — stime

sprintf format and print to a string
sscanf format and read from a string
ungete return character to file stream

STDIO routines are buffered by. default.
“See Also
buffer, FILE, Lexicon, stdio.h, stream, UNIX routines
The C Programming Language, page 166
tdio.h Header file e
o clarations and definitions for /0 "
dio.

header file, manifest constant, STDIO
stdout — Definition
_stdout is an abbreviation for standard output; it is defined in the header file
'j‘étdh“.h. ;
Example

For an example of how to redirect st
system.

See Also
standard output, stderr, stdin, stdio.h

_stime — Time function (libe)

_ Set the operating system time
_ #include <time.h>
int stime(timep) time.t *timep;

dout from within a program, see the entry for

stime sels the operating system time,
number of seconds since midnight of
_ment timep points to the new syste
defined in the header file time.

Example

For an exam
\auto,

, which Mark Williams C defines as being the
January 1, 1970, 0h00m00s GMT. The argu-
stem time, which is of the type time.t: this is
b as being equivalent to a long.

ple of using this function from the \auto directory, see the entry for

-stksize 613

" Eﬁcdmbl e

Example

The following example prints the time, then uses stime to reset the time by one
hour.

#include <time.h>
mein()

¢ Long nowhere; /* buffer to put unwented things */

/* print current time */
printf("Xs\n", ctime);

/* subtract one hour (3600 seconds) from current time */
1f (stime((time(&nowhere) - 3600)) == -1)
¢ printf("Cannot reset time.\n");
exit(1);
>

/* print altered time */
printf("Xs\n", ctime);

/* 83d one hour to current time, to correct above */
i¢ (stime((time(inowhere) + 3600)) == -1
¢ printf("Cannot re-reset time.\n");
exit{1);
)

/* print fixed time, to confirm correction */
printf("Xs\n", ctime);

)
See Also

date, time (overview)

Diagnostics .
stime returns -1 on error, zero otherwise:

i i i m, see the entry for
xample of how to use this variable in a program,
Fr:;m&:r;allo}::atlon. For an example of a program that uses _stksize to check for
stack overflow, seo the entry for Fgetdta,

614 storage class — strchr

See Also
1d, stack

;k:s:“tokrage class — Technical information

Storage class refers to the part of a declaration that indicates how data are to be

_ stored: The legal storage classes are as follows:
auto '
extern

register
static

typedef ,is‘techni‘c‘ally:deﬁned s a storage class as well
dicate how data are stored. The defatlt class is auto
See Also

a‘uto, extern, register, statie, typedef
The C Programming Language, page 192

{3

. streat — String function (libc)
. Appepd one string to another
. phar ‘strcat(string], string2) char *stringl, *string2;

 streat appends all characters in string2 onto the end of stri
st spnends 2. e end of stringl: It returns the
Example
For an egcamp]e of this function, see the entry for string. For an example of this
function in a TOS application, see the entry for Fgetdta.
See Also
string, strncat
The C Programming Language, page 44
Notes

Nstri,n_g] must _point to enough space to hold itself and string2; otherwise, another
portion of the program or operating system may be overwritten.

_ strehr — String function (libc)

" Find a character in a string -
‘qh;a‘r *strchr(string, character);
_char *string; Int character;

ithin the

. character is not found, it returns NULL,

but it does not actually in-

“‘st‘ hr searches for character within string. The null character at the end of string

strchr returns a p ter tothe first occurrence of character within string. If,‘/f i

stremp — strespn 616

See Also

memchr, strespn, string, strpbrk, strrehr, strspn, strstr, strtok

Notes
. This is equivalent to the finction index, which is also included with
Williams C.

stremp — String function (libc)
. Compare two strings
int strcmp(stringl, string2) char *stringl, *string2;

‘stremp compares_ stringl with string2 lexicographically. It returns zero if the
strings are identical, returns a number less than zero if stringl occurs earlier :
_phabetically than string2, and returns a number greater than zero if it occurs later
This routine is compatible with the ordering routine needed by gsort. =~

Example
For examples of this function, see the entries for string and malloc.

See Also
memcmp, gsort, shellsort, string, strmemp, strespm, strspn, strstr
The C Programming Language, page 101

strepy — String function (libc)
Copy one string into another :
char *strepy(stringl, string2) char *stringl, *string2;
strepy copies the contents of string2, up to the NUL character, into stringl an
returns stringl. o
Example
See string. For an example of using this function in a TOS application, see the
entry for Fgetdta.
See Also
memecpy, string, strncpy
The C Programming Language, page 100

Notes

stringl must point to enough space to hold string2, or another. portion of the

program or operating system may be overwritten.

strespn — String function (libe)
" Length one string excludes characters in another l
_ unsigned int strespn(stringl, string?) :
__char ®stringl, *string2; ’

616 stream — strerror

strcspn _compares sfringl with the characters in_ string2. It then returns the

_ length, in characters, for which string] consists of characters not found in string2.

See Also
memchr, strchr, string, strpbrk, strrchr, strspn, strstr, strtok

upon record descr
 rather data, from whateve

_program that reads them.

For example, whether 16 bits forms an Int
3 2 : 1 , two chars, and should be used as an
?:;s?lute value or a bit map, is entirely up to the program that receives it. It is also
" elevant to the program that processes these 16 bits whether they come from the
eyboard, from a file on disk, or from a peripheral device.

See Also
bit, byte, data formats, file

. strerror — String function

Translate an error number into a string
char *strerror(error); int error;

char *strerror(int error);

'strerror helps to generate an error me

trerror helps - message. It takes the argument error, which
| tgqumably. is an error code generated by an error condition in a program and mzciy
/ return a pointer to the corresponding error message. '

See Also
perror, string
Notes

/gtrerror returns a pointer to a static ar i
S s 8 R ¢ array that may be overwritten by a subse-

q::'gx;mrtg ffers from the related function perror in the following ways: strerror
‘Slbséleibns};r{o; rx;gmbi; ‘thrmtxgh its qrgument’error, whereas perror reads the
_global con o. Also, strerror returns a pointer to the error m

; i o - w 2 essa '
?{hereas perror writes the message directly into the standard error stream. ¥

/strerror and perror must return th ' :) i
Sismonace e same error message when handed the same

a ﬂbv'v‘of bytes whose significance is set entirely by the =

string 617

. string — Overview

“The character string is’a common formation in C programs. The runtime represen
_tation of a string is an array of ASCII characters that is termina
character (\0). Mark Williams C uses this representation when a program con

{ains a string constant; for example:

) wl am & string constant’ i
The address of the first character in the string normally is used as the starting

point of the string; note that a pointer to a string holds only this address. Not
too, that an array of 20 characters can hold a string of 19 (not 20) ’non-NUL chara

’befs"'," the 20th character is the NUL that terminates the string.
‘ They_follbwi'ng routines are available to help manipulate strings:

index search string for a character .
memchr search buffer for a character f
memcmp compare two buffers k-
memcepy copy one buffer into another i
memset initialize a buffer ~4
pnmatch match a string pattern A
rindex search string for a character i
strcat concatenate two strings
strchr find a character in a string
stremp compare two strings
strepy copy one string into another
strespn return length for which strings do not match
strerror translate error number into string
strlen measure a string
strncat concatenate two strings
strncmp compare two strings
strnepy copy one string into another
strpbrk find first occurrence of any character in string
strrchr find rightmost occurrence of character
strspn return length for which strings match
atrstr find one string within another
strtok break a string into tokens

Example

This example reads from stdin up to NNAMES names, each of which is no more
than MAXLEN characters long. It then removes duplicate names, sorts the names,
and writes the sorted list to the standard output. It demonstrates the functions
shellsort, strecat, stremp, strepy, and strien.

6818 string

#include <stdio.h>

#define HNAMES 512
#define MAXLEN 60

c:er *array (NNAMES) ;

char first[MAXLEN

chr vapaea ”:, mid(MAXLEN], Last [NAXLEN] ;
extern int streomp();

extern char *streat();

maing) ¢

register int index, count, infleg;
register char *name; ’

count = Q;
while (s
p (scanf("Xs Xs Xe\n", first, mid, last) == 3

streat(first, space);
strcat(mid, space);
name = gt i
Tofson : Sgat(f\rst, (strcat(mid, last)));
for (index=0; index < count; index++)
if (stremp(array(index), name) ==)
inflag = 1;
if (inflag == Q)
¢

array{count] = malloc(strien(nsme) + 1);

strcpy(arraylcount], name);
count++; 4

>
shellsort(array, count-1, sizeof(char ",

for (index=0; index « count; index++)

printf("Xs\n" .
exit(0); \n"e arraylindex));

strecomp);

strcomp(sl, s2)
register char **g1, %,
¢ .

extern int stremp();
, return(stremp(*s1, *g2)):

See Also
ASCII, Lexicon
Notes

The draft
ANSI standard for the C language allows adjacent string literals, e.g.:
“hello® "world® o

Mark Williams C now

supports thi
may not be portable to w this standard. Note, however, that this feature

all other compilers. Also, because it departs from the Ker-

strip — strncat 619

‘strip -drs file
ztrip jjeinoyes ‘th‘esymbo];_table,_rel’ocatiog;informgﬁon, and debug tables from a.
‘fls Itinakes the executable file or object module noticeably smaller’

nighan and Ritchie description of C, it will generate a warning message if you use

the compiler’s -VSBOOK option.

 strip — Command ;
Strip debug, rglog;ation,‘and symbol tables from executable file”

strip recognizes the following options:

«d Keep debug information. If this option is not used, all debug information
used by the debuggers ¢sd and db is removed.

it Keep relocation information. Note that this is not the GEM-DOS relocation
information.

-8 Keep the symbol table.

See Also

Notes

Because version 3.0 changes the object format, the edition of strip shipped with
version 8.0 does not work with objects compiled with Mark Williams C version 2.1.7
or earlier. To convert such objects to a format that strip recognizes, use the com-
mand mwtomw.

strlen — String function (libc)

Measure the length of a string
int strlen(string) char *string;

strlen measures string, and returns its'length in bytes, not including the NUL ter-
minator. This is useful in determining how much storage Lo allocate for a stri

Example
For an example of how to use this function, see the entry for string. For an ex-
ample of using this function in a TOS application, see the entry for Fgetdta.

See Also

string
The C Programming Language, page 95

strncat — String function (libc)
. Append one string onto another

char *strneat(stringl, string2, n)
char *stringl, *string2; unsigned n;

620 strncmp — strncpy

when n characters have been copied. or it encounters a NUL character in string?,
whichever occurs first, and returns the modified stringl.

Example

For an example of this function, see the entry for strncpy.
See Also

streat, string

Notes

stringl should point to enough space to hold itself and n_characters of string2. If it
does not,’a portion of the program or operating system may be overwritten.

strncmp — String function (libc)

Compare two strings

int strnemp(stringl, string2, n)

char *stringl, *string2; unsigned n;

strmemp compares lexicographically the first n bytes of stringl with strifig2. Com:
parison ends when n bytes have been compared, or a NUL character encountered,
_whichever occurs first. strncmp returns zero if the strings are identical, returns a
_number less than zero if stringl occurs eatlier alphabetically than sfring2, and
_returns a number greater than zero if it occurs later. This routine is compatible
_with the ordering routine needed by gsort.

Example

For an example of this function, see the entry for strncpy.

See Also

memcmp, stremp, strespn, string, strspn, strstr

strncpy — String function (libc)

Copy one string into another

char *strncpy(stringl, string2, n)

char *stringl, *string?2; unsigned n;

strocpy copies up to n bytes of string2 into stringl, and returns stringl. Copying
ends when n bytes have: been copied or a'NUL character has been encountered,

whichever comes first. If string2 is less than n characters in length, string2 is
padded to length n with one or more NUL bytes.

Example

This example, called swap.c, reads a file of names, and changes them from the for-
mat

first_name [middle_initial] last_name

rncat _copies up to n characters from string2 onto the end of stringl. It stops

to the format

lest_name, first_neme [middle_initiel]

1t demonstrates strncpy, strmcat, strncmp, and index.

#include <stdio.h>
#define NNAMES 512
#defina MAXLEN 60

char *array [NNAMES]; .
char gneme [MAXLEN], {name [MAXLEN] ;

extern int strncmp(), strcomp();
extern char *strepy(), *strocpy(),

*gtrncat(), *index();

main(arge, argv)
int srgc; char *argvil;

(¢

FILE 'fp;‘ ¢ oum
egister int count, H .
;egister char *neme, stringlé60], *cptr, *eptr;

unsigned glength, length;

if (--argc 1= 1)

¢ fprintf (stderr, “Ussge: swsp £ilename\n");
exit(1);

>

fp = fopen(argv(l}, "r*)) == NULL)
e pprlntf("(:amot oy;en Xs\n¥, ergv{il);

count = O;
while (fgets(string, 60, fp) 1= NULL)
¢ §f. ((cptr = index(string, r,7)) 1= NULL)
C
cptres;
cptre+;
) elge i% ((c'ptr = {ndex(string,’ *)) 1= KULL)
cptres;

strcpy(lname, cptr);

eptr = {ndex(lneme, 0');

veptr = ', '

trcat(iname," *); .
;l:ngth - (\;ssign;d)(strlen(string) - gtrien(cptr));
strncpy(gnsme, string, glength);

neme = strncat({name, gname, glength);
Length = (unsigned)strien(nsme);
arrayl{count] = malloc(length + 1);

strepy(arraylcount] name);
count++;

strncpy 621

622

strpbrk — strrchr

for (num = 0; mm < count; num+)
printf("Xs\n*, array{numl);
exit(0);
2

See Also
memcpy, strepy, string

Notes

_stringl must point:to enough space to hold. itself and string2; otherwise, a portion
_ of the program or operating system may be overwritten. i

strpbrk — String function

Find first occurrence in a string of any character from another string
char *strpbrk(stringl, string2))

_ char *stringl, *string2;

strpbrk returns a pointer to the first character in stringl that matches any charac-

_ter in string2. It returns NULL if no character in stringl matches a character in
_siring?. The set of characters that string2 points to is sometimes called the “break

string”. For example,

char *string = "To be, or not to be: that is the question.”;
char *brkset = * ;4.
strpbrk{string, brkset);

returns the value of the pointer string plus six; this points to the comma, which is
the first character in the area pointed to by string to match any character in the
string pointed to by brkset.

See Also
strchr, strespn, string, strpbrk, strrchr, strspn, strstr, strtok

Notes

strpbrk resembles the function strtok in functionality. but unlike sirtok, it

preserves the contents of the strings being compared. It also resembles the func

| tion strehr, but lets you search for anv one cf a group of characters, rather than.
_ for one character alone.

strrchr — String function

Search for rightmost occurrence of a character. in a string

. char *strrchr(string, character)

char *string; int character;

strrchr looks for the last, or rightmost, occurrence of charactér within string.”

strspn — strstr 623

;_,fg:l‘zqrac‘t‘et is declared to be an int, but iz handled within the funclion as a char.
- Another way to describe this function is to say that it performs a reverse search for
_acharacter in a string.

'

strrehr returns a pointer to the rightmost occurrence of character, or NULL if

character could not be found within string.

See Also
memchr, strehr, strespn, string, strpbrk, strspn, strstr, striok

Notes ,
-strrehr is identical to the function rindex, which is included with Mark Williamsis;f“

C
strsp

n — String function
Return length for which one string includes characters in another
unsigned int strspn(stringl, string2)
char *stringl, *string2;
strspn returns the length for which stringl initially consists only of characters that -
are found in sfring2. For example,

char *31 = *hello, world";
char *s2 = “kernighan & ritchie;
strcspn(st, s2);

returns two, which is the length for which the first string initially consists of
characters found in the second.

See Also

memchr, strchr, strespn, string, strpbrk, strrchr, strstr, strtok

‘strstr — String function

Find one string within another

char *strstr(stringl, string2)

char *stringl, *string2;

stratr looks for string2 within stringl. The terminating null character is not con-
sidered part of string2.

strstr returns a poinbér to where string2 begins within stringl, or NULL if ‘sl‘ring'z!”

does not occur within stringl.
For example,

char *string! = “Hello, world";
char *string2 = “worid";
stretr{stringl, string2);

returns stringl plus seven, which points to the beginning of world within Hello,
world. On the other hand,
char *stringl = “Hello, world";

char *string2 = “worlds";
strstr(stringl, string2);

624 struct — structure assignment

returns NULL because worlds does not occur within Hello, world.
See Also

memchr, strehr, strespn, string, strpbrk, atrrehr, strspn, strtok

. struct — C keyword
S Data type

istructisa C keyword that introduces a structure. The following is an example of
. how struct can be used in the description of a name and address file:

struct address (
char firstname[10];
char lastname[15);
char street[25);
char city{10};

. char state(2];

char zip(5};
int salescode;

N

_ of structures to functions, and the returning of structures by functions. Mark

_tures are of the same type. It also allows structures to be passed by and returned
_ by functions, These features are supported by most compilers, but users should be
_ aware that their use can cause problems in porting code to some compilers.

See Also

array, C keywords, C language, field, structure
The C Programming Language, page 119

.gf’structupe Definition

" See Also
field, record, struct
The C Programming Language, page 119

structure assignment — Technical information

The C Progn anguage forbids structure assignment, the passing of struc:
tures to fu om functions (as opposed to the pas.

, and returning struct
sing or returning of pointers to structures).
tions.

Th C Programming Language prohibits the assignment of structures, the passing: 1

_ Williams C allows one structure to be assigned to another, provided the two struc.

Mark Williams C lifts these restric-

SUFF — Super 625

‘Some C compilers transform structure arguments and structure returns into struc .

ure pointers. Note that th] 881 _ structure arguments, or
ture pointers. Note that the use of structure assignment, structure arguments, g '
”t‘u‘recggxl'e‘ returns may create problems when porting the code to another C com-
piler.
: See Also
portability, struct, structure

Notes

Note that because this feature deviates from the description of the C language

found in The C Programming Language, compiling with the -VSBOOK option will
flag all points where it occurs in your program.

"SeeAlso
msh, setenv
Super w-'gemdos function 32 (osbind.h)

Enter privilege mode
long Super(stack) char *stack;

626 Supexec

Super manipulates the Atari ST's privilege mode. stack points to a new supervisor
stack. If the machine is presently set in user mode, it switches to supervisor mode;
if in supervisor mode, it returns to user mode.

Example

This example changes the floppy write verify flag so floppy writes are not automati-

cally verified. This speeds up processing, but can be dangerous, and is not recom-
mended.

#include <osbind.h>
¥define FVERIFY ((short *) Ox0444L)

main()
¢
long save_ssp;
seve_ssp = Super(OL); /* Switch to system mode */
EVERIFY = 0; / Clear the word. */
Super(save_ssp); /* Restore system */
]
See Also
gemdos, TOS
Notes

Super has been documented elsewhere as returning the supervisor/user mode flag
if stack is set to -1L; however, it crashes the system instead. With systems that
have TOS in ROMs, stack should be set to one to perform this task.

Supexec — xbios function 38 (osbind.h)

Run a function under supervisor mode
#include <osbind.h>

#include <xbios.h>

unsigned long Supexec(address)

int *address;

Supexec invokes supervisor mode, and allows you to run a routine under it. ad-
dress is the address of the function to be run.

The Supexec function has two features that are not widely known but could prove
useful in your programs.

The first is that any value returned by function run under under Supexec is
returned untouched by the xbios trap.

Example -
The following example uses the return value of a function run under Supexec to
time execution speeds:

/* Redefine Ssupexec() function

x #include <osbind.h>
i #undef Supexe

c
Wdefine ‘Supexec(a) xbios(38,8)

/* Return microseconds tha

to get long return vatue */

tong time__fmction(f) int (*£)();

¢

register int ntimes = 4*5*1000;

long tstart = Supexec(read_ticks);
while (--ntimes >= 0)
return (Supexec(reod_ticks) -

]

J* Some functions to time */
il function() (return; b
Int Ta = 0x0123, ib = 0x3210;

tion() { return ia ib;
{nt iret_func ia;ib;

int isdd_function() { return

fnt fsub_function() { return ia;ib;
fnt fmul_function() (return is*ib;
fnt idiv_function() { retur

tb = Ox76543210L;

tong la = 0x01234567L,
tong tret_function() {
tong ladd_function() ¢
tong lsub_function(} (¢
tong lml_function() {
long ldiv_function(} ¢

return
return
return
return
return

n {a/ib;

*6H0);

[

ta,\b;
(a+lb;
la-ib;
ta*lb;
ta/ib;

double da = 12340.0 db = 4321.0;

Coble dret_function() { return de,db;
double dadd:f\.r\ctioﬂ() ¢ return da+db;
double dsub_function() { return da-db;

)
)
)
b
3}

dbs
double dmul_function() { return da*db;
double ddiv_function() { return da/db;

. mainQ)

/* Report the times for the functions

1 ’ printf(rnutl %ld microseconds\n",
; printf(iret %id microseconds\n®,

printf(”iadd %id microseconds\n®,
¥ printf("isub Xld microseconds\n®,
2 printf("imul Xld microseconds\n",
is ’ printf(ridiv Xid microseconds\n®,

printf(tiret %ld microseconds\n",
printf("tedd %ld microseconds\n”,
printf(*lsuw %ld microsecords\n”,
printf(*imul %x1d microseconds\n”,
printf("ldlv xtd microseconds\n®,

\ /* Return fhe system 200 hz timer tick count */

long read_ticks() ¢ return *({long *)0xkba); b}

t (*)() takes to execute */

tstart + 2) >> 25

time function(null_function));
time function(i rct__function));
Nme—fu\ction(iadd_fwx:ﬂon)):
time function(isub_function));
time function(imul_function));
time function(idiv_function));

time function(iret_function));
time function(ladd_function));
time_function(isub_function));

time function(imul_function));
time_functionidiv_function));

628 Sversion

printf("dret Xld microseconds\n"
printf("dedd Xld microseconds\n"'
printf{“dsub Xid microseconds\n"'
printf("dml Xld microseconds\n"'
printf("ddiv Xld microseconds\n":

tfme_fmction(dret_fmction)):
time_function(dedd_function));
t fm_f\ncnon(dsw_fw»ction));
time_function(dmul _function));
time_function(ddiv_function));

return 0;
)

The second feature is that a functi
>) . on run under Supexec can b
i)s;af;n:ﬁ:il;snb\{i ;{\ﬁlludmg 1:hen; in the call to the xblos trap.p;he first par:mg:esfetg
: ; ways be a long pointer to itself. A i
be available if they are declared in normal C style. ny eubsequent peramieters wil

Example

The following example
passes three arguments to a functio
copy & block of low memory to a user-supplied buffer. P run under Supexee o

/* Redefine Supexec{) to 53 uments *
#include <osbind.h> pes o =
Wf Supexec

¥define Supexec(a,b,c,d) xbios(38,s,b,c,d)

/* Word copy function with dummy parsmeter */
supercopy(self,destp, srcp,nuds) register int (*self)(), *destp, *srcp, nwds;
" H

3 while (--nwds >= 0) *destp++ = *srcps;

/* C th
min?;))y(e process dump area to our data space end print it *

int proc{é4]; /* More or less */

Supexec(supercopy,proc,0x380L,64);

for (i =0; 1 < 64; i +=4)

printf("X06x X04x X04x X04x\n"
NasSene , proc(i}, procli+1), procli+2),

) return 0;

See Also
TOS, xbios

Sversion — gemdos function 48 (osbind.h)

Get the version number of TOS
#include <osbind.h>
int Sversion()

Sversion gets and returns the current TOS version number.

Example
. 0 !
This example prints the TOS version number on the standard output.

swab — switch 629

#include <osbind.h>

main() €

unfon {
struct (
unsigned minor:8;
unsigned major:8;
3} braker;
int ati;

) versn;

versn.all = Sversion();
pr‘ntf(“TGS/GEH)OS version X2X revision x2x. AN,
versn.braker.major, versn.braker .minor);

)
See Also
gemdos, TOS

swab — General function (libc)

‘Swap a pair. of bytes
vold swab(src, dest, nb) char *src, *dest; unsigned nb;

The ordering of bytes within a word differs from ma e
cause problems when moving binary data between machines. swab interchanges

_each pair of bytes in the array src thatisn
the array dest. The fength nb should be an even number, or

be touched. src and dest may be the same place.

the last byte will:not.

Example
This example prompts for an integer; it then prints the integer b

it, and as it appears with its bytes swapped.
¥include <stdio.h>

mein() {
int word;

oth as you entered

printf("Enter an {nteger: \n%);
scanf("Xd", &word);
printf("The word is Ox¥x\n®, word);

sweb(&uord, &word, 2); R
printf("The word with bytes swepped is OxXx\n", word);

)
See Also
byte ordering

switch — C keyword

Test a variable against a table
: “s,‘wlt‘chﬂis a;C‘,k‘eyword that lets you perform a numbher

“convenient manner. For example,

chine to machine. This may.. '

bytes long, and places the result.into

of tests on a variable in a

630 system

system 631

while(foo < 10)
switch(foo) (

case 1:
dosomething();
break;

vase 2:
somethingelse();
break;

case 3:
anotherthing();
break;

default:
break;

)

)
is equivalent to

while(foo < 10) ¢

if(foo == 1) (
dosomething();
continue;

) else if{foo == 2) (
somethingelse();
anotherthing();
continue;

) else {f(foo == 3) (

/* Note: compiler eliminate duplicate code v/
snotherthing();
continue;

) else
bresk;

)

Note that switch is always used with the case statement, and nearly always with
the default statement.

See Also

break, C keywords, C language, case, default, keyword, while
The C Programming Language, page 54

system — General function (libc)

Pass‘a command to TOS for execution
int system(commandline) char *commandline;

_8ystem passes commandline to the Mark Williams microshell, which loads it into

__memory and executes it system executes commands exactly as if they had been
“typed directly into the shell.

system'uses the environmental variables SHELL and PATH to find.the command
line processor.. SHELL defaults to msh.prg,. but-you can substitute any_ other

_command processor that can evalutate the command lines passed through system
by make, me. or db’

P ys ograms
p
This exam le uses 8§ tem to call the msh cummand Is to list all C pr ms in

the present directory. It redirects its output into the file Hat.fil.

#include <stdio.h>

FILE *newfp;
int oldstdout;

main()

¢ extern int system();

ropen(*list. fil");
system("dir *.c");
rclose();

" tem() csll.
* gedirect stdout prior to sys)
itd process’s 1/0
: ;3: i;zlza;egl;?i;cihmo‘n?)'c and tet the child f{nherit it.

*/
ropen(tofile)
char *tofile;
¢ open ypv)) =x NULL)
= tofile, Mur%)) .
i ((ne;gf;l(gcann;t open output file \"Xs\"*, tofile);
ed later */
* fcate stdout so it can be restor i
<f gﬁgtdztdout = dup(fileno(stdout))) == 1
fatai ("dup failed");
ile handle ss stdout */
* Force tication of new f oe
(f (;;;2(??feno(neufp), £ileno(stdout)) H
fatal("dup2 failed");
}
/.
* Terminate redirection
*/
rclose()
(-
+ Restore old stdout */ i
{f (ceiup2(oldstdout, £ileno(stdout)) == -1)
fatal("dup2 falled");
/* Close the extra ha?dla)'/
(dstdout) =
i (Clos::sz(“cannot close old stdout");
fclose(newfp);
)

632 system variables

system variables 633

/t

* Fatal error

*/

fatal(p)

cher *p;

(4
fprintf(stderr, "redirect: Xr\n", &p);
exit(1);

M

See Also

execve, exit, msh, Pexec
Notes

system variables — Technical information

The TOS operating system uses a number of “magic locations
stem variables. By using the peek and poke routine
Williams C, you can alter these variables directly, to customize

your needs and tastes.)

No shell variable that has been set with the set command is duplicated.

' where it s
included with Mar
' TOS more closelyto

You can Szifely manipulate the address 0x0 to 0x800 only when your program is in
Supervisor mode; you can enter supervisor mode by calling the gemdos function

super.

The following :‘,nblg gives each “magic location”, the common Atari mnemonic for it
(should you wish to build a header file to work with these locations), the length of

the system variable, and a brief description.
0x400/etv_timer/long

Points to the timer event handler.
0x404/etv_critic/long !

Points to the critical error handler.
0x408/etv_term/long

Points to routine that ends a program.
0x04C/etv_xtra/long
0x420/memvalid/int

Check if the memory controller’s configuration is valid.

0x424/mementrl/int
Copy of configuration value in memory controller.

0x428/resvalid/long

If proper value given, jump is made to reset routine pointed to by address

Ox42A.

Ox42A /resvector/long

Address of reset routine.

0x42E/phystop/long
Top of RAM.

bot/long _
ox432/!;":i‘:11ts to/beginning of transient program area.

6/memtop/long . N
0436/ Points tf) &nd of transient program area.

Ox43A/memval2/long
/This i set properly, declar

43E/flock/int
Ifsettony

440/seekrate/int
0x: /‘Set disk drive seekrat,e, a8
. milliseconds; two, two milliseconds;

o4 memory configuration to bevalid.

alue other than zero, disk access is in progress.

follows: zero, six milliseconcs,
‘and three, three milliseconds.

442/timr_ms/int ’
oxtd2/ Clock rate, in microseconds. .

t) . * £3 [
muqﬁ?:iifglnvalue other than zero, every disk write access 13 verified
‘ int) .
01446/‘)1*?\?:{2‘;/0? disk drive from which operating system was loaded
0x448/11)?]s:;(;,gi/?;ltue other than zero, system i5in PAL mode (50 Hz); otherwise,
gystem is in NTSC mode.
a4 e e new resolution is set here: zero

" i shi to color,
Atan shifted from monochrome , D€
‘ gxditétéé low resolution; one, medium resolution.
hiftmd/int o
o:quzmm regolutien, as follows: zero, low resolution;
two, high resolution.
0x44E/v_bas_ad/long
/;Points 1o logical screen base.
dary.
int .
0’(452/‘;}):3::?0/2%0, vertical blank routines are not executed.

one, medium resolution;

Address always begins on a 256-byte boun-

0x454/nvbls/int

Number of vertical blank routines queued for execution.

six milliseconds; one, 12

X
Y- " PR

e

R

e
e e S S TY TN

o s et

¥

%’

e AL

634

system variables

0x456/vblqueue/long

_ Points to the list of routines queued to be executed during vertical
blanking. .

0x45A /colorptr/long : »
If other than zero, holds pointer to color palette to be executed during next
vertical blank.

0x45E/screenpt/long »
Points to beginning of video RAM.

0x462/vbclock/long .
Number of vertical blank interrupt routines.

0x486/frclock/long
‘Number of vertical blank routines executed.

0x46A/hdv_init/long ,

Points to hard-disk initialization. -
0x46E/swv_vec/long
Points to routine to change screen resolution.

0x472/hdv_bpb/long
Points to fetch BIOS parameter block for hard disk.

0x476/hdv_rw/long
~Points to read/write routine for hard disk.

0x47A/hdv_boot/long }
Points to routine to reboot hard disk.

0x47E/hdv_mediach/long
. Points to routine to handle medium change for hard disk.

0x482/cmdload/int

mand.prg after TOS has been loaded.
0x484/conterm/char i
his is a byte:length bit map, whose first four bits
0, toggle key click; bit 1, toggle key repeat; hit2,
t ; vhen - 1-G > is typed: and bit 8, toggle returning Kbshift in
bits 24-31 for the function Conin.
0x48E/themd/four longs
Memory descriptor filled by function Getmpb.

0x4A2/savptr/long)
Pointer to save area for process registers after a BIOS call.

“If set to a value other than zero, system will attempt to load fle com- -

system variables 8636

0x4A68/nflops/int : :
Number of floppy disk drives.

Ox4AE/sav_context/long
Points to temporary areas u

0x4B2/bufl0/long o
Points to head of data sector list.

0x4B2/bufll/long
/‘Igoints{ to head of file allocation table (FAT).

0Ox4BA/hz_200/long
Counter for 200-Hz system clock.

0x4BE/the_env/four chars
Default environment string, four NULs.

drvbits/1 — : : oo
M4C2/%§:?na;/i::i%aﬁng connected drives: bit zero indicates drive A, bit one in-

dicates drive B, etc.
0x4C6/dskbufp/long .
Pointer to 1,024 -byte disk buffer.

AEE/prt_cnt/int : . "
= /1‘; set m/kone, a dump of the current screen 18 sent to the printer port.

Dump can be aborted by typing help and alt keys simultaneously.

0x4F‘2/syabase/ long . ;
Pointer to beginning of operating system.

0x4F6/shell_p/long :
’ /Poinber 10 giobal shell information.

sed by exception-handling routines.

014FA7end.os/ long

Pointer to end of operating system.

0x4FE/exec_os/long
Pointer to start of AES,

Example

The following example pokes address 0x484 to turn off the key click:

mein()

pokeb(Ox4B4L, peekb(0x484L) & ~1);

)
See Also

memory allocation, peekb, peekl, peekw, pokeb, pokel, pokew, TOS

